725 research outputs found
Vulnerability of protoxylem and metaxylem vessels to embolisms and radial refilling in a vascular bundle of maize leaves
Regulation of water flow in an interconnected xylem vessel network enables plants to survive despite challenging environment changes that can cause xylem embolism. In this study, vulnerability to embolisms of xylem vessels and their water-refilling patterns in vascular bundles of maize leaves were experimentally investigated by employing synchrotron X-ray micro-imaging technique. A vascular bundle in maize consisted of a protoxylem vessel with helical thickenings between two metaxylem vessels with single perforation plates and nonuniformly distributed pits. When embolism was artificially induced in excised maize leaves by exposing them to air, protoxylem vessels became less vulnerable to dehydration compared to metaxylem vessels. After supplying water into the embolized vascular bundles, when water-refilling process stopped at the perforation plates in metaxylem vessels, discontinuous radial water influx occurred surprisingly in the adjacent protoxylem vessels. Alternating water refilling pattern in protoxylem and metaxylem vessels exhibited probable correlation between the incidence location and time of water refilling and the structural properties of xylem vessels. These results imply that the maintenance of water transport and modulation of water refilling are affected by hydrodynamic roles of perforation plates and radial connectivity in a xylem vascular bundle network.113Ysciescopu
Climate Policy Under Fat‐Tailed Risk: An Application of Dice. ESRI WP403. August 2011
Uncertainty plays a significant role in evaluating climate policy, and fat‐tailed uncertainty may dominate policy advice. Should we make our utmost effort to prevent the
arbitrarily large impacts of climate change under deep uncertainty? In order to answer to this question we propose an new way of investigating the impact of (fat‐tailed) uncertainty on optimal climate policy: the curvature of carbon tax against the uncertainty. We find that the optimal carbon tax increases as the uncertainty about climate sensitivity increases, but it does not accelerate as implied by Weitzman’s Dismal Theorem. We find the same result in a wide variety of sensitivity analyses. These results emphasize the importance of balancing of the costs and the benefits of climate policy, also under deep uncertainty
Design procedure and performance estimation of tidal current power system
The demand to secure an alternative resource has been increased recently rather than fossil or nuclear\ud
powers. One of the affordable ocean energy is the tidal energy since it is considered as a reliable and predictable power\ud
source. The turbine is one of the essential components which can convert the tidal current into the rotational force. The\ud
design optimization of turbine can contribute significantly to the performance of system. There are several key aspects\ud
in the design of turbine. Also the estimation of the device performance is to be carried out by the proven technologies.\ud
This paper introduces the design procedure of the tidal current turbine considering number of blades, shape, sectional\ud
profile, diameter, etc. Also the performance evaluations of the system with single and multi-arrangements are discussed
Temperature dependent resistivity of spin-split subbands in GaAs 2D hole system
We calculate the temperature dependent resistivity in spin-split subbands
induced by the inversion asymmetry of the confining potential in GaAs 2D hole
systems. By considering both temperature dependent multisubband screening of
impurity disorder and hole-hole scattering we find that the strength of the
metallic behavior depends on the symmetry of the confining potential (i.e.,
spin-splitting) over a large range of hole density. At low density above the
metal-insulator transition we find that effective disorder reduces the
enhancement of the metallic behavior induced by spin-splitting. Our theory is
in good qualitative agreement with existing experiments
Conductivity Due to Classical Phase Fluctuations in a Model For High-T_c Superconductors
We consider the real part of the conductivity, \sigma_1(\omega), arising from
classical phase fluctuations in a model for high-T_c superconductors. We show
that the frequency integral of that conductivity, \int_0^\infty \sigma_1
d\omega, is non-zero below the superconducting transition temperature ,
provided there is some quenched disorder in the system. Furthermore, for a
fixed amount of quenched disorder, this integral at low temperatures is
proportional to the zero-temperature superfluid density, in agreement with
experiment. We calculate \sigma_1(\omega) explicitly for a model of overdamped
phase fluctuations.Comment: 4pages, 2figures, submitted to Phys.Rev.
Pion-photon and photon-pion transition form factors in light-cone formalism
We derive the minimal Fock-state expansions of the pion and the photon wave
functions in light-cone formalism, then we calculate the pion-photon and the
photon-pion transition form factors of and
processes by employing these
quark-antiquark wave functions of the pion and the photon. We find that our
calculation for the transition form factor
agrees with the experimental data at low and moderately high energy scale.
Moreover, the physical differences and inherent connections between the
transition form factors of and have been illustrated, which indicate that these
two physical processes are intrinsically related. In addition, we also discuss
the form factor and the decay width at .Comment: 20 pages, 2 figure
Nearly Perfect Durable Superhydrophobic Surfaces Fabricated by a Simple One-Step Plasma Treatment
Fabrication of superhydrophobic surfaces is an area of great interest because it can be applicable to various engineering fields. A simple, safe and inexpensive fabrication process is required to fabricate applicable superhydrophobic surfaces. In this study, we developed a facile fabrication method of nearly perfect superhydrophobic surfaces through plasma treatment with argon and oxygen gases. A polytetrafluoroethylene (PTFE) sheet was selected as a substrate material. We optimized the fabrication parameters to produce superhydrophobic surfaces of superior performance using the Taguchi method. The contact angle of the pristine PTFE surface is approximately 111.0�� �� 2.4��, with a sliding angle of 12.3�� �� 6.4��. After the plasma treatment, nano-sized spherical tips, which looked like crown-structures, were created. This PTFE sheet exhibits the maximum contact angle of 178.9��, with a sliding angle less than 1��. As a result, this superhydrophobic surface requires a small external force to detach water droplets dripped on the surface. The contact angle of the fabricated superhydrophobic surface is almost retained, even after performing an air-aging test for 80 days and a droplet impacting test for 6 h. This fabrication method can provide superb superhydrophobic surface using simple one-step plasma etching. ? 2017 The Author(s).114Ysciescopu
Initial-State Interactions in the Unpolarized Drell-Yan Process
We show that initial-state interactions contribute to the
distribution in unpolarized Drell-Yan lepton pair production and , without suppression. The asymmetry is expressed as a
product of chiral-odd distributions , where the quark-transversity function
is the transverse momentum dependent, light-cone
momentum distribution of transversely polarized quarks in an {\it unpolarized}
proton. We compute this (naive) -odd and chiral-odd distribution function
and the resulting asymmetry explicitly in a quark-scalar diquark
model for the proton with initial-state gluon interaction. In this model the
function equals the -odd (chiral-even) Sivers
effect function . This suggests that the
single-spin asymmetries in the SIDIS and the Drell-Yan process are closely
related to the asymmetry of the unpolarized Drell-Yan process,
since all can arise from the same underlying mechanism. This provides new
insight regarding the role of quark and gluon orbital angular momentum as well
as that of initial- and final-state gluon exchange interactions in hard QCD
processes.Comment: 22 pages, 6 figure
Field Dependent Specific-Heat of Rare Earth Manganites
The low temperature specific heat C(H) of several rare-earth manganites
(La_(0.7)Sr_(0.3)MnO_(3), Nd_(0.5)Sr_(0.5)MnO_(3), Pr_(0.5)Sr_(0.5)MnO_(3),
La_(0.67)Ca_(0.33)MnO$_(3), La_(0.5)Ca_(0.5)MnO_(3), La_(0.45)Ca_(0.55)MnO_(3)
and La_(0.33)Ca_(0.67)MnO_(3)) was measured as a function of magnetic field. We
observed behaviour consistent with thermodynamic expectations, i.e., C(H)
decreases with field for ferromagnetic metallic compounds by an amount which is
in quantitative agreement with spin wave theory. We also find that C(H)
increases with field in most compounds with a charge-ordered antiferromagnetic
ground state. In compounds which show evidence of a coexistence of
ferromagnetic metallic and antiferromagnetic charge-ordered states, C(H)
displays some unusual non-equilibrium effects presumably associated with the
phase-separation of the two states. We also observe a large anomalous low
temperature specific heat at the doping induced metal-insulator transition (at
x = 0.50) in La_(1-x)Ca_(x)MnO_(3).Comment: 13 pages, LATEX, 7 PDF figure
Metallicity and its low temperature behavior in dilute 2D carrier systems
We theoretically consider the temperature and density dependent transport
properties of semiconductor-based 2D carrier systems within the RPA-Boltzmann
transport theory, taking into account realistic screened charged impurity
scattering in the semiconductor. We derive a leading behavior in the transport
property, which is exact in the strict 2D approximation and provides a zeroth
order explanation for the strength of metallicity in various 2D carrier
systems. By carefully comparing the calculated full nonlinear temperature
dependence of electronic resistivity at low temperatures with the corresponding
asymptotic analytic form obtained in the limit, both within the
RPA screened charged impurity scattering theory, we critically discuss the
applicability of the linear temperature dependent correction to the low
temperature resistivity in 2D semiconductor structures. We find quite generally
that for charged ionized impurity scattering screened by the electronic
dielectric function (within RPA or its suitable generalizations including local
field corrections), the resistivity obeys the asymptotic linear form only in
the extreme low temperature limit of . We point out the
experimental implications of our findings and discuss in the context of the
screening theory the relative strengths of metallicity in different 2D systems.Comment: We have substantially revised this paper by adding new materials and
figures including a detailed comparison to a recent experimen
- …