88 research outputs found

    Getting the point : obtaining and understanding fixpoints in model checking

    Get PDF

    A linear translation from LTL to the first-order modal µ-calculus

    Get PDF
    The modal µ-calculus is a very expressive temporal logic. In particular, logics such as LTL, CTL and CTL* can be translated into the modal mu-calculus, although existing translations of LTL and CTL* are at least exponential in size. We show that an existing simple first-order extension of the modal µ-calculus allows for a linear translation from LTL. Furthermore, we show that solving the translated formulae is as efficient as the best known methods to solve LTL formulae directly

    Parity game reductions

    Get PDF
    Parity games play a central role in model checking and satisfiability checking. Solving parity games is computationally expensive, among others due to the size of the games, which, for model checking problems, can easily contain 10910^9 vertices or beyond. Equivalence relations can be used to reduce the size of a parity game, thereby potentially alleviating part of the computational burden. We reconsider (governed) bisimulation and (governed) stuttering bisimulation, and we give detailed proofs that these relations are equivalences, have unique quotients and they approximate the winning regions of parity games. Furthermore, we present game-based characterisations of these relations. Using these characterisations our equivalences are compared to relations for parity games that can be found in the literature, such as direct simulation equivalence and delayed simulation equivalence. To complete the overview we develop coinductive characterisations of direct- and delayed simulation equivalence and we establish a lattice of equivalences for parity games

    Parity game reductions

    Get PDF
    Parity games play a central role in model checking and satisfiability checking. Solving parity games is computationally expensive, among others due to the size of the games, which, for model checking problems, can easily contain 10910^9 vertices or beyond. Equivalence relations can be used to reduce the size of a parity game, thereby potentially alleviating part of the computational burden. We reconsider (governed) bisimulation and (governed) stuttering bisimulation, and we give detailed proofs that these relations are equivalences, have unique quotients and they approximate the winning regions of parity games. Furthermore, we present game-based characterisations of these relations. Using these characterisations our equivalences are compared to relations for parity games that can be found in the literature, such as direct simulation equivalence and delayed simulation equivalence. To complete the overview we develop coinductive characterisations of direct- and delayed simulation equivalence and we establish a lattice of equivalences for parity games

    Abstraction in parameterised Boolean equation systems

    Get PDF
    We present a general theory of abstraction for a variety of verification problems. Our theory is set in the framework of parameterized Boolean equation systems. The power of our abstraction theory is compared to that of generalised Kripke modal transition systems (GTSs). We show that for model checking the modal µ-calculus, our abstractions can be exponentially more succinct than GTSs and our theory is as complete as the GTS framework for abstraction. Furthermore, we investigate the completeness of our theory for verification problems other than the modal µ-calculus. We illustrate the potential of our theory through case studies using the first-order modal µ-calculus and a real-time extension thereof, conducted using a prototype implementation of a new syntactic transformation for equation systems

    Model Checking the FlexRay Startup Phase

    Full text link
    This report describes a discrete-time model of the startup phase of a FlexRay network. The startup behaviour of this network is analysed in the presence of several faults. It is shown that in certain cases a faulty node can prevent the network from communicating altogether. One previously unknown scenario is uncovered

    Oink: an Implementation and Evaluation of Modern Parity Game Solvers

    Full text link
    Parity games have important practical applications in formal verification and synthesis, especially to solve the model-checking problem of the modal mu-calculus. They are also interesting from the theory perspective, as they are widely believed to admit a polynomial solution, but so far no such algorithm is known. In recent years, a number of new algorithms and improvements to existing algorithms have been proposed. We implement a new and easy to extend tool Oink, which is a high-performance implementation of modern parity game algorithms. We further present a comprehensive empirical evaluation of modern parity game algorithms and solvers, both on real world benchmarks and randomly generated games. Our experiments show that our new tool Oink outperforms the current state-of-the-art.Comment: Accepted at TACAS 201
    corecore