1,920 research outputs found

    An Extreme-AO Search for Giant Planets around a White Dwarf --VLT/SPHERE performance on a faint target GD 50

    Full text link
    CONTEXT. Little is known about the planetary systems around single white dwarfs although there is strong evidence that they do exist. AIMS. We performed a pilot study with the extreme-AO system on the Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) on the Very Large Telescopes (VLT) to look for giant planets around a young white dwarf, GD 50. METHODS. We were awarded science verification time on the new ESO instrument SPHERE. Observations were made with the InfraRed Dual-band Imager and Spectrograph in classical imaging mode in H band. RESULTS. Despite the faintness of the target (14.2 mag in R band), the AO loop was closed and a strehl of 37\% was reached in H band. No objects were detected around GD 50. We achieved a 5-sigma contrast of 6.2, 8.0 and 8.25 mags at 0{\farcs}2, 0{\farcs}4 and 0{\farcs}6 and beyond, respectively. We exclude any substellar objects more massive than 4.0 MJ_\textrm{J} at 6.2 AU, 2.9 MJ_\textrm{J} at 12.4 AU and 2.8 MJ_\textrm{J} at 18.6 AU and beyond. This rivals the previous upper limit set by Spitzer. We further show that SPHERE is the most promising instrument available to search for close-in substellar objects around nearby white dwarfs.Comment: A&A letters, accepte

    Collisional modelling of the debris disc around HIP 17439

    Full text link
    We present an analysis of the debris disc around the nearby K2 V star HIP 17439. In the context of the Herschel DUNES key programme the disc was observed and spatially resolved in the far-IR with the Herschel PACS and SPIRE instruments. In a first model, Ertel et al. (2014) assumed the size and radial distribution of the circumstellar dust to be independent power laws. There, by exploring a very broad range of possible model parameters several scenarios capable of explaining the observations were suggested. In this paper, we perform a follow-up in-depth collisional modelling of these scenarios trying to further distinguish between them. In our models we consider collisions, direct radiation pressure, and drag forces, i.e. the actual physical processes operating in debris discs. We find that all scenarios discussed in Ertel et al. are physically sensible and can reproduce the observed SED along with the PACS surface brightness profiles reasonably well. In one model, the dust is produced beyond 120au in a narrow planetesimal belt and is transported inwards by Poynting-Robertson and stellar wind drag. A good agreement with the observed radial profiles would require stellar winds by about an order of magnitude stronger than the solar value, which is not supported, although not ruled out, by observations. Another model consists of two spatially separated planetesimal belts, a warm inner and a cold outer one. This scenario would probably imply the presence of planets clearing the gap between the two components. Finally, we show qualitatively that the observations can be explained by assuming the dust is produced in a single, but broad planetesimal disc with a surface density of solids rising outwards, as expected for an extended disc that experiences a natural inside-out collisional depletion. Prospects of discriminating between the competing scenarios by future observations are discussed.Comment: Astronomy and Astrophysics (accepted for publication). 11 pages, 8 figure

    RB loss contributes to aggressive tumor phenotypes in MYC-driven triple negative breast cancer

    Get PDF
    Triple negative breast cancer (TNBC) is characterized by multiple genetic events occurring in concert to drive pathogenic features of the disease. Here we interrogated the coordinate impact of p53, RB, and MYC in a genetic model of TNBC, in parallel with the analysis of clinical specimens. Primary mouse mammary epithelial cells (mMEC) with defined genetic features were used to delineate the combined action of RB and/or p53 in the genesis of TNBC. In this context, the deletion of either RB or p53 alone and in combination increased the proliferation of mMEC; however, the cells did not have the capacity to invade in matrigel. Gene expression profiling revealed that loss of each tumor suppressor has effects related to proliferation, but RB loss in particular leads to alterations in gene expression associated with the epithelial-to-mesenchymal transition. The overexpression of MYC in combination with p53 loss or combined RB/p53 loss drove rapid cell growth. While the effects of MYC overexpression had a dominant impact on gene expression, loss of RB further enhanced the deregulation of a gene expression signature associated with invasion. Specific RB loss lead to enhanced invasion in boyden chambers assays and gave rise to tumors with minimal epithelial characteristics relative to RB-proficient models. Therapeutic screening revealed that RB-deficient cells were particularly resistant to agents targeting PI3K and MEK pathway. Consistent with the aggressive behavior of the preclinical models of MYC overexpression and RB loss, human TNBC tumors that express high levels of MYC and are devoid of RB have a particularly poor outcome. Together these results underscore the potency of tumor suppressor pathways in specifying the biology of breast cancer. Further, they demonstrate that MYC overexpression in concert with RB can promote a particularly aggressive form of TNB

    The influence of dust grain porosity on the analysis of debris disc observations

    Get PDF
    Debris discs are often modelled assuming compact dust grains, but more and more evidence for the presence of porous grains is found. We aim at quantifying the systematic errors introduced when modelling debris discs composed of porous dust with a disc model assuming spherical, compact grains. We calculate the optical dust properties derived via the fast, but simple effective medium theory. The theoretical lower boundary of the size distribution – the so-called ‘blowout size’ – is compared in the cases of compact and porous grains. Finally, we simulate observations of hypothetical debris discs with different porosities and feed them into a fitting procedure using only compact grains. The deviations of the results for compact grains from the original model based on porous grains are analysed. We find that the blowout size increases with increasing grain porosity up to a factor of 2. An analytical approximation function for the blowout size as a function of porosity and stellar luminosity is derived. The analysis of the geometrical disc set-up, when constrained by radial profiles, is barely affected by the porosity. However, the determined minimum grain size and the slope of the grain size distribution derived using compact grains are significantly overestimated. Thus, the unexpectedly high ratio of minimum grain size to blowout size found by previous studies using compact grains can be partially described by dust grain porosity, although the effect is not strong enough to completely explain the trend

    Collisional modelling of the AU Microscopii debris disc

    Full text link
    The spatially resolved AU Mic debris disc is among the most famous and best-studied debris discs. We aim at a comprehensive understanding of the dust production and the dynamics of the disc objects with in depth collisional modelling including stellar radiative and corpuscular forces. Our models are compared to a suite of observational data for thermal and scattered light emission, ranging from the ALMA radial surface brightness profile at 1.3mm to polarisation measurements in the visible. Most of the data can be reproduced with a planetesimal belt having an outer edge at around 40au and subsequent inward transport of dust by stellar winds. A low dynamical excitation of the planetesimals with eccentricities up to 0.03 is preferred. The radial width of the planetesimal belt cannot be constrained tightly. Belts that are 5au and 17au wide, as well as a broad 44au-wide belt are consistent with observations. All models show surface density profiles increasing with distance from the star as inferred from observations. The best model is achieved by assuming a stellar mass loss rate that exceeds the solar one by a factor of 50. While the SED and the shape of the ALMA profile are well reproduced, the models deviate from the scattered light data more strongly. The observations show a bluer disc colour and a lower degree of polarisation for projected distances <40au than predicted by the models. The problem may be mitigated by irregularly-shaped dust grains which have scattering properties different from the Mie spheres used. From tests with a handful of selected dust materials, we derive a preference for mixtures of silicate, carbon, and ice of moderate porosity. We address the origin of the unresolved central excess emission detected by ALMA and show that it cannot stem from an additional inner belt alone. Instead, it should derive, at least partly, from the chromosphere of the central star.Comment: Astronomy and Astrophysics (accepted for publication), 18 pages, 11 figure

    Interpreting the extended emission around three nearby debris disc host stars

    Full text link
    Cool debris discs are a relic of the planetesimal formation process around their host star, analogous to the solar system's Edgeworth-Kuiper belt. As such, they can be used as a proxy to probe the origin and formation of planetary systems like our own. The Herschel Open Time Key Programmes "DUst around NEarby Stars" (DUNES) and "Disc Emission via a Bias-free Reconnaissance in the Infrared/Submillimetre" (DEBRIS) observed many nearby, sun-like stars at far-infrared wavelengths seeking to detect and characterize the emission from their circumstellar dust. Excess emission attributable to the presence of dust was identified from around \sim 20% of stars. Herschel's high angular resolution (\sim 7" FWHM at 100 μ\mum) provided the capacity for resolving debris belts around nearby stars with radial extents comparable to the solar system (50 to 100 au). As part of the DUNES and DEBRIS surveys, we obtained observations of three debris disc stars, HIP 22263 (HD 30495), HIP 62207 (HD 110897), and HIP 72848 (HD 131511), at far-infrared wavelengths with the Herschel PACS instrument. Combining these new images and photometry with ancilliary data from the literature, we undertook simultaneous multi-wavelength modelling of the discs' radial profiles and spectral energy distributions using three different methodologies: single annulus, modified black body, and a radiative transfer code. We present the first far-infrared spatially resolved images of these discs and new single-component debris disc models. We characterize the capacity of the models to reproduce the disc parameters based on marginally resolved emission through analysis of two sets of simulated systems (based on the HIP 22263 and HIP 62207 data) with the noise levels typical of the Herschel images. We find that the input parameter values are recovered well at noise levels attained in the observations presented here.Comment: 13 pages, 5 figures, 5 tables, accepted for publication in A&

    First L band detection of hot exozodiacal dust with VLTI/MATISSE

    Get PDF
    For the first time, we observed the emission of hot exozodiacal dust in L band. We used the new instrument MATISSE at the Very Large Telescope Interferometer to detect the hot dust around κ Tuc with a significance of 3σ to 6σ at wavelengths between 3.37 and 3.85μm and a dust-to-star flux ratio of 5 to 7 per cent⁠. We modelled the spectral energy distribution based on the new L band data alone and in combination with H band data published previously. In all cases we find 0.58μm grains of amorphous carbon to fit the κ Tuc observations the best, however, also nanometre or micrometre grains and other carbons or silicates reproduce the observations well. Since the H band data revealed a temporal variability, while our Lband data were taken at a different epoch, we combine them in different ways. Depending on the approach, the best fits are obtained for a narrow dust ring at a stellar distance in the 0.1–029 au range and thus with a temperature between 940 and 1430K⁠. Within the 1σ uncertainty dust location and temperature are confined to 0.032−1.18au and 600−2000K⁠

    J004457+4123 (Sharov 21): not a remarkable nova in M31 but a background quasar with a spectacular UV flare

    Full text link
    We announce the discovery of a quasar behind the disk of M31, which was previously classified as a remarkable nova in our neighbour galaxy. The paper is primarily aimed at the outburst of J004457+4123 (Sharov 21), with the first part focussed on the optical spectroscopy and the improvement in the photometric database. Both the optical spectrum and the broad band spectral energy distribution of Sharov 21 are shown to be very similar to that of normal, radio-quiet type 1 quasars. We present photometric data covering more than a century and resulting in a long-term light curve that is densely sampled over the past five decades. The variability of the quasar is characterized by a ground state with typical fluctuation amplitudes of ~0.2 mag around B~20.5, superimposed by a singular flare of ~2 yr duration (observer frame) with the maximum at 1992.81 where the UV flux has increased by a factor of ~20. The total energy in the flare is at least three orders of magnitudes higher than the radiated energy of the most luminous supernovae, provided that it comes from an intrinsic process and the energy is radiated isotropically. The profile of the flare light curve appears to be in agreement with the standard predictions for a stellar tidal disruption event where a ~10 M_sun giant star was shredded in the tidal field of a ~2...5 10^8 M_sun black hole. The short fallback time derived from the light curve requires an ultra-close encounter where the pericentre of the stellar orbit is deep within the tidal disruption radius. Gravitational microlensing provides an alternative explanation, though the probability of such a high amplification event is very low.Comment: Accepted for publication in Astronomy and Astrophysics, 14 pages, 11 figure

    Observing planet-disk interaction in debris disks

    Full text link
    Context. Structures in debris disks induced by planetdisk interaction are promising to provide valuable constraints on the existence and properties of embedded planets. Aims. We investigate the observability of structures in debris disks induced by planet-disk interaction. Methods. The observability of debris disks with the Atacama Large Millimeter/submillimeter Array (ALMA) is studied on the basis of a simple analytical disk model. Furthermore, N-body simulations are used to model the spatial dust distribution in debris disks under the influence of planet-disk interaction. Images at optical scattered light to millimeter thermal re-emission are computed. Available information about the expected capabilities of ALMA and the James Webb Space Telescope (JWST) are used to investigate the observability of characteristic disk structures through spatially resolved imaging. Results. Planet-disk interaction can result in prominent structures. This provides the opportunity of detecting and characterizing extrasolar planets in a range of masses and radial distances from the star that is not accessible to other techniques. Facilities that will be available in the near future are shown to provide the capabilities to spatially resolve and characterize structures in debris disks. Limitations are revealed and suggestions for possible instrument setups and observing strategies are given. In particular, ALMA is limited by its sensitivity to surface brightness, which requires a trade-off between sensitivity and spatial resolution. Space-based midinfrared observations will be able to detect and spatially resolve regions in debris disks even at a distance of several tens of AU from the star, where the emission from debris disks in this wavelength range is expected to be low. [Abridged]Comment: 16 pages, 10 figures, accepted by A&

    Planet Signatures in Collisionally Active Debris Discs: scattered light images

    Full text link
    Planet perturbations are often invoked as a potential explanation for many spatial structures that have been imaged in debris discs. So far this issue has been mostly investigated with collisionless N-body numerical models. We numerically investigate how the coupled effect of collisions and radiation pressure can affect the formation and survival of radial and azimutal structures in a disc perturbed by a planet. We consider two set-ups: a planet embedded within an extended disc and a planet exterior to an inner debris ring. We use the DyCoSS code of Thebault(2012) and derive synthetic images of the system in scattered light. The planet's mass and orbit, as well as the disc's collisional activity are explored as free parameters. We find that collisions always significantly damp planet-induced structures. For the case of an embedded planet, the planet's signature, mostly a density gap around its radial position, should remain detectable in head-on images if M_planet > M_Saturn. If the system is seen edge-on, however, inferring the presence of the planet is much more difficult, although some planet-induced signatures might be observable under favourable conditions. For the inner-ring/external-planet case, planetary perturbations cannot prevent collision-produced small fragments from populating the regions beyond the ring: The radial luminosity profile exterior to the ring is close to the one it should have in the absence of the planet. However, a Jovian planet on a circular orbit leaves precessing azimutal structures that can be used to indirectly infer its presence. For a planet on an eccentric orbit, the ring is elliptic and the pericentre glow effect is visible despite of collisions and radiation pressure, but detecting such features in real discs is not an unambiguous indicator of the presence of an outer planet.Comment: Accepted for Publication in A&A (NOTE: Abridged abstract and (very)LowRes Figures. Better version, with High Res figures and full abstract can be found at http://lesia.obspm.fr/perso/philippe-thebault/planpapph.pdf
    corecore