research

Parametric study of relaminarization of turbulent boundary layers on nozzle walls

Abstract

By means of comparisons between theoretical predictions and experimental data, the accuracy of a boundary procedure to predict the effect of large streamwise accelerations upon initially turbulent boundary layers is assessed. The boundary layer procedure is based upon simultaneous solution of the boundary layer partial differential equations and the integral turbulence kinetic energy equation. The results of the present investigation show the ability of the procedure to accurately predict properties of boundary layers subjected to large streamwise accelerations. The procedure is used to conduct a parametric study of the effect of free stream turbulence, heat transfer, Reynolds number, acceleration, and Mach number on boundary layers in supersonic nozzles to assist in the design of a quiet tunnel. Results of the investigation show that, even in the presence of moderate free-stream turbulence levels, the boundary layer in the approach section of the quiet tunnel nozzle relaminarizes and becomes thin enough to be removed by a small slot in the nozzle wall. Furthermore, the calculations indicate that it should be possible to maintain a laminar boundary layer for the entire length of the supersonic portion of the quiet tunnel nozzle

    Similar works