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1.  INTRODUCTION 

Biogeographical patterns are the outcome of the 
processes of evolution, dispersal and extinction that 
acted over geological time scales. Such patterns are 

increasingly modified by the human-driven trans -
location of species around the globe over the past 
decades to few millennia (Ojaveer et al. 2018). How-
ever, observational datasets of most biota are limited 
to yearly or decadal scales, implying that a large 
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ABSTRACT: Biogeographical patterns are increasingly modified by the human-driven transloca-
tion of species, a process that accelerated several centuries ago. Observational datasets, however, 
rarely range back more than a few decades, implying that a large part of invasion histories went 
unobserved. Small-sized organisms, like benthic foraminifera, are more likely to have been re -
ported only recently due to their lower detectability compared to larger-sized organisms. Recently 
detected native species of tropical affinity may have thus been mistaken for non-indigenous spe-
cies due to the lack of evidence of their occurrence in pre-invasion records. To uncover the unob-
served past of the Lessepsian invasion — the entrance of tropical species into the Mediterranean 
through the Suez Canal — we collected sediment cores on the southern Israeli shelf. We deployed 
state-of-the-art radiocarbon techniques to date 7 individual foraminiferal tests belonging to 5 
alleged non-indigenous species and show that they are centuries to millennia old, thus native. 
Two additional species previously considered non-indigenous occurred in centennial to millen-
nia-old sediments, suggesting their native status. The evidence of multiple tropical foraminiferal 
species supposed to be non-indigenous but proved native in the eastern Mediterranean suggests 
either survival in refugia during the Messinian Salinity Crisis (5.96−5.33 million years) or, more 
likely, dispersal from the tropical Atlantic and Indo-Pacific during the Pleistocene. In the inter-
glacials of this epoch, higher sea levels may have allowed biological connectivity between the 
Mediterranean and the Red Sea for shallow-water species, showing that the Isthmus of Suez was 
possibly a more biologically porous barrier than previously considered.  
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part of the history of biological invasions went un -
recorded. Therefore, early invasions may have gone 
undocumented and the non-indigenous species in -
volved  er roneously assumed native. Conversely, 
poorly de tectable native species may have been 
recorded only in recent times and falsely considered 
as non-indigenous if biogeographically related to 
other regions. Both scenarios may obscure natural 
patterns and hamper the full understanding of the 
magnitude and rate of invasions, as well as their eco-
logical consequences. 

The paleontological record is increasingly becom-
ing a fundamental source of information on unob-
served past ecosystem states, enabling the reconstruc-
tion of patterns of diversity, dispersal and extinction, 
and thus uniquely contributing to the process of dis-
entangling natural from human-modified biogeo-
graphical patterns (Kidwell & Tomašových 2013, 
Dietl et al. 2015, Yasuhara et al. 2020). The study of 
fossil pollen allowed the recognition of early translo-
cations of plants by humans, e.g. by Norse settlers in 
southern Greenland in the 10th century (Fredskild 
1978) or by European settlers in North America in the 
16th and 17th centuries (McAndrews 1988) (see 
Jackson 1997 for a review). The absence from the 
local fossil record of synanthropic land snail shells 
found exclusively in urban areas on San Salvador 
Island (Bahamas) suggested their non-indigenous 
origin (Yanes 2012). Moreover, fossil pollen data 
have indicated that alleged non-indigenous plants 
are instead native in North America (Betancourt et 
al. 1984), the Galapagos Islands (van Leeuwen et al. 
2008, Coffey et al. 2011) and on Easter Island (Flen-
ley et al. 1991). Also in the marine environment, the 
paleontological re cord has proved useful in recon-
structing the unobserved history of biological in -
vasions (Yasuhara et al. 2012). For example, it has 
provided evidence of possible early translocations 
of dinoflagellates (McMinn et al. 1997, Irwin et al. 
2003, Amorim & Dale 2006, Marret et al. 2009) and 
of the timing of the arrival of non-indigenous ben-
thic foraminifera (McGann et al. 2012, Guastella et 
al. 2021), and has been helpful in quantifying time 
lags in the detection and identification of the drivers 
of invasion success of an introduced bivalve (Albano 
et al. 2018). 

The Mediterranean Sea is a biodiversity hotspot 
(Coll et al. 2010) with an endemicity rate of 45% 
(Costello et al. 2017) shaped by its peculiar geologi-
cal and paleoclimatic history (Taviani 2002, Sabelli & 
Taviani 2014). A west-to-east gradient of declining 
diversity and abundance is apparently related to 
decreasing nutrient availability and increasing tem-

perature and salinity (Tortonese 1951, Coll et al. 
2010). The magnitude of this decline remains uncer-
tain due to the lower sampling effort in the eastern 
and southern sectors (Morri et al. 2009, Idan et al. 
2018, Achilleos et al. 2020, Albano et al. 2020). This 
gradient is currently being disrupted by biological 
invasions, particularly through the opening of the 
Suez Canal in 1869, which broke a long-standing 
biogeographic barrier between the temperate North-
ern Atlantic and the Indo-West Pacific realms. This 
so-called ‘Lessepsian invasion’ (Por 1978, Galil 2009) 
has an opposite east-to-west gradient related to the 
location of the Suez Canal (Galil 2012, Nunes et al. 
2014). Additionally, climate-driven native diversity 
collapses in the eastern Mediterranean Sea are fur-
ther disrupting natural patterns (Rilov 2016, Albano 
et al. 2021, Steger et al. 2021). 

The low sampling effort in the eastern Mediter-
ranean implies that we know little about what its 
biodiversity looked like before and during the first 
century of the Lessepsian invasion, between the 
mid-19th and mid-20th centuries. Reliable and quan-
titative data have only become available in the 
last few de cades (e.g. Galil & Lewinsohn 1981, Tom 
&  Galil 1991, Edelist et al. 2011, Guarnieri et al. 
2017). This knowledge gap has led to the assumption 
that each newly recorded species of tropical affinity 
in the eastern Mediterranean is a non-indigenous 
one. 

Benthic foraminifera are single-celled marine eu -
ka ryotes, often with calcareous tests, that are com-
monly preserved in marine sediments. They are good 
indicators of environmental health and global change 
of marine ecosystems (Sabbatini et al. 2014). Hun-
dreds of non-indigenous foraminifera have been re -
ported from the Mediterranean Sea (Zenetos et al. 
2008), but their status has rarely been assessed based 
on a historical baseline. In this study, we report the 
occurrence of tests of benthic foraminifera previously 
considered non-indigenous in deep sections of sedi-
ment cores collected off the Mediterranean coast of 
Israel and we thus question their non-indigenous sta-
tus. Similarly, Stulpinaite et al. (2020) and Meriç et al. 
(2016, 2018) corrected the non-indigenous status of 
some foraminifera species based on occurrences in 
pre-Lessepsian (pre-AD 1869) sediments. In order to 
assess whether our tests are post-Lessepsian, we 
deployed state-of-the-art radiocarbon techniques to 
date them individually and ascertain their exact age. 
We show that all tests are of Holocene age — thus 
representing native species — and discuss the conse-
quences of these results for the biogeography of the 
Mediterranean Sea. 
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2.  MATERIALS AND METHODS 

2.1.  Core and sample collecting and analysis 

Two ~1.2 to 1.5 m long sediment cores were col-
lected at each of 2 sites at ~30 m (SC30, replicates 
SC30_1 and SC30_3) and ~40 m (SC40, replicates 
SC40_3 and SC40_4) depth off Ashqelon, on the 
Mediterranean shelf of southern Israel, with a gravity 
corer aboard the RV ‘Mediterranean Explorer’ in 2016 
(Table S1, Fig. S1 in Supplement 1 at www.int-res.
com/articles/suppl/m700p065_supp1.pdf). From a visual 
inspection, differences in grain size distribution along 
the cores were obvious but no sedimentary structures 
could be recognized. Cores were cut into 1 cm thick 
slices, which were air dried for at least 96 h. 

One core each was used for foraminiferal analysis 
and sieved with a 150 μm mesh, which is a typical 
sieve size for the study of benthic foraminifera (e.g. 
Fontanier et al. 2002, Duros et al. 2011) and balances 
the need for intercepting small-sized tests with the 
time to process the samples. Sediments were then 
dried at 40°C for 48 h. One slice every 5 cm was used 
for foraminiferal analyses. This resolution is consid-
ered sufficient for marine sediments in areas with 
relatively low sedimentation rates as studied here, 
which are effectively mixed by physical and biologi-
cal processes at decimeter scales (e.g. Tomašových et 
al. 2017, Gallmetzer et al. 2019). This strong degree 
of time-averaging is also nicely indicated by the 
presence of shells of Corbula gibba of very different 
ages in the same layers in our cores (see Fig. 1). Sam-
ples were split into aliquots containing at least 300 
tests, which were subsequently picked, identified 
and counted. The foraminiferal data were standard-
ized and the occurrence of species reported as non-
indigenous in the literature recorded (Table 1). 

The replicate core was used to determine the sedi-
ment grain size, again each fifth 1 cm thick slice. The 
fraction finer than 63 μm was analyzed with a Micro -
meritics SediGraph III 5120, after mixing with 5 ml of 
2% sodium pyrophosphate (Na4P2O7). Coarser frac-
tions were sieved and weighed. Sediment classifica-
tion follows Folk (1954). 

2.2.  Core age models 

From each target increment — the top 5 cm of the 
cores, layers with major changes in sediment grain 
size and the core bottom (see Table 2) — 3 to 5 valves 
of the native bivalve C. gibba with a minimum mass 
of 1 mg were selected for radiocarbon dating, yield-

ing a total of 29 and 28 valves for cores SC30_1 and 
SC40_4, respectively. C. gibba was the only macro-
fossil common enough throughout both cores and of 
sufficient mass to be dated with standard radiocar-
bon methods. To avoid dating individual bivalves 
twice, only right valves were used whenever possi-
ble. If a sufficient number was available within an 
increment, right valves to be dated were selected by 
random drawing; otherwise, all right valves within 
the increment were used, and randomly drawn, non-
matching, left valves were added until a sufficient 
sample size was achieved. Selected valves were pre-
cleaned by manually removing sediment and encrus-
tations visible under a stereomicroscope. 

Valves were dated by accelerator mass spectro -
metry (AMS) using powdered carbonate targets 
(Bush et al. 2013, Bright et al. 2021), with a typical 
analytical precision better than 0.6% (1 σ). Mollusk 
shells were subsampled by gently breaking and then 
selecting a small fragment. All samples were cleaned 
by sonicating and rinsing 3 times in deionized dis-
tilled water (DDI; 16.3 MΩ-cm). Samples were leached 
with 2 M HCl, with the extent of leaching de pendent 
on sample mass: samples larger than 1 mg were 
leached to remove about 30% by mass and samples 
between ca. 0.5 and 1 mg were leached to remove 
about 15%. Samples were ultimately rinsed 3 times 
with DDI water then dried in a 50°C oven overnight. 
They were then ground to a fine powder using a 
small clean agate mortar and pestle. Between 0.15 
and 0.50 mg of the carbonate powder of each sample 
was transferred to sterilized (3 h at 500°C) borosili-
cate glass culture tubes (6 mm outer diameter [OD] × 
50 mm). The sample carbonate was combined with 
6  to 7 mg of niobium (Nb Puratronic, −325 mesh, 
99.99%) powder using a spatula. The tubes were 
flushed with N2 gas and capped with Supelco plastic 
column caps (1/4‘‘ [ca. 6.35 mm] OD) to reduce 
atmospheric exposure until the powder was pressed 
into targets. The metal and carbonate mixture was 
pressed into pre-drilled (0.160‘‘ [ca. 4.1 mm] depth) 
aluminum targets at 400 psi, rotated 90° and pressed 
again at 400 psi. The targets were sent to the Keck 
Carbon Cycle AMS Laboratory at the University of 
California Irvine for 14C analysis. 

Radiocarbon ages were converted to calibrated 
ages or calendar years (cal. yr BP, i.e. before AD 
1950) using the OxCal program v. 4.4.2 (Bronk Ram-
sey 2009) and the Marine20 data (Heaton et al. 2020) 
with a constant regional marine reservoir correction 
(ΔR) of −142 ± 66 yr, which is the weighted mean of 
8 published pre-bomb ΔR values from Israel and 
Lebanon (Table S3). 
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We quantified the central tendency and spread of the 
shell age-frequency distributions with the median and 
the inter-quartile range (IQR), respectively. Finally, 
the core age model was obtained with Bayesian sta-
tistics using the R package rbacon 2.4.2 (Blaauw & 
Christen 2011) with the parameters as specified in 
Table S2. 

2.3.  Radiocarbon dating of foraminifera tests 

Seven foraminiferal tests belonging to the allegedly 
non-indigenous miliolids Articulina alticostata (1 test), 
Cribromiliolinella milletti (1 test), Miliolinella fich te -
li ana (1 test), Spiroloculina antillarum (1 test) and 
Nodophthalmidium antillarum (3 tests) (Figs. S2 & S3, 
Table 1) were dated individually. Tests were taken 
from the deepest layers in the cores where these spe-
cies occurred (suggesting older ages and thus poten-
tial native status) and those in good preservation 
state were selected for dating. 

Laboratory procedures followed Gottschalk et al. 
(2018). Foraminiferal tests were loaded into septum-
sealed glass vials and the air was replaced with he-
lium. The samples were weakly pre-leached using 
0.01 M hydrochloric acid for 3 min at room tempera-
ture and the resultant CO2 was again replaced with 
helium. The carbonate material was then dissolved in 
85% orthophosphoric acid to form CO2, which was 
measured directly in the AMS MIni CArbon DAting 
System (MICADAS) using the gas ion source at the 
University of Bern, Switzerland (Szidat et al. 2014, 
Gottschalk et al. 2018). The samples were measured 
together with 6 standards each of both IAEA-C1 and 
IAEA-C2 for background correction, 14C normaliza-
tion and δ13C fractionation correction using the soft-
ware Bats (Wacker et al. 2010). Afterwards, a constant 
contamination of F14C = 0.30 ± 0.04 with a carbon 
mass of 0.68 ± 0.10 μg C was applied to correct for the 
procedural blank, as previously determined for dating 
foraminifera in this laboratory (Gottschalk et al. 2018). 
Uncertainties of 14C ages (see Table 3) include a full 
propagation of all contributions from AMS measure-
ment, background correction, 14C normalization and 
δ13C fractionation correction, as well as the correction 
of the constant contamination, whereof the last contri-
bution was the largest because of the small sizes of 
the samples (individual foraminiferal tests). Radiocar-
bon ages and their calibrated ages in cal. yr BP (see 
the age calibration procedure in Section 2.2) are re-
ported in Table S4 in Supplement 2 at www.int-
res.com/articles/suppl/m700p065_supp2.xlsx for the 
mollusks and in Table 3 for the foraminifera. 

3.  RESULTS 

3.1.  Core age and sediment profiles 

Cores SC30 and SC40 span millennia and cen-
turies, respectively, as a consequence of markedly 
different sedimentation rates (0.2 and 2.4 mm yr−1, 
respectively). The age model of core SC30 suggests a 
median age of ca. 5500 cal. yr BP at its maximum 
depth (Fig. 1). Time averaging, which quantifies the 
temporal mixing of the assemblages and here ex -
pressed as inter-quartile range, is several hundred 
years at most sediment depths and reaches 709 yr at 
the core bottom (Table 2). The age model of core 
SC40 suggests a median age at its maximum depth of 
ca. 600 cal. yr BP. Time averaging is generally limited 
to a few centuries in the upper 30 cm and to decades 
only in deeper sections. At 14 cm sediment depth, 
we detected a layer that contains the oldest shells 
(1427 cal. yr BP) with the highest time averaging 
(337 yr) of the core. Although we could not observe 
sedimentary structures, this strong age inversion and 
high degree of time averaging suggests transport of 
older shells from elsewhere (e.g. from shallower 
sites; at the SC30 station, the surficial death assem-
blage has a median age of 505 cal. yr BP and the age 
range is between 127 and 3043 cal. yr BP; Table 2). 

Core SC30 comprises 3 zones with different sedi-
ment types (Fig. 1): a top layer down to ca. 40 cm sed-
iment depth where sand to muddy sand prevails, a 
second interval down to ca. 110 cm sediment depth 
where clay prevails, and the bottom of the core 
where the sediment is coarser again. This latter sedi-
ment change, dated around 2600 cal. yr BP, may be 
related to a decrease in the Nile River discharge due 
to the onset of drier conditions in central Africa and 
consequent reduction in pelitic input relative to 
coarser sediments from coastal erosion (Hassan et al. 
2012). Most of core SC40 is homogeneously muddy 
throughout; the top 5 cm contain slightly coarser sed-
iment (Fig. 1). 

3.2.  Foraminiferal test ages 

The dated foraminiferal tests span between 731 
and 8261 cal. yr BP in calibrated median age (Table 3). 
With the single exception of a test of Nodophthalmid-
ium antillarum (specimen F008) with a 95% confi-
dence interval (CI) calibrated age range marginally 
overlapping with the opening of the Suez Canal (but 
a median age of 1111 cal. yr BP), all other 95% CI 
 calibrated ages are much older. 
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Fig. 1. Core age model (sloped lines, based on radiocarbon dating of Corbula gibba shells), age of foraminiferal tests (see 
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Additionally, Miliolinella fichteliana and Spirolo-
culina antillarum occur in SC30 at sediment depths 
greater than 1 m, where the core age model suggests 
ages between 4000 and 6000 cal. yr BP (Fig. 1). In 
SC40, Edentostomina cultrata occurs at 115 cm sedi-
ment depth, where the core age model suggests ages 
around 400 cal. yr BP (Fig. 1), and Pseudotriloculina 
subgranulata occurs in SC40 down to the core bottom 
at 145 cm sediment depth (ca. 600 cal. yr BP). Occur-
rences so deep below the seafloor and in layers dat-
ing to well before the opening of the Suez Canal sug-
gest the pre-Lessepsian presence of these species in 
the Mediterranean Sea. 

The non-indigenous Quinqueloculina erinacea and 
Q. mosharrafai occur at 20 and 10 cm sediment depth, 
respectively, and S. nummiformis occurs at 5 cm sed-
iment depth in SC40 (Fig. 1). These depths, however, 
are too shallow to exclude reworking of young mate-
rial from the surface and thus we have no evidence 
that Q. erinacea, Q. mosharrafai and Spiro lo culina 
nummiformis occurred on the Mediterranean Israeli 
shelf before the opening of the Suez Canal. 

4.  DISCUSSION 

4.1.  Alleged non-indigenous foraminifera are native 

The 7 foraminiferal tests we dated were all pre-
Lessepsian (i.e. pre-AD 1869), suggesting that Artic-
ulina alticostata, Cribromiliolinella milletti, Miliolinella 
fichteliana, Spiroloculina antillarum (Carib bean mor-
photype, see Stulpinaite et al. 2020) and Nodoph-
thalmidium antillarum are native Mediterranean spe-
cies. Consistently, M. fichteliana has been re ported 
from sediment cores collected be tween Rhodes and 
Crete, Greece, and dated between 4000 and ca. 
25 000 cal. yr BP (Abu-Zied et al. 2008), and S. antil-
larum has been reported from Pleistocene sediments 
related to the last interglacial in Palma de Mallorca, 
Baleares (Spain) (Mateu 1972), from Holocene sedi-
ments in cores collected at the archeological site of 
Elaiussa Sebaste, Mersin (Turkey) (Melis et al. 2015) 
and in other Pleistocene to Holocene sediments in 
Turkey (Meriç et al. 2018) (but see discussion of its 
taxonomy in Section 4.2). 
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Core          Core slices        Number        Median age         Minimum median          Maximum median           Inter-quartile  
                       (cm)               of dates          (cal. yr BP)             age (cal. yr BP)                age (cal. yr BP)                  range (yr) 
 
SC30_1              5                       4                      505                             127                                  3043                                863 
SC30_1             25                      5                     1881                           1768                                 1944                                 97 
SC30_1             45                      5                     2557                           1789                                 3531                                228 
SC30_1          83−84                   5                     3274                           3079                                 5045                                116 
SC30_1        103−104                 5                     4451                           3281                                 5054                                721 
SC30_1        120−121                 5                     4910                           3533                                 7284                                709 

SC40_4              1                       5                      104                              34                                    393                                 201 
SC40_4             14                      4                      381                             170                                  1427                                337 
SC40_4          24−27                   5                      290                             122                                   358                                 131 
SC40_4             36                      3                      176                             123                                   249                                  63 
SC40_4             49                      3                      139                              96                                    168                                  36 
SC40_4          86−87                   5                      147                              80                                    204                                  70 
SC40_4        142−145                 3                      181                             123                                   359                                 118 

Table 2. Summary statistics for the age−frequency distributions of the bivalve Corbula gibba downcore. cal. yr: calibrated years

Species                                            Foraminiferal test       Core    Sediment   Carbon    14C age     Calibrated   Calibrated age  
                                                          code (University                       depth        mass       (yr BP)      median age      at 95% CI  
                                                            of Bern code)                           (cm)        (μg C)                        (cal. yr BP)       (cal. yr BP) 
 
Articulina alticostata                    F006 (BE-12479.1.1)   SC40_4        35             19      1183 ± 130         731             464−1047 
Cribromiliolinella milletti             F001 (BE-11692.1.1)   SC40_4        20              2      3335 ± 538        3243           1926−4688   
Miliolinella fichteliana                 F004 (BE-11695.1.1)   SC30_1      110             30      3823 ± 88          3784           3460−4103   
Spiroloculina antillarum              F010 (BE-12483.1.1)   SC30_1      110             10      7798 ± 271        8261           7667−8967   
Nodophthalmidium antillarum    F007 (BE-12480.1.1)   SC40_4        35              3      1851 ± 492        1486             504−2685 
Nodophthalmidium antillarum    F008 (BE-12481.1.1)   SC40_4        35              2      1462 ± 567        1111               0−2300 
Nodophthalmidium antillarum    F009 (BE-12482.1.1)   SC40_4        35              5      1704 ± 308        1271             629−1998

Table 3. Sample details, measured 14C ages with 68% uncertainties and calibrated 14C ages with 95% confidence intervals of  
foraminiferal tests from sediment cores off Ashqelon, southern Israel
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In our material, almost all foraminiferal tests are 
older than bivalve shells in the same layers. Such age 
offsets between different taxa in sediment cores are a 
widespread pattern in both shallow and deep waters. 
For example, a multi-phyla dating experiment on bi -
valves, foraminifera, echinoids, brachyurans and oto -
liths from Holocene sediment cores collected in the 
Adriatic Sea showed age offsets of 4000 yr between 
the benthic foraminifera Adelosina intricata and 
Elphidium crispum, and offsets of 1000 to 3000 yr be -
tween these foraminifera and the bivalves Corbula 
gibba and Gouldia minima (Nawrot et al. 2022). Rel-
ative differences in the likelihood of burial may be 
the primary cause of the age differences between 
bivalves and foraminifera. Foraminiferal tests can be 
rapidly incorporated into the sediment by burrowers 
such as callianassid shrimps and polychaetes that 
can actively mix the sediment down to more than 1 m 
(Dworschak & Rodrigues 1997, Pervesler & Hohen -
egger 2006). When buried, tests are protected from 
most destructive forces. Re-exhumation by bioturba-
tors thus brings to surface tests that are significantly 
older than other skeletal remains such as bivalve shells 
that, due to their larger size, have a lower probability 
of taking part in these burial−exhumation cycles 
(Martin et al. 1996). The burial−exhumation dynamic 
also blurs the timing of production peaks and leads to 
skeletons of comparable durability being of different 
age despite their occurrence in the same horizon 
(Tomašových et al. 2019a,b). 

Even if not individually dated, the occurrence of 
the foraminifera Pseudotriloculina subgranulata and 
Edentostomina cultrata, previously considered non-
indigenous, at 115 and 145 cm sediment depths in 
our SC40 core suggests their native status. This result 
confirms the proposition of Stulpinaite et al. (2020) 
based on undated sediment cores collected off Israel. 
Further alleged non-indigenous foraminifera were 
found in sediments dating back from the middle 
Pleistocene to the Holocene (Meriç et al. 2016, 2018). 
The assignment of so many allegedly non-indige-
nous foraminifera species to native status requires a 
broader reassessment of our knowledge of this group 
in the Mediterranean Sea. 

4.2.  Consequences for marine ecology 

Small-sized organisms like foraminifera are partic-
ularly prone to under- and misreporting. There is evi-
dence for a variety of taxa that small body size delays 
their discovery (Blackburn & Gaston 1998), as early 
naturalists were biased towards collecting and describ-

ing large, conspicuous species (Blackburn & Gaston 
1994). Indeed, 70% of the species analyzed here were 
first reported from the Mediterranean Sea in the last 
20 yr, 2 were reported in the second half of the 20th 
century, and only S. antillarum was first reported in 
1920. This last species is also an example of the chal-
lenges faced when treating very small-bodied taxa 
whose taxonomy is not settled. Stulpinaite et al. 
(2020) recognized 2 morphospecies: the S. antillarum 
s.s. and an undescribed species occurring in the east-
ern Mediterranean and the Red Sea, but their records 
in the literature are under the same name and not 
always illustrated, obscuring their geographic distri-
bution and origin. 

Our results also highlight how well-dated sedi-
mentary sequences can support ecology. Direct ob -
servation of ecosystems is mostly limited to short time 
scales (years to decades), much shorter than the life 
span of many species and most habitats (years to de -
cades and centuries to millennia, respectively) (Yasu -
hara et al. 2012, Kidwell & Tomašových 2013). Multi-
decadal time series are limited to very few places 
(e.g. the North Sea, Schroeder 2005, and the Arctic 
fjords, Kortsch et al. 2012). Even when sampling and 
reporting took place early, data may be qualitative 
and based on serendipitous collecting events rather 
than on well-designed sampling (Dauvin 2010), and 
these early efforts may have been strongly biased in 
favor of large-sized organisms, as reported above. In 
these conditions, discriminating a natural from an 
anthropogenic pattern may not be possible. The oc -
currence of identifiable and individually dated (sub) -
fossils in stratigraphic context complements available 
ecological datasets (e.g. Yasu hara et al. 2012, 2020, 
Cramer et al. 2017, Tomašo vých et al. 2019a, Gall -
metzer et al. 2019, O’Dea et al. 2020). In this study, 
we showed that the Holocene record helps in discrimi-
nating the native vs. non-indigenous status of spe-
cies, and may prove valuable in determining the ori-
gin of the so-called cryptogenic species, that is, those 
that are currently not demonstrably native or non-
indigenous (Carlton 1996). Such cryptogenic species 
could have been introduced before any monitoring 
occurred and thus were not detected as newcomers. 

4.3.  Consequences for the biogeography of the 
Mediterranean Sea 

We demonstrate that 3 foraminifera species of 
Indo-Pacific affinity (A. alticostata, C. milletti and M. 
fichteliana) and 3 species with a broad distribution in 
the tropical seas of the Caribbean and the Indo-
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Pacific province (P. subgranulata, N. antillarum and 
E. cultrata) that were previously considered non-
indigenous in the Mediterranean are instead native. 
Their Mediterranean distribution is limited to the 
eastern basin. The type locality of S. antillarum is in 
the Caribbean, but here it is shown to also be native 
to the Mediterranean, where it has a broad distribu-
tion. Additionally, the benthic foraminifer Amphiste-
gina lobifera Larsen, 1976, which is currently consid-
ered an invasive species in the Mediterranean Sea, 
occurs both in the Pleistocene (Meriç et al. 2016) and 
at sediment depths slightly deeper than ours within 
undated sediment cores from Haifa Bay (Stulpinaite 
et al. 2020), suggesting a Holocene age and that the 
alleged non-indigenous status of this species merits 
further investigation. We consider it unlikely that 
these species could have occurred in the basin dur-
ing the Holocene, become extinct and then been re-
introduced through the Suez Canal, as the few ex -
tinctions of marine species during the Holocene are 
directly or indirectly ascribed to human action, and 
foraminifera are neither associated with direct human 
pressures nor with cascading effects strong enough 
to drive them to regional extinction (Dulvy et al. 2009). 

The occurrence in the Mediterranean Sea of tropi-
cal foraminifera with broad global distributions may 
have 2 alternative explanations. In a first scenario, 
such distributions are the outcome of vicariance pro-
cesses caused by the closure of the Tethyan Seaways 
during the Cenozoic (Harzhauser et al. 2007, Bialik et 
al. 2019, Straume et al. 2020). Populations of Tethyan 
species were geographically separated, leading to 
disjunct occurrences in both the present-day Carib-
bean and the Indo-Pacific. Some Tethyan species 
may have survived in the Mediterranean despite 
its quasi-complete desiccation during the Messinian 
Salinity Crisis (Hsü et al. 1977, Roveri et al. 2014), 
later evolving into closely allied species (Basso et al. 
1996, Athanasiadis 1999). 

An alternative scenario is that species which disap-
peared from the Mediterranean during the Messinian 
Salinity Crisis, or evolved later, (re)entered the basin 
upon normalization of marine conditions. The timing of 
their range expansion into the Mediterranean may be 
as early as the Pliocene for pan-tropical foramin ifera, 
but strictly Indo-Pacific taxa may have entered only 
later, considering the lack of evidence of connections 
between the Mediterranean and the Red Sea during 
the Pliocene (Taviani 2002). Indeed, there is geological 
and evolutionary evidence of such connections in the 
late Pleistocene. During the Last Interglacial high stand 
(Marine Isotope Stage [MIS] 5e, ca. 125 000 kyr), the 
global sea level was 5 to 9 m higher than at present 

(Kopp et al. 2009, Dutton & Lambeck 2012, Rovere et 
al. 2016) and a shallow marine connection was proba-
bly in place across the Suez Isthmus enabling faunal 
exchanges between the Mediterranean and Red Sea 
(Plaziat et al. 1995). Such connections may have oc-
curred in earlier times too, because populations of the 
benthic fish Serranus cabrilla that occur in both seas 
diverged approximately 194 000 yr ago at the end of 
the MIS 7 interglacial (Bos et al. 2020). More occur-
rences of sea levels higher than today in the Red Sea 
have been reconstructed for the last 500 kyr (Siddall et 
al. 2003), suggesting significant opportunities for the 
dispersal of shallow water species. Such high sea 
levels suggest that the Isthmus of Suez was probably a 
more porous biogeographic barrier than previously 
thought. Still, it would have acted as a strong filter in 
favor of shallow water euryhaline species (e.g. the in-
tertidal Mediterranean gastropod Pirenella conica that 
now occurs in the northern Red Sea, Plaziat et al. 1995; 
or the intertidal Indo-Pacific bivalve Brachidontes 
pharaonis that has been recently hypothesized to have 
occurred in the Mediterranean before the opening of 
the Suez Canal, Belmaker et al. 2021), or species with 
particular ability to cross barriers. Fishes (e.g. Serranus 
cabrilla) can be easily perceived as effective dispersers, 
but foraminifera also have multiple dispersal path-
ways. Zygotes and embryonic juveniles are easily 
transported over large distances, with the latter capa-
ble of extending numerous filose pseudopodia that en-
hance flotation and thus the length of pelagic life (Alve 
1999, Alve & Goldstein 2002, 2003). Additionally, fo-
raminifera can be resuspended by storms or fish activ-
ity and then transported over long distances (Murray 
2006). Last, the recently reported ichthyocory — the 
live passage of organisms through fish digestive 
tracts — for foraminifera (Guy-Haim et al. 2017) further 
increases their dispersal potential. An ad ditional chal-
lenge for species entering the Mediterranean during 
interglacials is their survival during glacial times. How-
ever, although in the easternmost Mediterranean Sea 
summer sea surface temperatures during the last gla-
cial maximum were 2°C lower than today, winter tem-
perature anomalies were close to zero (Hayes et al. 
2005), suggesting the occurrence of a refugium for 
thermophilic species. Indeed, survival in winter is one 
of the main conditions for warm water species to persist 
in cooler conditions (Amarasekare & Simon 2020). 

The permeability of the Suez Isthmus barrier and 
these favorable climatic conditions may be the most 
likely scenario to explain the occurrence of tropical 
species in the Mediterranean and show that the bio-
geography of the Mediterranean Sea is still far from 
well understood. 
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