33,386 research outputs found

    Anthropically Selected Baryon Number and Isocurvature Constraints

    Full text link
    The similarity of the observed baryon and dark matter densities suggests that they are physically related, either via a particle physics mechanism or anthropic selection. A pre-requisite for anthropic selection is the generation of superhorizon-sized domains of different Omega_{B}/Omega_{DM}. Here we consider generation of domains of different baryon density via random variations of the phase or magnitude of a complex field Phi during inflation. Baryon isocurvature perturbations are a natural consequence of any such mechanism. We derive baryon isocurvature bounds on the expansion rate during inflation H_{I} and on the mass parameter mu which breaks the global U(1) symmetry of the Phi potential. We show that when mu < H_{I} (as expected in SUSY models) the baryon isocurvature constraints can be satisfied only if H_{I} is unusually small, H_{I} < 10^{7} GeV, or if non-renormalizable Planck-suppressed corrections to the Phi potential are excluded to a high order. Alternatively, an unsuppressed Phi potential is possible if mu is sufficiently large, mu > 10^{16} GeV. We show that the baryon isocurvature constraints can be naturally satisfied in Affleck-Dine baryogenesis, as a result of the high-order suppression of non-renormalizable terms along MSSM flat directions.Comment: 8 pages, 1 eps figure, LaTeX. Minor typo correcte

    Aids and Economic Growth: A Human Capital Approach

    Get PDF
    It is estimated that by 2001 20 million people had died from AIDS, which is now the world´s fourth biggest cause of death. While the highest prevalence and death rates and number of infected persons are reported for sub-Saharan Africa, where life expectancies at birth are declining rapidly and infant mortality rates are increasing, there is evidence that the epidemic is accelerating in Asia and Eastern Europe. While the human and social costs of the HIV/AIDS epidemic are the major causes for concern, the econometric results reported in this paper indicate that the macroeconomic affects of the HIV/AIDS epidemic have been substantial; especially in Africa where the average marginal negative impact on income per capita of a one percent increase in HIV prevalence rate is 0.59 percent. Even in countries where the HIV prevalence rates are lower the marginal impacts are non trivial

    The impact of HIV and AIDS on Africa's economic development

    Get PDF
    The macroeconomic effects of HIV/AIDS in Africa are substantial, and policies fill. dealing with them may be controversial-one is whether expensive antiretroviral drugs Should be targeted at economically productive groups of people. The authors review the evidence and consider how economic theory can contribute to our response to the pandemic

    AIDS in Botswana: Evaluating the general equilibrium implications of healthcare interventions

    Get PDF
    This paper reports an analysis of the effects of health care interventions designed to reduce the impacts of the HIV/AIDS epidemic on the Botswana economy. The analyses were conducted using a recursive dynamic computable general equilibrium model for Botswana within which was embedded a compartmental epidemiological model. The health care interventions examined are reductions in other sexually transmitted diseases (STDs) that reduce the probability of HIV transmission and a mass media health education programme that reduces the number of new sexual partnerships being formed. While the policy scenarios examined are, necessarily, somewhat stylised, the results indicate both the devastating adverse effects of the epidemic and the substantial potential benefits of the interventions. Without interventions disposable household incomes per capita are up to 50 per cent less than they would have been in 2020, but with these interventions the adverse effects of the epidemic are more than halved

    Spontaneous spatial fractal pattern formation in absorptive systems

    Get PDF
    We predict, for the first time to our knowledge, that purely-absorptive nonlinearity can support spontaneous spatial fractal pattern formation. A passive optical ring cavity with a thin slice of saturable absorber is analyzed. Linear stability analysis yields threshold curves for Turing (static) instabilities with features proposed as characteristics of potential fractal pattern formation. Numerical simulations of the fully-nonlinear dynamics, with both one and two transverse dimensions, confirm theoretical predictions

    X-Ray Tomography To Measure Size Of Fragments From Penetration Of High-Velocity Tungsten Rods

    Get PDF
    Behind-armor debris that results from tungsten rods penetrating armor steel at 2 km/s was studied by analysis of recovered fragments. Fragment recovery was by means of particle board. Individual fragments were analyzed by x-ray tomography, which provides information for fragment identification, mass, shape, and penetration down to masses of a few milligrams. The experiments were complemented by AUTODYN and EPIC calculations. Fragments were steel or tungsten generated from the channel or from the breakout through the target rear surface. Channel fragment motions were well described by Tate theory. Breakout fragments had velocities from the projectile remnant to the channel velocity, apparently depending on where in the projectile a fragment originated. The fragment size distribution was extremely broad and did not correlate well with simple uniform-fragment-size models.Mechanical Engineerin

    Numerical solutions of Navier-Stokes equations for compressible turbulent two/three dimensional flows in terminal shock region of an inlet/diffuser

    Get PDF
    The multidimensional ensemble averaged compressible time dependent Navier Stokes equations in conjunction with mixing length turbulence model and shock capturing technique were used to study the terminal shock type of flows in various flight regimes occurring in a diffuser/inlet model. The numerical scheme for solving the governing equations is based on a linearized block implicit approach and the following high Reynolds number calculations were carried out: (1) 2 D, steady, subsonic; (2) 2 D, steady, transonic with normal shock; (3) 2 D, steady, supersonic with terminal shock; (4) 2 D, transient process of shock development and (5) 3 D, steady, transonic with normal shock. The numerical results obtained for the 2 D and 3 D transonic shocked flows were compared with corresponding experimental data; the calculated wall static pressure distributions agree well with the measured data

    Parametric study of relaminarization of turbulent boundary layers on nozzle walls

    Get PDF
    By means of comparisons between theoretical predictions and experimental data, the accuracy of a boundary procedure to predict the effect of large streamwise accelerations upon initially turbulent boundary layers is assessed. The boundary layer procedure is based upon simultaneous solution of the boundary layer partial differential equations and the integral turbulence kinetic energy equation. The results of the present investigation show the ability of the procedure to accurately predict properties of boundary layers subjected to large streamwise accelerations. The procedure is used to conduct a parametric study of the effect of free stream turbulence, heat transfer, Reynolds number, acceleration, and Mach number on boundary layers in supersonic nozzles to assist in the design of a quiet tunnel. Results of the investigation show that, even in the presence of moderate free-stream turbulence levels, the boundary layer in the approach section of the quiet tunnel nozzle relaminarizes and becomes thin enough to be removed by a small slot in the nozzle wall. Furthermore, the calculations indicate that it should be possible to maintain a laminar boundary layer for the entire length of the supersonic portion of the quiet tunnel nozzle
    corecore