302 research outputs found

    Sunset-calc: An R Shiny Application for Processing Thermo-Optical Analysis Data from Atmospheric Aerosol Measurements

    Get PDF
    Atmospheric aerosols are harmful to human health and affect the climate. We use radiocarbon for the source apportionment of carbonaceous aerosols to unequivocally separate fossil form non-fossil sources. We use thermal-optical analysis (TOA) for radiocarbon measurement of the organic carbon (OC) and elemental carbon (EC) fractions, which requires physical OC/EC separation. TOA relies on the changes in the optical behaviour of carbon when OC is thermally separated from EC. Thermal-optical OC/EC separation leads to partial EC-loss and the conversion of some OC to EC (charring). EC-loss and charring are artifacts which falsify the results of the quantification and must be corrected for. Furthermore, quantifications with custom TOA protocols are not supported with the provided device software. These calculations were previously performed with various spreadsheet style templates and other tools. With Sunset-calc, we aimed to bundle the data processing and develop an extendable and simple web application. With R Shiny, we found a powerful and simple language also for people with little prior programming skills to build rich web applications. We have deployed Sunset-calc on an on-premises R server (14c.unibe.ch/sunsetcalc), which is publicly accessible and particularly useful for our collaborators outside of the University. Sunset-calc is available on GitHub (github.com/martin-rauber/sunset-calc)

    Miniature radiocarbon measurements (< 150 μg C) from sediments of Lake Żabińskie, Poland: effect of precision and dating density on age-depth models

    Get PDF
    The recent development of the MIni CArbon DAting System (MICADAS) allows researchers to obtain radiocarbon (14C) ages from a variety of samples with miniature amounts of carbon (<150 µg C) by using a gas ion source input that bypasses the graphitization step used for conventional 14C dating with accelerator mass spectrometry (AMS). The ability to measure smaller samples, at reduced cost compared with graphitized samples, allows for greater dating density of sediments with low macrofossil concentrations. In this study, we use a section of varved sediments from Lake Żabińskie, NE Poland, as a case study to assess the usefulness of miniature samples from terrestrial plant macrofossils for dating lake sediments. Radiocarbon samples analyzed using gas-source techniques were measured from the same depths as larger graphitized samples to compare the reliability and precision of the two techniques directly. We find that the analytical precision of gas-source measurements decreases as sample mass decreases but is comparable with graphitized samples of a similar size (approximately 150 µg C). For samples larger than 40 µg C and younger than 6000 BP, the uncalibrated 1σ age uncertainty is consistently less than 150 years (±0.010 F14C). The reliability of 14C ages from both techniques is assessed via comparison with a best-age estimate for the sediment sequence, which is the result of an OxCal V sequence that integrates varve counts with 14C ages. No bias is evident in the ages produced by either gas-source input or graphitization. None of the 14C ages in our dataset are clear outliers; the 95 % confidence intervals of all 48 calibrated 14C ages overlap with the median best-age estimate. The effects of sample mass (which defines the expected analytical age uncertainty) and dating density on age–depth models are evaluated via simulated sets of 14C ages that are used as inputs for OxCal P-sequence age–depth models. Nine different sampling scenarios were simulated in which the mass of 14C samples and the number of samples were manipulated. The simulated age–depth models suggest that the lower analytical precision associated with miniature samples can be compensated for by increased dating density. The data presented in this paper can improve sampling strategies and can inform expectations of age uncertainty from miniature radiocarbon samples as well as age–depth model outcomes for lacustrine sediments

    Alleged Lessepsian foraminifera prove native and suggest Pleistocene range expansions into the Mediterranean Sea

    Get PDF
    Biogeographical patterns are increasingly modified by the human-driven translocation of species, a process that accelerated several centuries ago. Observational datasets, however, rarely range back more than a few decades, implying that a large part of invasion histories went unobserved. Small-sized organisms, like benthic foraminifera, are more likely to have been reported only recently due to their lower detectability compared to larger-sized organisms. Recently detected native species of tropical affinity may have thus been mistaken for non-indigenous species due to the lack of evidence of their occurrence in pre-invasion records. To uncover the unobserved past of the Lessepsian invasion—the entrance of tropical species into the Mediterranean through the Suez Canal—we collected sediment cores on the southern Israeli shelf. We deployed state-of-the-art radiocarbon techniques to date 7 individual foraminiferal tests belonging to 5 alleged non-indigenous species and show that they are centuries to millennia old, thus native. Two additional species previously considered non-indigenous occurred in centennial to millennia-old sediments, suggesting their native status. The evidence of multiple tropical foraminiferal species supposed to be non-indigenous but proved native in the eastern Mediterranean suggests either survival in refugia during the Messinian Salinity Crisis (5.96−5.33 million years) or, more likely, dispersal from the tropical Atlantic and Indo-Pacific during the Pleistocene. In the interglacials of this epoch, higher sea levels may have allowed biological connectivity between the Mediterranean and the Red Sea for shallow-water species, showing that the Isthmus of Suez was possibly a more biologically porous barrier than previously considered

    Climate change and equestrian empires in the Eastern Steppes: new insights from a high-resolution Lake Core in Central Mongolia

    Get PDF
    The repeated expansion of East Asian steppe cultures was a key driver of Eurasian history, forging new social, economic, and biological links across the continent. Climate has been suggested as important driver of these poorly understood cultural expansions, but paleo-climate records from the Mongolian Plateau often suffer from poor age control or ambiguous proxy interpretation. Here, we use a combination of geochemical analyses and comprehensive radiocarbon dating to establish the first robust and detailed record of paleo-hydrological conditions for Lake Telmen, Mongolia, covering the past ~4000 years. Our record shows that humid conditions coincided with solar minima, and hydrological modelling confirms the high sensitivity of the lake to paleo-climate changes. Careful comparisons with archaeological and historical records suggest that in the vast semi-arid grasslands of eastern Eurasia, solar minima led to reduced temperatures, less evaporation, and high biomass production, expanding the power base for pastoral economies and horse cavalry. Our findings suggest a crucial link between temperature dynamics in the Eastern Steppe and key social developments, such as the emergence of pastoral empires, and fuel concerns that global warming enhances water scarcity in the semi-arid regions of interior Eurasia.1. Introduction 2. Results 2.1 Sediment core chronology 2.2 Sedimentological and geochemical analyses 2.3 Isotope analyses, evaporation index (EI), and paleohydrology 3. Discussion 3.1 External forcing on the regional climate 3.2 Hydrological modelling 3.3 Climate impact on human history in Mongolia Method

    Evaluating the impact of new observational constraints on P-S/IVOC emissions, multi-generation oxidation, and chamber wall losses on SOA modeling for Los Angeles, CA

    Get PDF
    Secondary organic aerosol (SOA) is an important contributor to fine particulate matter (PM) mass in polluted regions, and its modeling remains poorly constrained. A box model is developed that uses recently published literature parameterizations and data sets to better constrain and evaluate the formation pathways and precursors of urban SOA during the CalNex 2010 campaign in Los Angeles. When using the measurements of intermediate-volatility organic compounds (IVOCs) reported in Zhao et al. (2014) and of semivolatile organic compounds (SVOCs) reported in Worton et al. (2014) the model is biased high at longer photochemical ages, whereas at shorter photochemical ages it is biased low, if the yields for VOC oxidation are not updated. The parameterizations using an updated version of the yields, which takes into account the effect of gas-phase wall losses in environmental chambers, show model–measurement agreement at longer photochemical ages, even though some low bias at short photochemical ages still remains. Furthermore, the fossil and non-fossil carbon split of urban SOA simulated by the model is consistent with measurements at the Pasadena ground site. Multi-generation oxidation mechanisms are often employed in SOA models to increase the SOA yields derived from environmental chamber experiments in order to obtain better model–measurement agreement. However, there are many uncertainties associated with these aging mechanisms. Thus, SOA formation in the model is compared to data from an oxidation flow reactor (OFR) in order to constrain SOA formation at longer photochemical ages than observed in urban air. The model predicts similar SOA mass at short to moderate photochemical ages when the aging mechanisms or the updated version of the yields for VOC oxidation are implemented. The latter case has SOA formation rates that are more consistent with observations from the OFR though. Aging mechanisms may still play an important role in SOA chemistry, but the additional mass formed by functionalization reactions during aging would need to be offset by gasphase fragmentation of SVOCs. All the model cases evaluated in this work show a large majority of the urban SOA (70–83 %) at Pasadena coming from the oxidation of primary SVOCs (P-SVOCs) and primary IVOCs (P-IVOCs). The importance of these two types of precursors is further supported by analyzing the percentage of SOA formed at long photochemical ages (1.5 days) as a function of the precursor rate constant. The P-SVOCs and P-IVOCs have rate constants that are similar to highly reactive VOCs that have been previously found to strongly correlate with SOA formation potential measured by the OFR. Finally, the volatility distribution of the total organic mass (gas and particle phase) in the model is compared against measurements. The total SVOC mass simulated is similar to the measurements, but there are important differences in the measured and modeled volatility distributions. A likely reason for the difference is the lack of particle-phase reactions in the model that can oligomerize and/or continue to oxidize organic compounds even after they partition to the particle phase

    The well-preserved Late Neolithic dolmen burial of Oberbipp, Switzerland. Construction, use, and post-depositional processes

    Get PDF
    Excavation of the Late Neolithic dolmen of Oberbipp BE, Steingasse in the Swiss Central Plateau provided a unique opportunity for a comprehensive study of the archaeological and anthropological evidence. In multidisciplinary studies, we investigated the processes at work during construction, use, and abandonment of the megalithic structure, as well as the dietary habits, subsistence strategy, and possible mobility of the Neolithic population. Archaeological methods included micromorphology, archaeobiology, typology, use-wear analysis, and geology. The anthropological investigation was complemented by an analysis of stable isotope ratios and palaeogenetics. Local topography and the cover of alluvial sediments ensured an extraordinary conservation of the monument. It allowed the preservation of the human remains of at least 42 individuals of both sexes and all ages. The observation of the sedimentary and post-depositional processes, supplemented by an extensive series of radiocarbon dates, allowed us to reconstruct the history of the dolmen in its environment and the definition of at least two deposition phases. We found genetic evidence of lactase intolerance, a local population with a mixed ancestry of early Anatolian farmers and Western hunter-gatherers, and a crop-based diet. Sparse remains of a nearby Late Neolithic settlement sustain the interpretation that this is the burial site of a local farming community. Evidence of higher mobility of females and kinship over three generations solely in the paternal line suggests a virilocal community. Bone-altering pathologies support the assumption of a caring society

    Sources and contributions of wood smoke during winter in London: Assessing local and regional influences

    Get PDF
    Determining the contribution of wood smoke to air pollution in large cities such as London is becoming increasingly important due to the changing nature of domestic heating in urban areas. During winter, biomass burning emissions have been identified as a major cause of exceedances of European air quality limits. The aim of this work was to quantify the contribution of biomass burning in London to concentrations of PM2:5 and determine whether local emissions or regional contributions were the main source of biomass smoke. To achieve this, a number of biomass burning chemical tracers were analysed at a site within central London and two sites in surrounding rural areas. Concentrations of levoglucosan, elemental carbon (EC), organic carbon (OC) and KC were generally well correlated across the three sites. At all the sites, biomass burning was found to be a source of OC and EC, with the largest contribution of EC from traffic emissions, while for OC the dominant fraction included contributions from secondary organic aerosols, primary biogenic and cooking sources. Source apportionment of the EC and OC was found to give reasonable estimation of the total carbon from non-fossil and fossil fuel sources based upon comparison with estimates derived from 14C analysis. Aethalometer-derived black carbon data were also apportioned into the contributions frombiomass burning and traffic and showed trends similar to those observed for EC. Mean wood smoke mass at the sites was estimated to range from 0.78 to 1.0 μgm-3 during the campaign in January–February 2012. Measurements on a 160m tower in London suggested a similar ratio of brown to black carbon (reflecting wood burning and traffic respectively) in regional and London air. Peaks in the levoglucosan and KC concentrations were observed to coincide with low ambient temperature, consistent with domestic heating as a major contributing local source in London. Overall, the source of biomass smoke in London was concluded to be a background regional source overlaid by contributions from local domestic burning emissions. This could have implications when considering future emission control strategies during winter and may be the focus of future work in order to better determine the contributing local sources
    • …
    corecore