625 research outputs found

    Emotional and Adrenocortical Responses of Infants to the Strange Situation: The Differential Function of Emotional Expression

    Get PDF
    The aim of the study was to investigate biobehavioural organisation in infants with different qualities of attachment. Quality of attachment (security and disorganisation), emotional expression, and adrenocortical stress reactivity were investigated in a sample of 106 infants observed during Ainsworth’s Strange Situation at the age of 12 months. In addition, behavioural inhibition was assessed from maternal reports. As expected, securely attached infants did not show an adrenocortical response. Regarding the traditionally defined insecurely attached groups, adrenocortical activation during the strange situation was found for the ambivalent group, but not for the avoidant one. Previous ndings of increased adrenocortical activity in disorganised infants could not be replicated. In line with previous ndings, adrenocortical activation was most prominent in insecure infants with high behavioural inhibition indicating the function of a secure attachment relationship as a social buffer against less adaptive temperamental dispositions. Additional analyses indicated that adrenocortical reactivity and behavioural distress were not based on common activation processes. Biobehavioural associations within the different attachment groups suggest that biobehavioural processes in securely attached infants may be different from those in insecurely attached and disorganised groups. Whereas a coping model may be applied to describe the biobehavioural organisation of secure infants, an arousal model explanation may be more appropriate for the other groups

    3-D Finite Element Modeling of Brain Edema: Initial Studies on Intracranial Pressure Using Comsol Multiphysics

    Get PDF
    Abstract: Brain edema is one of the most common consequences of serious traumatic brain injuries which is usually accompanied with increased intracranial pressure (ICP) due to water content increment. A threedimensional finite element model of brain edema is used to study intracranial pressure in this paper. Three different boundary conditions at the end of cerebral spinal fluid (CSF) were used to investigate the boundary condition effects on the volume-pressure curve based on the current model. Compared with the infusion experiments, results from the simulations show that exponential pressure boundary condition model corresponds well with the experiments

    Standard and Light-Cycler PCR methods for animal DNA species detection in animal feedstuffs

    Get PDF
    In this work four species-specific primers and probes were designed and evaluated for the detection and quantification of bovine, ovine, swine and chicken mitochondrial DNA in feeds. PCR primers were optimized using conventional and Real Time PCR, to detect short species-specific sequences amplifiable from heat treated material. Both methods confirmed the high specificity of the primers designed. Real time quantitative PCR assay allowed the detection of as few as 0.01 ng and 0.05 ng of ovine and bovine genomic DNA, respectively. The detection limit for swine and chicken genomic DNA was 0.5 ng. Sensitivity levels observed in DNA extracted from meat samples processed according to EU legislation were different compared to those in genomic DNAs previously described. They resulted in swine 5 fg of MBM DNA, in chicken 25 ng, in ovine and bovine 50 ng. We confirmed the efficiency and specificity of primers in RT-PCR to detect 0.5% of bovine, ovine, swine and chicken MBM in contaminated feedstuffs. (C) 2007 Elsevier Ltd. All rights reserved

    Omnibus Sequences, Coupon Collection, and Missing Word Counts

    Full text link
    An {\it Omnibus Sequence} of length nn is one that has each possible "message" of length kk embedded in it as a subsequence. We study various properties of Omnibus Sequences in this paper, making connections, whenever possible, to the classical coupon collector problem.Comment: 26 page

    Beyond Embodiment: From Internal Representation of Action to Symbolic Processes

    Get PDF
    In sensorimotor integration, representation involves an anticipatory model of the action to be performed. This model integrates efferent signals (motor commands), its reafferent consequences (sensory consequences of an organism’s own motor action), and other afferences (sensory signals) originated by stimuli independent of the action performed. Representation, a form of internal modeling, is invoked to explain the fact that behavior oriented to the achievement of future goals is relatively independent from the immediate environment. Internal modeling explains how a cognitive system achieves its goals despite variations in the environment with insufficient and noisy sensory–perceptual data. In a self that acts intentionally on the environment, knowledge is dependent upon the necessity to guide actions directed toward an aim. The self-inner model, a representation of internal and external environments (including reafferent and afferent messages) and also of the behavior plans and desirable future states (aims) and efferent intentions (motor planning and motor command messages), is intrinsically linked to a thinking capacity, which is supposed to emerge from the binding of multiple influences. Thinking emerges when higher behavior strategies are considered possible and capable of leading to aims or the fulfillment of intentions. In this model, symbolization processes are projective and anticipatory and, in this way, beyond present referents. Symbolization occurs linked to action planning, command, and regulation in mental simulation. Meaning is related to an inner sense of a self that acts over the environment

    Cognitive loading affects motor awareness and movement kinematics but not locomotor trajectories during goal-directed walking in a virtual reality environment.

    Get PDF
    The primary purpose of this study was to investigate the effects of cognitive loading on movement kinematics and trajectory formation during goal-directed walking in a virtual reality (VR) environment. The secondary objective was to measure how participants corrected their trajectories for perturbed feedback and how participants' awareness of such perturbations changed under cognitive loading. We asked 14 healthy young adults to walk towards four different target locations in a VR environment while their movements were tracked and played back in real-time on a large projection screen. In 75% of all trials we introduced angular deviations of ±5° to ±30° between the veridical walking trajectory and the visual feedback. Participants performed a second experimental block under cognitive load (serial-7 subtraction, counter-balanced across participants). We measured walking kinematics (joint-angles, velocity profiles) and motor performance (end-point-compensation, trajectory-deviations). Motor awareness was determined by asking participants to rate the veracity of the feedback after every trial. In-line with previous findings in natural settings, participants displayed stereotypical walking trajectories in a VR environment. Our results extend these findings as they demonstrate that taxing cognitive resources did not affect trajectory formation and deviations although it interfered with the participants' movement kinematics, in particular walking velocity. Additionally, we report that motor awareness was selectively impaired by the secondary task in trials with high perceptual uncertainty. Compared with data on eye and arm movements our findings lend support to the hypothesis that the central nervous system (CNS) uses common mechanisms to govern goal-directed movements, including locomotion. We discuss our results with respect to the use of VR methods in gait control and rehabilitation

    Association studies on 11 published colorectal cancer risk loci

    Get PDF
    Colorectal cancer (CRC) is the third most common cancer type in the Western world. Over one million patients are diagnosed worldwide yearly. A family history of CRC is a major risk factor for CRC. The total genetic contribution to disease development is estimated to be 35%. High-risk syndromes caused by known genes such as familial adenomatous polyposis (FAP) and Lynch Syndrome (LS) explain less than 5% of that number. Recently, several genome-wide association studies (GWAS) have independently found numerous loci at which common single-nucleotide polymorphisms (SNPs) modestly influence the risk of developing colorectal cancer. In total, germline mutations in known genes and moderate- and low risk variants are today suggested to explain 10-15% of the total genetic burden. Hence, predisposed genetic factor are still left to be found. The aim of paper I was to investigate if 11 published loci reported to be associated with an increased or decreased risk of colorectal cancer could be confirmed in a Swedish-based cohort. The cohort was composed of 1786 cases and 1749 controls that were genotyped and analyzed statistically. Genotype– phenotype analysis, for all 11 SNPs and sex, age of onset, family history of CRC and tumor location, was performed. Of 11 loci, 5 showed statistically significant odds ratios similar to previously published findings. Most of the remaining loci showed similar OR to previous publications. Four statistically significant genotype–phenotype associations were reported. The aim of paper II was to further study these 11 SNPs and their possible correlation with morphological features in tumors. We analyzed 15 histological features in 1572 CRC cases. Five SNPs showed statistically significant associations with morphological parameters. The parameters were poor differentiation, mucin production, decreased frequency of Crohn-like peritumoral reaction and desmoplastic response. The aim of paper III was to identify new CRC loci using a genome wide linkage analysis. We used 121 non-FAP/LS colorectal cancer families and genotyped 600 subjects using SNP array chips. No statistically significant result was found. However, suggestive linkage was found in the parametric analysis. This was observed in a recessive model for high-risk families, at locus 9q31.1 (HLOD=2.2) and for moderate-risk families, at locus Xp22.33 (LOD=2.2 and HLOD=2.5). Using families with early-onset, recessive analysis suggested one locus on 4p16.3 (LOD=2.2) and one on 17p13.2 (LOD/HLOD=2.0). Our linkage study adds support for the previously suggested region on chromosome 9 and suggests three additional loci to be involved in colorectal cancer risk. It is debated whether CRC is a single entity or two different entities, colon- and rectal cancer. Studies have recognized their molecular differences. The aim of paper IV was to identify novel colon- and rectal loci. We performed a genome wide linkage analysis using 32 colon- and 56 rectal cancer families. No LOD or HLOD score above three was observed. However, results close to three could be demonstrated. A maximum HLOD= 2.49 at locus 6p21.1-p12.1 and HLOD= 2.55 at locus 18p11.2 was observed for the colon- and rectal cancer families respectively. Exome sequencing was done, on colon and rectal patients, in these regions of interest. We report 25 variants mutated in family members on chromosome 6 and 27 variants on chromosome 18. Further studies are ongoing to elucidate the importance of these variants

    Whodunnit? Electrophysiological correlates of agency judgements.

    Get PDF
    Sense of agency refers to the feeling that "I" am responsible for those external events that are directly produced by one's own voluntary actions. Recent theories distinguish between a non-conceptual "feeling" of agency linked to changes in the processing of self-generated sensory events, and a higher-order judgement of agency, which attributes sensory events to the self. In the current study we explore the neural correlates of the judgement of agency by means of electrophysiology. We measured event-related potentials to tones that were either perceived or not perceived as triggered by participants' voluntary actions and related these potentials to later judgements of agency over the tones. Replicating earlier findings on predictive sensory attenuation, we found that the N1 component was attenuated for congruent tones that corresponded to the learned action-effect mapping as opposed to incongruent tones that did not correspond to the previously acquired associations between actions and tones. The P3a component, but not the N1, directly reflected the judgement of agency: deflections in this component were greater for tones judged as self-generated than for tones judged as externally produced. The fact that the outcome of the later agency judgement was predictable based on the P3a component demonstrates that agency judgements incorporate early information processing components and are not purely reconstructive, post-hoc evaluations generated at time of judgement
    • …
    corecore