40,332 research outputs found

    The contribution of secondary eclipses as astrophysical false positives to exoplanet transit surveys

    Full text link
    We investigate in this paper the astrophysical false-positive configuration in exoplanet-transit surveys that involves eclipsing binaries and giant planets which present only a secondary eclipse, as seen from the Earth. To test how an eclipsing binary configuration can mimic a planetary transit, we generate synthetic light curve of three examples of secondary-only eclipsing binary systems that we fit with a circular planetary model. Then, to evaluate its occurrence we model a population of binaries in double and triple system based on binary statistics and occurrence. We find that 0.061% +/- 0.017% of main-sequence binary stars are secondary-only eclipsing binaries mimicking a planetary transit candidate down to the size of the Earth. We then evaluate the occurrence that an occulting-only giant planet can mimic an Earth-like planet or even smaller planet. We find that 0.009% +/- 0.002% of stars harbor a giant planet that present only the secondary transit. Occulting-only giant planets mimic planets smaller than the Earth that are in the scope of space missions like Kepler and PLATO. We estimate that up to 43.1 +/- 5.6 Kepler Objects of Interest can be mimicked by this new configuration of false positives, re-evaluating the global false-positive rate of the Kepler mission from 9.4% +/- 0.9% to 11.3% +/- 1.1%. We note however that this new false-positive scenario occurs at relatively long orbital period compared with the median period of Kepler candidates.Comment: 9 pages, 4 figures, accepted for publication in A&

    Probing quantum fluctuation theorems in engineered reservoirs

    Full text link
    Fluctuation Theorems are central in stochastic thermodynamics, as they allow for quantifying the irreversibility of single trajectories. Although they have been experimentally checked in the classical regime, a practical demonstration in the framework of quantum open systems is still to come. Here we propose a realistic platform to probe fluctuation theorems in the quantum regime. It is based on an effective two-level system coupled to an engineered reservoir, that enables the detection of the photons emitted and absorbed by the system. When the system is coherently driven, a measurable quantum component in the entropy production is evidenced. We quantify the error due to photon detection inefficiency, and show that the missing information can be efficiently corrected, based solely on the detected events. Our findings provide new insights into how the quantum character of a physical system impacts its thermodynamic evolution.Comment: 9 pages, 4 figure

    Topological Approach to Microcanonical Thermodynamics and Phase Transition of Interacting Classical Spins

    Full text link
    We propose a topological approach suitable to establish a connection between thermodynamics and topology in the microcanonical ensemble. Indeed, we report on results that point to the possibility of describing {\it interacting classical spin systems} in the thermodynamic limit, including the occurrence of a phase transition, using topology arguments only. Our approach relies on Morse theory, through the determination of the critical points of the potential energy, which is the proper Morse function. Our main finding is to show that, in the context of the studied classical models, the Euler characteristic χ(E)\chi(E) embeds the necessary features for a correct description of several magnetic thermodynamic quantities of the systems, such as the magnetization, correlation function, susceptibility, and critical temperature. Despite the classical nature of the studied models, such quantities are those that do not violate the laws of thermodynamics [with the proviso that Van der Waals loop states are mean field (MF) artifacts]. We also discuss the subtle connection between our approach using the Euler entropy, defined by the logarithm of the modulus of χ(E)\chi(E) per site, and that using the {\it Boltzmann} microcanonical entropy. Moreover, the results suggest that the loss of regularity in the Morse function is associated with the occurrence of unstable and metastable thermodynamic solutions in the MF case. The reliability of our approach is tested in two exactly soluble systems: the infinite-range and the short-range XYXY models in the presence of a magnetic field. In particular, we confirm that the topological hypothesis holds for both the infinite-range (Tc0T_c \neq 0) and the short-range (Tc=0T_c = 0) XYXY models. Further studies are very desirable in order to clarify the extension of the validity of our proposal

    Entropy inequalities and Bell inequalities for two-qubit systems

    Get PDF
    Sufficient conditions for (the non-violation of) the Bell-CHSH inequalities in a mixed state of a two-qubit system are: 1) The linear entropy of the state is not smaller than 0.5, 2) The sum of the conditional linear entropies is non-negative, 3) The von Neumann entropy is not smaller than 0.833, 4) The sum of the conditional von Neumann entropies is not smaller than 0.280.Comment: Errors corrected. See L. Jakobcyk, quant-ph/040908

    The Levi-Civita spacetime

    Get PDF
    We consider two exact solutions of Einstein's field equations corresponding to a cylinder of dust with net zero angular momentum. In one of the cases, the dust distribution is homogeneous, whereas in the other, the angular velocity of dust particles is constant [1]. For both solutions we studied the junction conditions to the exterior static vacuum Levi-Civita spacetime. From this study we find an upper limit for the energy density per unit length σ\sigma of the source equal 12{1\over 2} for the first case and 14{1\over 4} for the second one. Thus the homogeneous cluster provides another example [2] where the range of σ\sigma is extended beyond the limit value 14{1\over 4} previously found in the literature [3,4]. Using the Cartan Scalars technics we show that the Levi-Civita spacetime gets an extra symmetry for σ=12\sigma={1\over 2} or 14{1\over 4}. We also find that the cluster of homogeneous dust has a superior limit for its radius, depending on the constant volumetric energy density ρ0\rho_0

    Searching for solar siblings among the HARPS data

    Full text link
    The search for the solar siblings has been particularly fruitful in the last few years. Until now, there are four plausible candidates pointed out in the literature: HIP21158, HIP87382, HIP47399, and HIP92831. In this study we conduct a search for solar siblings among the HARPS high-resolution FGK dwarfs sample, which includes precise chemical abundances and kinematics for 1111 stars. Using a new approach based on chemical abundance trends with the condensation temperature, kinematics, and ages we found one (additional) potential solar sibling candidate: HIP97507.Comment: 4 pages, 2 figures, 1 table. Accepted in A&

    Melhoramento genético do feijão-caupi na Embrapa Semi-Árido.

    Get PDF
    Procedimentos para hibridações, avanços de gerações e competições; análises estatísticas dos ensaios avançados; análises para a qualidade tecnológica dos grãos; avaliações em macroparcelas em nível de propriedades rurais; seleção de linhagens avançadas nos cruzamentos com Epace 10 e BR 14 Gurguéia; análises para a qualidade tecnológica dos grãos; avaliações em macroparcelas em nível de propriedades rurais; seleção de linhagens de crescimento determinado e porte ereto; seleção de linhagens tipo ?Canapu? tolerantes às principais viroses; integração de melhoramento clássico e molecular; desenvolvimento de linhagens com propriedades de alimentos funcionaisbitstream/CPATSA/36702/1/SDC204.pd
    corecore