
Analysing AWN-Specifications Using
mCRL2 (Extended Abstract)

Rob van Glabbeek1,2, Peter Höfner1,2(B), and Djurre van der Wal1,3

1 Data61, CSIRO, Sydney, Australia
Peter.Hoefner@data61.csiro.au

2 Computer Science and Engineering, University of New South Wales,
Sydney, Australia

3 Formal Methods and Tools, University of Twente, Enschede, The Netherlands

Abstract. We develop and implement a translation from the process
Algebra for Wireless Networks (AWN) into the milli Common Repre-
sentation Language (mCRL2). As a consequence of the translation, the
sophisticated toolset of mCRL2 is now available for AWN-specifications.
We show that the translation respects strong bisimilarity; hence all
safety properties can be automatically checked using the toolset. To show
usability of our translation we report on a case study.

1 Introduction

The Algebra for Wireless Networks (AWN) [11] is a variant of classical process
algebras that has been particularly tailored to model and analyse protocols for
Mobile Ad hoc Networks (MANETs) and Wireless Mesh Networks (WMNs).
Among others it has been successfully used to model and analyse the Ad hoc
On-Demand Distance Vector (AODV) routing protocol [30], one of the most
popular protocols widely used in WMNs. [12,16]

AWN provides the right level of abstraction to model key features of pro-
tocols for (wireless) networks such as unicast and broadcast for message send-
ing, while abstracting from implementation-related details. It is equipped with a
(completely unambiguous) formal semantics, which is given in form of structural
operational semantics rules. These rules generate a transition system that can
be used to describe the behaviour of a protocol.

The algebra has been integrated in the interactive proof assistant
Isabelle/HOL [6]. This enabled, amongst others, the machine-checked verifica-
tion of key correctness properties of AODV. However, apart from that there is
only little tool-support for AWN. To provide automatic analysis for protocols
written in AWN, the algebra has been used in combination with the model
checker Uppaal. [10] The input model for Uppaal [1,2]—a network of timed
automata—was created manually and the correctness of this model needed to
be established manually as well.

In sum, AWN falls short when it comes to automated analysis of speci-
fications. The development of special-purpose tools for AWN is cumbersome,
c© Springer Nature Switzerland AG 2018
C. A. Furia and K. Winter (Eds.): IFM 2018, LNCS 11023, pp. 398–418, 2018.
https://doi.org/10.1007/978-3-319-98938-9_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98938-9_23&domain=pdf

Analysing AWN-Specifications Using mCRL2 399

error-prone and time consuming. Hence we follow the general approach to make
use of highly sophisticated off-the-shelf tools that offer high-performance analy-
sis. In this paper we present and implement an automatic translation from AWN
into the milli Common Representation Language (mCRL2) [18].

mCRL2 is a formal specification language with an associated collection of
tools offering support for model checking, simulation, state-space generation, as
well as for the optimisation and analysis of specifications. [8] The toolset has been
used in countless case studies, including the analysis software for the CERN’s
Large Hadron Collider [21], and the IEEE 1394 link layer [25].

We do not only develop an automatic translation from AWN to mCRL2,
which allows us to use the mCRL2 toolset for any protocol specification writ-
ten in AWN, we also show that the transition system induced by an AWN-
specification and the transition system in mCRL2 that stems from our trans-
lation are strongly bisimilar. As a consequence, any safety property that has
been (dis)proven in the mCRL2 setting also holds/does not hold for the original
specification, written in AWN. To illustrate the usefulness of our translation, we
report on a case study that analyses the Ad hoc On-Demand Distance Vector
(AODV) routing protocol [30], which we formalised in AWN before [12,16].

2 The Algebra for Wireless Networks

The Algebra for Wireless Networks (AWN) [10,12] is a variant of standard
process algebras (e.g. [3,5,20,26]) particularly tailored for (wireless) protocols:
it defines the protocol in a pseudo-code that is easily readable, and provides the
right level of abstraction to model key protocol features.

The algebra offers a local broadcast mechanism and a conditional unicast
operator—allowing error handling in response to failed communications while
abstracting from link layer implementations of the communication handling—
and incorporates data structures with assignments. As a consequence it allows
to describe the interaction between nodes in a network with a dynamic or static
network topology, and hence is ideal to describe all kinds of protocols.

AWN comprises five layers: sequential processes for encoding the protocol as
a recursive specification; parallel composition of sequential processes for running
multiple processes simultaneously on a single (network) node; node expressions
for running (parallel) processes on a node while tracking the node’s address and
all nodes within transmission range; partial network expressions for describing
networks as parallel compositions of nodes and allowing changes in the network
topology, and complete network expressions for closing partial networks to fur-
ther interactions with the environment.

Due to lack of space we cannot present the full syntax and semantics of AWN,
which can be found in [11]. Table 1 summarises the syntax. In AWN a network
is modelled as an encapsulated parallel composition of network nodes (Lines
14 and 15 in Table 1). An individual node has the form i : P : R, where i is the
unique identifier of the node, P characterises the process running on the node,
and the set R contains all identifiers of nodes currently in transmission range of

400 R. van Glabbeek et al.

Table 1. Process expressions

X(exp1, . . . , expn) Process name with arguments

P + Q Choice between processes P and Q

[ϕ]P Conditional process

[[v := exp]]P Assignment followed by process P

broadcast(ms).P Broadcast ms followed by P

groupcast(dests,ms).P Iterative unicast or multicast to all destinations dests

unicast(dest,ms).P � Q Unicast ms to dest; if successful proceed with P ; otherwise Q

send(ms).P Synchronously transmit ms to parallel process on same node

deliver(data).P Deliver data to client (application layer)

receive(m).P Receive a message

ξ, P Process with valuation

P 〈〈 Q Parallel processes on the same node

i :P :R Node i running P with range R

N‖M Parallel composition of nodes

[N] Encapsulation

i—the nodes that can receive messages sent by i. On each node several processes
may be running in parallel (Line 12 in Table 1). A sequential process is given by
a sequential process expression P , together with a valuation ξ associating values
ξ(v) to variables v maintained by this process (Line 11).

AWN uses an underlying data structure with several types, variables ranging
over these types, operators and predicates. Predicate logic yields terms (or data
expressions) and formulas to denote data values and statements about them. The
choice of this data structure is tailored to any particular application of AWN.
It must contain the types DATA, MSG, IP and P(IP) of application layer data,
messages, IP addresses—or other node identifiers—and sets of IP addresses.

In addition, AWN employs a collection of process names, each carrying
parameters of various types. Every process name X comes with a defining equa-
tion X(v1 ,. . .,vn)

def
= P , in which each vi is a variable of the appropriate type

and P a sequential process expression.
Lines 1 to 10 describe sequential process expressions. X(exp1, . . . , expn) is

a call to the process defined by the process name X, with expressions of the
appropriate types substituted for the parameters. P +Q may act either as P or
as Q, depending on which of the two processes is able to act. If both are able to
act, a non-deterministic choice is made. Given a valuation of the data variables by
concrete data values, the sequential process [ϕ]P acts as P if ϕ evaluates to true,
and deadlocks otherwise. In case ϕ contains free variables, values are assigned to
these variables in any way that satisfies ϕ, if possible. The process [[v := exp]]P
acts as P , but under an updated valuation of the data variable v. The process
broadcast(ms) broadcasts ms to the other network nodes within transmission
range, and subsequently acts as P ; unicast(dest,ms).P � Q is a process that
tries to unicast the message ms to the destination dest; if successful it continues
to act as P and otherwise as Q. It models an abstraction of an acknowledgment-
of-receipt mechanism. The process groupcast(dests,ms).P tries to transmit ms

Analysing AWN-Specifications Using mCRL2 401

to all destinations dests, and proceeds as P regardless of whether any of the
transmissions is successful. The action send(ms) (synchronously) transmits a
message to another process running on the same node. The sequential process
receive(m).P receives any message m (a data value of type MSG) either from
another node, from another sequential process running on the same node or
from the client hooked up to the local node. It then proceeds as P , but with the
data variable m bound to the value m. The submission of data from a client is
modelled by the receipt of a message newpkt(d,dip), where the function newpkt
generates a message containing the data d and the intended destination dip.
Data is delivered to the client by deliver(data).

The layers of sequential and parallel processes usually define the behaviour
of a protocol up to a point where it can be implemented; the other layers are
used for reasoning, and include primitives for modelling dynamic topologies.

Processes 1 and 2, for example, describe a simple leader election proto-
col: each node in the network, which is assumed to be fully connected, holds
a unique node identifier ip and a natural number n. Each node is initialised by
(ξ,Voting(lip,lno,voted,ip,no)), with ξ(lip)= ξ(ip)= ip, ξ(lno)= ξ(no)= n,
and ξ(voted)= false. The local variables lip and lno hold the identifier and the
number of the current leader; the Boolean flag voted indicates whether the pro-
cess partook in the election.

Process 1 allows the node to receive a ballot (message) B from another node
(Lines 1 and 6, resp.). The message contains the sender’s address ip, as well as its
number no; these are stored in the local variables sip and sn. In case a message is
received, the evaluation process Eval is called (Line 2). Once during the protocol
(Line 3) each node can partake in the election and send its ballot, containing
the node’s own information (Line 4). After the message is sent, the flag voted
is set to true (Line 5), and the node acts as if it had received this message.

Process 2 evaluates the information received. If the received number sn is
greater than or equal to the number of the current leader lno, the current leader
is set to sip and the current leader’s number to sn, and the process returns to the
main process; otherwise the information of the received message is disregarded.

When the protocol terminates—all nodes voted and all messages have been
handled— all nodes have agreed on a leader, one holding the highest number no.

Once a model has been described in AWN, its behaviour is governed by the
transitions allowed by the algebra’s semantics. The formal semantics of AWN is
given as structural operational semantics (sos) in the style of Plotkin [31] and
describes how states evolve into another by performing actions. [11,12]

402 R. van Glabbeek et al.

Table 2. Structural operational semantics (AWN) for broadcast

Table 2 presents four sos-rules of AWN (out of 44), all describing behaviour
w.r.t. broadcast. The first rule describes the behaviour of the sequential process
broadcast(ms).P , which performs the action broadcast(ξ(ms)) without syn-
chronisation. Here ξ(ms) is the data value denoted by the expression ms when
the variables occurring in ms are evaluated according to ξ. The second rule
describes the broadcast-action on the node level: as the nodes in transmission
range of node ip are known (stored in set R), this set is part of the new label
and is used for synchronisation on the network layer. The third rule illustrates
this partly. The action R :*cast(m) casts a message m that can be received by
the set R of network nodes. AWN does not distinguish whether this message
stems from a broadcast-, a groupcast- or a unicast action—the differences
show up merely in the value of R. The action H¬K :arrive(m) models that m
simultaneously arrives at all addresses ip∈H, and fails to arrive at all addresses
ip∈ K. The third rule of Table 2 synchronises a R :*cast(m)-action of one node
with an arrive(m) of all other nodes. To finalise this synchronisation AWN
features another two sos-rules: a symmetric form of the third rule, and a rule
synchronising two H¬K :arrive(m)-actions. The side conditions ensure arrival
of message m at all the nodes in the transmission range R of the *cast(m),
and non-arrival at the other nodes. The fourth rule of Table 2 closes the net-
work by the encapsulation operator [], and transforms the R :*cast(m)-action
into an internal action τ . The encapsulation guarantees that no messages will
be received that have never been sent.

3 The Algebra mCRL2 and Its Associated Toolset

The milli Common Representation Language (mCRL2) [18] is a formal speci-
fication language with an associated toolset [8]. Similar to AWN, mCRL2 is a
variant of standard process algebras with a formal semantics given as structural
operational semantics in the style of Plotkin.

For our translation from AWN to mCRL2 we use only a fragment of mCRL2.
In this section we briefly explain the syntax and semantics of those constructs
of mCRL2 needed for our translation. As before, we can only show parts of the
semantics, and refer to [18] for details.

Similar to AWN, mCRL2 comes with defining equations, called process equa-
tions in [18], having the form X(d1 : D1, . . . , dn : Dn) def= p, where di are variables
of sorts Di and p a process expression defined by the following grammar.

Analysing AWN-Specifications Using mCRL2 403

p :: = α | p·p | p + p | c→ p | ∑
d:D

p | p‖p | X(u1, . . . , un) | ΓC(p) | ∇V(p) | ρR(p) | τI(p)

α :: = τ | a(u1, . . . , un) | α|α

Here α denotes a multi-action, c a Boolean, and the ui are data expressions.
Actions form the basic building blocks of mCRL2. They consists of a name

(taken from a given set) and some parameters, which are expressions denoting
data values. Multi-actions are collections of actions that occur at the same time.
A multi-action can be empty, denoted by τ ; it is used as internal, non-observable
action. a(�u) denotes an action with name a and data parameters ui. Last, the
multi-action α|β consists of the actions from both multi-actions α and β.

The process p·q behaves like p until p terminates, and then continues to
behave as q. The process p+q may act either as p or as q, depending on which of
the processes can perform an action. If both are able to act, a non-deterministic
choice is made. For a Boolean expression c, the process c→ p acts like p if
c evaluates to true, and deadlocks otherwise. The process

∑
d:D p allows for a

choice of p for any value d from D substituted for the variable d—of course d
can occur in p. The process p‖q is a parallel composition of p and q. X is a
process name, and ui are data expressions of type Di, as declared in the defining
equation; X(u1, . . . , un) denotes a process call.

The communication operator ΓC(p) takes some actions out of a multi-action
and replaces them with a single action, provided their data parts are equal. The
set C describes the replacement by rules of the form a1| · · · |a1 → c. To enforce
communication the allow operator ∇V (p) only allows multi-actions listed in the
set V to occur. The renaming operator ρR(p) renames action names within p,
where the set R lists rename rules of the form a→ b. Finally, the hiding operator
τI(p) conceals all action names listed in I from the process p, replacing them by
the internal action τ .

Process 3 models the same behaviour as Process 1, but written in mCRL2.
In fact the presented specification has been translated by our tool (see Sect. 7);
we have only changed minor issues such as variable names and line breaks to
ease readability. An interesting issue when looking at the translation is that
Process 3 features multiple sum-operators, where the AWN-specification shows
none. While it may be understandable why the receive-actions (Lines 1 and 5)
need to sum over all possible messages that could be received, the argument for
sending messages (Line 4) is not straightforward. The reason is that we have to
encode all possible transmission ranges D; we elaborate on this in more detail in

404 R. van Glabbeek et al.

Table 3. Structural operational semantics (mCRL2)

Sect. 5. Moreover, the AWN guard [m = B(sip, sn)] assigns values to sip and sn
such that m = B(sip, sn); in mCRL2 this involves summing over all values sip
and sn can take, in combination with the equality check m ≈ MSG(B, sip, sn).

Table 3 shows some rules of the structural operational semantics of mCRL2.
Here � indicates successful termination, and � � is an interpretation func-
tion, sending syntactic expressions to semantic values. We have �τ� = τ ,
�a(u1, . . . , un)� = a(�u1� . . . , �un�), and �α|β� = �α�|�β�, where at the right-hand
(semantic) side τ denotes the empty multiset, �α�|�β� the union of multisets
�α� and �β�, and a(e1, . . . , en) (the singleton multiset containing) the action a,
whose parameters are now data values rather than data expressions. The first
four rules are standard process algebra and (partly) characterise execution of
an action, sequential composition (under successful termination), left choice and
synchronisation, respectively. The first rule in the second line describes the sum
operator. Here MD is the set of data values of type D and t is a function—assumed
to exist in mCRL2—that for each data value e returns a closed term te denot-
ing e, i.e., �te� = e. The second rule models a guard c; only if it evaluates to
true, the process can proceed. The last rule of Table 3 defines recursion, where
we assume a process X(d1:D1 . . . , dn:Dn) def= q. mCRL2 also provides rules for the
communication, the allow, and the restriction operator:

p ω−→ p′

ΓC(p) γC(ω)−−−→ ΓC(p′)

p ω−→ p′

ρR(p) R•ω−−→ ρR(p′)

p ω−→ p′

∇V (p) ω−→ ∇V (p′)
ω ∈ V ∪ {τ}

Here the functions γC , and R• are the counterparts of ΓC and ρR, resp., working
on actions rather than processes. For example, γ{a|b→c}(a|a|b|c) = a|c|c. The
stripped multi-action ω is the result of removing all data from the multi-action ω.

Although mCRL2 works on top of an underlying data structure, it does not
provide any syntactic construct for assignment.

mCRL2 comes with an associated toolset, consisting of about 50 different
tools (see www.mcrl2.org). The toolset includes a user interface, which provides
an easy way to read and analyse any mCRL2-process. Other tools help in manip-
ulating and visualising state spaces, or provide support for automatic analysis.
This includes classical model checking as well as checking properties by parame-
terised Boolean equation systems. The toolset also includes an interface allowing
system analysis by the LTL/CTL/μ-calculus model checker LTSmin [23].

www.mcrl2.org

Analysing AWN-Specifications Using mCRL2 405

(a) p′ q′

p qR

R
a a

∃q′.

(b) p′ q′

p qR

R
a f(a)

∃q′.

(c) p′ q′

p′′ q′′

p qR

R

a

≡

b1 b2 b3
b4

≡

∃q′, ({a}, {b1, b2, b3, b4})∈ A.

Fig. 1. Generalisations of simulations

4 Comparing Transition Systems

One goal of this paper is to translate a given specification written in AWN into
an mCRL2-specification. Of course the generated specification should be related
to the original one, so that we know which properties that should hold for the
original specification can be checked in the translated specification.

The process algebras AWN and mCRL2 generate each a labelled transition
system (S,A,→), where S is the set of all closed process algebra expressions,
A is the set of possible actions, and → ⊆ S ×A× S is the labelled transition
relation where the transitions P α−→ Q are derived from the sos rules.

A standard technique to compare two transitions systems is (bi)simulation
(e.g. [26]). A binary relation R ⊆ S1 × S2 is a (strong) simulation1 [29] between
transition systems L1 = (S1, A,→1) and L2 = (S2, A,→2) if it satisfies, for a∈A,

if p R q and p a−→1 p′ then ∃q′. q a−→2 q′ and p′ R q′ .

Here p a−→1 p′ is a short-hand for (p, a, p′) ∈ →1. A bisimulation is a symmetric
simulation. If a bisimulation R with p R q exists then p and q are bisimilar.

Figure 1(a) illustrates the situation. Our definition slightly differs from the
literature as it builds on two transition systems; the common definition presup-
poses L1 =L2. The definition requires an exact match of action labels. AWN
and mCRL2 do not feature the same labels. For example, R :*cast(m), which
is an action label of AWN, does not follow the syntax of mCRL2-actions.

We relax the definition of simulation and say that R ⊆ S1 × S2 is a simula-
tion modulo renaming between L1 = (S1, A1,→1) and L2 = (S2, A2,→2) for a
bijective renaming function f : A1 → A2 if it satisfies, for a ∈ A1,

if p R q and p a−→1 p′ then ∃q′. q f(a)−−→2 q′ and p′ R q′ ;

see Fig. 1(b). A bisimulation modulo renaming is a symmetric simulation modulo
renaming, using f and f−1, respectively. Processes p ∈ S1, q ∈ S2 are bisimilar
modulo renaming if a bisimulation modulo renaming R with p R q exists.

1 This paper does not treat weak simulations, etc.; therefore we omit the word ‘strong’.

406 R. van Glabbeek et al.

It is well known that all safety properties are preserved under bisimilarity;
and therefore also under bisimilarity modulo renaming, when the renaming func-
tion is applied to the safety property as well.2

Two mCRL2 processes p and q are data congruent, notation p ≡ q, if q can
be obtained by replacing data expressions t occurring in p by expressions t′ with
�t� = �t′�, i.e. evaluating to the same data value. For example a(1+2) ≡ a(4−1).
On AWN, we take ≡ to be the identity. A (bi)simulation (modulo renaming)
up to ≡ is defined as above, but with p′ ≡R≡ q′ (using relational composition,
denoted by juxtaposition) instead of p′ R q′. Using that ≡ is a bisimulation [17],
it follows from [26] that constructing a bisimulation R (modulo renaming) up to
≡ with p R q suffices to show that p and q are bisimilar (modulo renaming).

In Sect. 5 we develop a translation between AWN and mCRL2, and we
show that the translation is a bisimulation modulo renaming up to ≡. However,
this result only holds for encapsulated networks. When considering the other
layers of AWN, a bisimulation cannot be established, not even modulo renaming.
The reason is the layered design of AWN. While the set R of recipients of a
broadcast is added only on the layer of node expressions, we need to introduce
this set straightaway in mCRL2. On the process layer we do not have knowledge
about nodes in transmission range. To include all possibilities, we require an
entire collection of mCRL2-actions. We elaborate on this in the next section.

We call a relation R ⊆ S1 × S2 an A-warped simulation up to ≡ between
transition systems L1 and L2 for a relation A ⊆ P(A1)× P(A2) if it satisfies

if p R q and p a−→1 p′′ then ∃a1,a2, p
′, q′.

(a ∈ a1, p′′ ≡ p′, a1 Aa2, p a1−→1≡ p′, q a2−→2≡ q′ and p′ R q′),

where p a−→1≡ p′ ⇔df ∀a ∈ a.∃p′′. p a−→1 p′′ ∧ p′′ ≡ p′. The definition requires
a state q′ such that all actions a ∈ a2 yield a transition to q′, as illustrated
in Figure 1(c).

An A-warped bisimulation up to ≡ is a symmetric A-warped simulation up to
≡, using A and Ă =df {(x, y) | (y, x) ∈ A}, respectively.

Each (bi)simulation (up to ≡) is also a (bi)simulation modulo renaming (up to
≡)—using the identity as renaming; and each (bi)simulation modulo renaming
up to ≡ is an A-warped (bi)simulation up to ≡—with A={({a}, {f(a)})|a∈A1}.

5 From AWN to mCRL2

This section presents the formal translation from AWN-to mCRL2-processes.
Both process algebras are parameterised by the choice of an underlying data

structure/abstract data type, and neither puts many restrictions on it; only the
toolset associated to mCRL2 makes it more specific by predefining the most
common concepts, such as integers, sets, lists, structs, etc. To ease readability,
our presented translation assumes the same data structure underlying both pro-
cess algebras. In particular, the translation maintains sorts—integers are mapped

2 See [13] for a formal definition of safety property for labelled transition systems.

Analysing AWN-Specifications Using mCRL2 407

to integers etc. We also assume that variable names are the same. In the full
version of this paper [17] we use translation functions that follow the detailed
restrictions imposed on the respective data structures.

Tables 4–6 define the full translation, in recursive fashion.

Table 4. Translation function T (sequential processes)

Table 4 lists the translation rules for sequential processes. On this level, our
translation function operates on sequential process expressions P and addition-
ally carries two parameters: the set V of data variables maintained by P , and a
valuation ζ of some of these variables. So dom(ζ) ⊆ V . ζ evaluates all variables
that in the translation to mCRL2 are turned into constants, or other closed data
expressions; the variables in V \dom(ζ) remain variables upon translation. expζ

denotes the mCRL2-expression exp with tζ(x) substituted for each x ∈ dom(ζ).
The set V is always the domain of the valuation ξ of a sequential process (ξ, P);
hence the ζ used as a parameter in the translation is only a part of ξ.

The first two equations translate broadcast and groupcast-actions in a
similar fashion. Since mCRL2 does not allow to alter the number nor the type
of arguments of an action, we have to add all parameters from the beginning.
As a consequence the action cast carries three arguments: the intended destina-
tions of a message (a set of addresses), the actual destinations, and the message
itself. For broadcast the set of intended addresses is the set of all IP addresses;
for groupcast this set is determined by the AWN-primitive. The second argu-
ment hinges on the set of reachable destinations (destinations in transmission
range), which is only specified on the level of node expressions—see e.g. Rule 2
of Table 2. To allow arbitrary sets of destinations these rules use the sum oper-
ator of mCRL2 (

∑
)—the correct set of destinations is chosen later, by using

the parallel operator ‖. For the translation we have to assume that D and D′ are
fresh variables; in [17] we list all required side conditions, which we skip here to

408 R. van Glabbeek et al.

Table 5. Translation function T (defining equation and parallel processes)

ease readability. After the broadcast-action has been translated, the remaining
process P is handled by the same translation function. The unicast primitive
uses a similar translation in case of successful transmission, but also allows the
possibility of failure, which is handled by the action ¬uni.

The translation of the send-primitive is straightforward; the only subtlety
is that the translation has to have as many arguments as the cast-action, since
both synchronise with receive—we use the empty set ∅ as dummy parameter.
The deliver-action delivers data to the client; as this can happen at any network
node, we sum over all possible recipients ip. The translation of receive follows
the style of broadcast and groupcast, and synchronises with the cast-action
later on. Hence it needs the same number of arguments as that action; as all
parameters are unknown, we sum over all of them. After the receive-action, the
variable m is added to the set V of variables maintained by the AWN-process
P . However, since in the mCRL2 translation it occurs under the scope of a sum
operator, it is not instantiated with a concrete message in the translation of P ,
and hence is removed from the domain of ζ—notation ζ\m.

Since mCRL2 does not provide a primitive for assignment, the translation
of [[v := exp]]P is non-trivial. The idea behind our translation is to sum over all
possible values of v, and use a guard to pick the right value. A first rendering
of the translation rule would be

∑
v:sort(v)(v= expζ)→ X, where X is a process

to be determined. This sum-guard combination works for many cases; it fails
when the expression contains the variable itself. An example is the increment
of a variable: [[x = x+1]]. To resolve this problem we use a standard technique
of programming and introduce a fresh variable y. We then split the assignment
and calculate [[y = x+1]][[x = y]]. Both assignments are transformed into sum-
guard form. Since we aim at strong bisimilarity and the assignment rule of AWN
produces a silent action τ , we do something similar for mCRL2. For technical
reasons3 we cannot use a τ -action, and use an action named t instead.

Both AWN and mCRL2 feature process calls and an operator for (binary)
choice with the same semantics; their obvious translation is given by the next two
lines of Table 4. The guard of AWN translates to a guard in mCRL2. However,
AWN assigns variables that occur free in ϕ and that are not maintained by the
current process in a non-deterministic manner such that ϕ evaluates to true.

3 Using that τ |τ = τ , the fourth rule of Table 3 allows any two parallel τ -transitions
in mCRL2 to synchronise, which is not possible in AWN. For this reason, τ -actions
in AWN are translated in an action t of mCRL2, which is turned into a τ only at
the outermost layer, where no further parallel compositions are encountered.

Analysing AWN-Specifications Using mCRL2 409

Table 6. Translation function T (network nodes and networks)

We model the same behaviour by a sum over those variables that can be chosen
freely; here the set Fv(ϕ) contains all free variables of the Boolean formula ϕ.
This is the only place in the translation where the parameter V is used at all.
The mCRL2-expression of this rule simplifies to ϕζ → t·TV (ζ, P) in case all
free variables of ϕ occur in V.

Table 5 first presents the translation of defining equations, which is straight-
forward. The set V of variables maintained by P consists of the parameters vi

of the process name X. The table also lists the translation rules for parallel pro-
cesses. The rule for (ξ, P) merely needs to initialise the set V as dom(ξ). The
last rule handles the (asymmetric) parallel operator of parallel processes. This
operator allows and enforces synchronisation of a send-action on the right with
a receive-action on the left only. For example, in the expression (P 〈〈Q) 〈〈R the
send and receive-actions of Q can communicate only with P and R, respec-
tively, but the receive-actions of R, as well as the send-actions of P , remain
available for communication with the environment. Since mCRL2 only offers

410 R. van Glabbeek et al.

Table 7. Action relation A

a standard, symmetric parallel operator, we model the behaviour by combin-
ing renaming, communication and allow operators. By renaming receive to r
in the left process and send to s in the right process we guarantee synchroni-
sation of the corresponding actions; the communication operator renames the
synchronised action into t, which later becomes an internal action τ . To enforce
synchronisation, we apply the allow-operator ∇, and restrict the set of actions
to those possible. Among others this disallows all proper multi-actions.

Table 6 shows the translation rules for network nodes, networks and encap-
sulated networks. All rules use combinations of the mCRL2-operators ∇ and Γ ,
similar to the last rule of Table 5. The process G is used to select the correct set
of nodes receiving a message—remember that we sum over all possible sets on
the level of sequential processes (see Table 4). It also introduces the primitives
for changing network topologies, such as connecting and disconnecting two
nodes. The rule for ‖ features two Γ -operators, as mCRL2 forbids a single one
to have overlapping redexes. The encapsulation allows only actions with name
newpkt, deliver, connect, disconnect, as well as the ‘to-be’ silent action t.
The process H handles the injection of a new data packet, where all parame-
ters (point of injection ip, the destination dest as well the content data of the
message) are unknown; we sum over these values.

This concludes the formal definition and explanation of the translation from
the process algebra AWN into the process algebra mCRL2.

6 Correctness of the Translation

This section describes the relationship between AWN-specifications and their
counterparts in mCRL2. We establish that our translation forms a warped bisim-
ulation up to ≡ on all layers of AWN; and a bisimulation modulo renaming up to
≡ for encapsulated networks.

Analysing AWN-Specifications Using mCRL2 411

Theorem 6.1. The relation {(P,T(P)) | P is an AWN-process} is an A-
warped simulation up to ≡, where A is the action relation of Table 7.

Proof Sketch. We need to show that

if P a−→ P ′ then ∃a1,a2. (P a1−→ P ′, T(P) a2−→≡ T(P ′), a1 Aa2 and a ∈ a1),

for all AWN action labels a. We prove this implication by structural induction
on the derivation of P a−→ P ′ from the inference rules of AWN.

The base cases consider all sos-rules of AWN without premises, such as the
first rule of Table 2. Out of the 14 bases cases we only present the proof for this
rule, and prove that there are sets a1 and a2 satisfying the above properties.

Since broadcast(ξ(ms)) ∈ a1, Table 7 implies a1=broadcast(ξ(ms)) and
a2={cast(�ξ(dests)�, �D̂�, �ξ(ms)�) | D̂:Set(IP)}. It suffices to find a derivation
in mCRL2 such that T(ξ,broadcast(ms).p) a−→ T(ξ, p), for all a ∈ a2. For
arbitrary D̂ we have

cast(IP, D̂, ξ(ms)) �cast(IP,D̂,ξ(ms))�−−−−−−−−−−−→ �

cast(IP, D̂, ξ(ms))·Tdom(ξ)(ξ, P) cast(�IP�,�D̂�,�ξ(ms)�)−−−−−−−−−−−−−−→ Tdom(ξ)(ξ, P)
(
cast(IP, D, ξ(ms))·Tdom(ξ)(ξ, P)

)
[D := D̂] cast(�IP�,�D̂�,�ξ(ms)�)−−−−−−−−−−−−−−→ Tdom(ξ)(ξ, P)

∑
D:Set(IP) cast(IP, D, ξ(ms))·Tdom(ξ)(ξ, P) cast(�IP�,�D̂�,�ξ(ms)�)−−−−−−−−−−−−−−→ Tdom(ξ)(ξ, P)

Tdom(ξ)(ξ,broadcast(ms).P) cast(�IP�,�D̂�,�ξ(ms)�)−−−−−−−−−−−−−−→ Tdom(ξ)(ξ, P)

T(ξ,broadcast(ms).P) cast(�IP�,�D̂�,�ξ(ms)�)−−−−−−−−−−−−−−→ T(ξ, P)

The validity of the first transition follows from the first rule of Table 3. The
second one follows from the second rule, and a distributivity property of the
interpretation function � � (see Sect. 3). To use the sos-rule for sum of Table 3
in Step 4, we rewrite the process on the left-hand side using substitution. The
remaining two steps use the presented translation function (Line 1 of Table 4
and Line 2 of Table 5).

The induction step covers all rules that have at least one premise. Out of the
30 cases we present only the proof of

P broadcast(m)−−−−−−−−−→ P ′

ip : P : R R : *cast(m)−−−−−−−−→ ip : P ′ : R

Table 7 allows a1 = {R : *cast(m)} and a2 = {starcast(IP,R,m)}, choosing
D = IP. The induction step is proven by providing a derivation in mCRL2 for
T(ip : P :R) a−→ T(ip : P ′ :R), for all a ∈ A2. First, we analyse the process G.

412 R. van Glabbeek et al.

cast(IP,R, tm) �cast(IP,R,tm)�−−−−−−−−−−→ �

cast(IP,R, tm)·G(ip,R) cast(IP,R,m)−−−−−−−−→ G(ip,R)

(R ∩ IP = R) → cast(IP,R, tm)·G(ip,R) cast(IP,R,m)−−−−−−−−→ G(ip,R)

(c′ → cast(D, D′, m)·G(ip,R))[D:=IP, D′:=R, m:=tm] cast(IP,R,m)−−−−−−−−→ G(ip,R)
∑

D,D′:Set(IP)
m:MSG

c′ → cast(D, D′, m)·G(ip,R) cast(IP,R,m)−−−−−−−−→ G(ip,R)

∑
D,D′:Set(IP)
m:MSG

c′ → cast(D, D′, m)·G(ip,R) + S′ cast(IP,R,m)−−−−−−−−→ G(ip,R)

(
∑

D,D′:Set(IP)
m:MSG

c → cast(D, D′, m)·G(ip, R) + S)[ip:=ip, R:=R] cast(IP,R,m)−−−−−−−−→ G(ip,R)

G(ip,R) cast(IP,R,m)−−−−−−−−→ G(ip,R)

where S is an expression equal to all summands of G except the first one, and
S′ = S[ip:=ip, R:=R]. Moreover, c = (R ∩ D = D′) and c′ = (R ∩ D = D′). We use
‘R’ and ‘IP’ as data values as well as expressions denoting these, so �R� = R
and �IP� = IP.

As for the previous derivation the first two steps follow from the first two
rules of Table 3, using �tm� = m. The following step applies the rule for guard
(sixth rule in Table 3), using �R ∩ IP = R� = true as side condition. As before
we use substitution such that we can apply the sum operator. We then use the
rule of binary choice (third one in Table 3) and substitution again. The final step
applies the recursion rule of mCRL2 (last one in the table).

Since there is only one pair (b1,b2)∈ A with broadcast(m)∈b1 (see
Table 7), T(P) cast(IP,R,m)−−−−−−−−→ T(P ′), using the induction hypothesis. We combine
this fact with the conclusion of the derivation above.

Induction
hypothesis

T(P) cast(IP,R,m)−−−−−−−−→ T(P ′) G(ip,R) cast(IP,R,m)−−−−−−−−→ G(ip,R)

T(P)‖G(ip,R) cast(IP,R,m)|cast(IP,R,m)−−−−−−−−−−−−−−−−−→ T(P ′)‖G(ip,R)

ΓC(T(P)‖G(ip,R)) γC(cast(IP,R,m)|cast(IP,R,m))−−−−−−−−−−−−−−−−−−−−→ ΓC(T(P ′)‖G(ip,R))

ΓC(T(P)‖G(ip,R)) starcast(IP,R,m)−−−−−−−−−−−→ ΓC(T(P ′)‖G(ip,R))

∇V ΓC(T(P)‖G(ip,R)) starcast(IP,R,m)−−−−−−−−−−−→ ∇V ΓC(T(P ′)‖G(ip,R))

T(ip :P :R) starcast(IP,R,m)−−−−−−−−−−−→ T(ip :P ′ :R)

The derivation is straightforward, using the synchronisation rule of Table 3 and
the rules for mCRL2-operators listed on Page 7. This finishes the induction step
for the broadcast-rule. ��
A full and detailed proof can be found in [17].

We have shown that translated processes simulate original processes. We now
turn to the opposite direction.

Theorem 6.2. The relation {(T(P), P) | P is an AWN-process} is an Ă -
warped simulation up to ≡, where Ă is the converse action relation of Table 7.

Analysing AWN-Specifications Using mCRL2 413

Similar to Theorem 6.1, the proof is by structural induction. In contrast to the
above proof, the proof of Theorem 6.2 is more complicated. The reason is that the
relation A is a function, whereas Ă is not. As a consequence the individual cases
(base cases and induction steps) contain several case distinctions. For example,
an action labelled cast(�D�, �D′�, �m�) could stem from a broadcast, a groupcast
or a unicast-action in AWN. The action labelled t is even worse: it can stem
from an internal action τ , the action starcast, from a synchronisation uni|¬uni,
etc. Again, the full proof can be found in [17].

Corollary 6.3. The relation {(P,T(P)) | P is an AWN-process} is an Ă -
warped bisimulation up to ≡.

Using this result we are now ready to prove the main theorem.

Theorem 6.4. The relation {(P,T(P)) | P is an encapsulated network expres-
sion in AWN}4 is a bisimulation modulo renaming up to ≡ w.r.t. to the bijective
renaming function f, defined as

f(a) =df

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

τ if a = τ

deliver(ip, d) if a = ip :deliver(d)
connect(ip′, ip′′) if a = connect(ip′, ip′′)
disconnect(ip′, ip′′) if a = disconnect(ip′, ip′′)
newpkt({ip}, {ip}, newpkt(d , dip)) if a = ip :newpkt(d , dip) .

Given Corollary 6.3, the proof is fairly straightforward. As we have established a
bisimulation between specifications written in AWN and their translated coun-
terparts in mCRL2 we can now use the mCRL2 toolset to analyse safety prop-
erties, because such properties are preserved under bisimulation.

7 Implementation

We have implemented our translation as an Eclipse-plugin, available at http://
hoefner-online.de/ifm18/ with a description in [36]. The project, written in Java,
is based on the principles of Model-Driven Engineering (MDE) [24,33].

MDE efficiently combines domain-specific languages with transformation
engines and generators. The MDE approach aims to increase productivity by
maximising compatibility between systems, via reuse of standardised models;
its basic design principle is sketched in Fig. 2(a). Based on the idea of “every-
thing is a model”, the overall goal is to transform a model A into another model
B. The syntax of a model is usually a domain-specific language (DSL), or in
terms of MDE a metamodel. All metamodels have to conform to the syntax
of a metametamodel—the syntax of a metametamodel can be expressed by the
metametamodel itself. Using a commonly available metametamodel, such as the

4 P is an encapsulated network expression when it has the form [M].

http://hoefner-online.de/ifm18/
http://hoefner-online.de/ifm18/

414 R. van Glabbeek et al.

Transformation

«executes»

Transformation
engine Model B

Metamodel B

Model A

Metamodel A

Metametamodel

(a) MDE Basics (b) Eclipse Plugin

Fig. 2. Implementing AWN to mCRL2

one introduced by the Object Management Group [34], makes metamodels com-
patible. Abstract transformation rules defined between metamodels are used to
transform models.

In our setting Model A is an AWN-specification, and Model B its translated
counterpart in mCRL2. The metamodels A and B correspond to the syntax of
the two process algebras.

To ensure usability and compatibility, our implementation builds on exist-
ing MDE frameworks and techniques. We use the Eclipse Modeling Framework
(EMF) [35], which includes a metametamodel (Ecore) for describing metamodels.
The open-source framework Xtext [4] provides infrastructure to create parsers,
linkers, and typecheckers. By using Eclipse and Xtext, we are able to provide
a user-friendly GUI; see Fig. 2(b). To define our model transformation we use
QVT (Query/View/Transformation) [27,28]; in particular the imperative model
transformation language QVTo.

For development purposes and as a sanity check we implement and translate
the leader election protocol, presented in Sects. 2 and 3. Both the input and
output are small enough to be manually inspected and analysed.

We use the mCRL2 toolset—in particular the provided model checker—to
determine whether the nodes of a 5-node network eventually agree on a leader.
In terms of CTL [9], we want to check

A� (ϕlips) and A� A� (ϕlips),
where ϕlips is a propositional (state) formula checking the equality of the val-
ues assigned to the nodes’ variables lip. The former equation states that at
some point in time all nodes agree on a common leader; the latter strength-
ens the statement and requires that the nodes agree on a leader permanently.
The mCRL2 toolset only checks formulas written in the modal μ-calculus [32],
or (generalised) Hennessy-Milner logic [19]; so we have to translate the above
formula. Moreover, because state variables are hidden from direct analysis by
mCRL2, we modify the protocol by including an extra, otherwise inert, action
trace(ip, lip). It reveals the current choice of leader of a particular node, when

Analysing AWN-Specifications Using mCRL2 415

added as a ‘self-loop’ to Process 1. The property can then be specified by requir-
ing that all traces that exclude trace-actions eventually can only do exactly one
trace action for each ip with matching values for the lip argument. As this is
the case, the protocol is correct.

We now analyse a variant of the leader election protocol in which the operator
≥ in Process 2 (Line 1) is replaced by >, and < by ≤. Interestingly, the property
under consideration does not hold. We leave it to the reader to find the reason.

8 Case Study: The AODV Routing Protocol

To further test our framework, we translate the Ad hoc On-Demand Distance
Vector (AODV) routing protocol [30], which two of the authors together with
colleagues formalised in AWN before [12,16].

AODV is a reactive protocol, i.e., routes are established on demand, only
when needed. It is a widely-used routing protocol designed for Mobile Ad-hoc
Networks (MANETs) and Wireless Mesh Networks (WMNs). The protocol is
one of the four protocols standardised by the IETF MANET working group,
and forms the basis of new WMN protocols, including the Hybrid Wireless Mesh
Protocol (HWMP) in the IEEE 802.11s wireless mesh network standard [22].

The AODV routing protocol is specified in the form of an RFC [30], which
is the de facto standard. However, it has been shown that the standard contains
several ambiguities, contradictions, and cases of underspecification [12].

To overcome these deficiencies, two of the authors, together with other col-
leagues, obtained the first rigorous formalisation of the AODV routing proto-
col [12,16], using the process algebra AWN. The specification consists of about
150 lines of AWN-code, split over seven processes, and around 35 functions
working on a customised data structure, including routing tables.

The specification, which is available online, is translated into mCRL2, using
our framework. It is not the purpose of this paper to perform a proper analysis of
this protocol; we merely illustrate the potential of our framework, namely that
it can be used to analysis protocols used in modern networks.

Using the translated specification, we analyse a very weak form of the
packet delivery property [12], which, in generalised Hennessy-Milner logic, is
described as

[true∗·trace(newpkt(dip, data))] [¬(deliver(dip, data)∗] 〈true∗〉
〈deliver(dip, data)〉 true .

The property states that whenever a new packet intended for dip is injected to
the system, modelled by the action labelled trace(newpkt(dip, data)), then, as
long as it has not been delivered yet, it remains possible that this very packet will
be delivered in the future. AODV uses a series of control messages to establish
a route between source and destination before actually sending the data-packet.
Similar to the leader election protocol, the AODV specification is modified by
inserting a trace-action that makes the detection of a newpkt-submission to the
AODV process visible to mCRL2.

416 R. van Glabbeek et al.

We model a static linear network of three nodes and manually insert two
new packets. The mCRL2 toolset checks the packet-delivery property against
the given network, and detects a counter example showing that AODV con-
trol messages can interfere. Thus, the packet-delivery property does not hold,
confirming an analysis done by pen-and-paper [12].

9 Conclusion

In this paper we have developed and implemented a translation from the process
algebra AWN into the process algebra mCRL2. The translation allows an auto-
matic analysis of AWN-specifications, using the sophisticated toolset of mCRL2.
In contrast to many approaches that transform one formalism into another, we
have proven that the translation respects strong bisimilarity (modulo renam-
ing). Therefore we guarantee that all safety properties can be checked on the
translated specification and that the (positive/negative) outcome carries over to
the AWN-specification. Besides, establishing the relationship in a formal way
helped us in finding problems in our translation that we otherwise would have
missed. For example, in an early version of the translation function we missed
the introduction of a fresh variable y when translating an assignment (Line 7 of
Table 4).

We have used our framework, which is available online, to analyse a simple
leader election protocol, as well as the packet-delivery property of the AODV
routing protocol.

Directions for future work are manifold. (a) Having tools for automated anal-
ysis available, we can now analyse further protocols, such as a fragmentation
and reassembly protocol running on top of a CAN-bus [15]. (b) T-AWN is
an extension of AWN by timing constructs. [7] Since mCRL2 supports time
as well, it would be interesting to extend our translation of Sect. 5. Since the
timing constructs of T-AWN are fairly complex, this may be a challenging
task; in particular if the result on strong bisimulation should be maintained.
(c) We want to make use of more highly sophisticated off-the-shelf tools, such as
Isabelle/HOL and Uppaal. As our framework follows the methodology of Model-
Driven Engineering, implementing translations into other formalisms should be
straightforward—proving a bisimulation result is a different story, though. (d) It
has been shown that bisimulations do not preserve all liveness properties. [14]
We want to come up with a concept that preserves both safety and liveness
properties, followed by an adaptation of our translation.

References

1. Behrmann, G., David, A., Larsen, K.G., Pettersson, P., Wang Yi: Developing
Uppaal over 15 years. Softw. - Pract. Exp. 41(2), 133–142 (2011). https://doi.
org/10.1002/spe.1006

2. Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30080-9 7

https://doi.org/10.1002/spe.1006
https://doi.org/10.1002/spe.1006
https://doi.org/10.1007/978-3-540-30080-9_7

Analysing AWN-Specifications Using mCRL2 417

3. Bergstra, J.A., Klop, J.W.: Algebra of communicating processes. In: de Bakker,
Hazewinkel, J.W., Lenstra, J.K. (eds.) Mathematics and Computer Science, CWI
Monograph 1, pp. 89–138. North-Holland (1986)

4. Bettini, L.: Implementing Domain-Specific Languages with Xtext and Xtend, 2nd
edn. Packt Publishing, Birmingham (2016)

5. Bolognesi, T., Brinksma, E.: Introduction to the ISO specification lan-
guage LOTOS. Comput. Netw. 14, 25–59 (1987). https://doi.org/10.1016/0169-
7552(87)90085-7

6. Bourke, T., van Glabbeek, R.J., Höfner, P.: Mechanizing a process algebra for
network protocols. J. Autom. Reason. 56(3), 309–341 (2016). https://doi.org/10.
1007/s10817-015-9358-9

7. Bres, E., van Glabbeek, R., Höfner, P.: A timed process algebra for wireless net-
works with an application in routing. In: Thiemann, P. (ed.) ESOP 2016. LNCS,
vol. 9632, pp. 95–122. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49498-1 5

8. Cranen, S., et al.: An overview of the mCRL2 toolset and its recent advances. In:
Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 199–213.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7 15

9. Emerson, E.A., Clarke, E.M.: Using branching time temporal logic to synthesize
synchronization skeletons. Sci. Comput. Program. 2(3), 241–266 (1982). https://
doi.org/10.1016/0167-6423(83)90017-5

10. Fehnker, A., van Glabbeek, R., Höfner, P., McIver, A., Portmann, M., Tan, W.L.:
Automated analysis of AODV using UPPAAL. In: Flanagan, C., König, B. (eds.)
TACAS 2012. LNCS, vol. 7214, pp. 173–187. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-28756-5 13

11. Fehnker, A., van Glabbeek, R., Höfner, P., McIver, A., Portmann, M., Tan, W.L.:
A process algebra for wireless mesh networks. In: Seidl, H. (ed.) ESOP 2012. LNCS,
vol. 7211, pp. 295–315. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-28869-2 15

12. Fehnker, A., van Glabbeek, R.J., Höfner, P., McIver, A.K., Portmann, M., Tan,
W.L.: A process algebra for wireless mesh networks used for modelling, verifying
and analysing AODV (2013). http://arxiv.org/abs/1312.7645

13. Glabbeek, R.J.: The coarsest precongruences respecting safety and liveness prop-
erties. In: Calude, C.S., Sassone, V. (eds.) TCS 2010. IAICT, vol. 323, pp. 32–52.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15240-5 3

14. van Glabbeek, R.J.: Ensuring liveness properties of distributed systems (a research
agenda). Position paper (2016). https://arxiv.org/abs/1711.04240

15. van Glabbeek, R.J., Höfner, P.: Split, send, reassemble: a formal specification of
a CAN bus protocol stack. In: Hermanns, H., Höfner, P. (eds.) Models for for-
mal analysis of real systems (MARS 2017), EPTCS, vol. 244, pp. 14–52. Open
Publishing Association (2017). https://doi.org/10.4204/EPTCS.244.2

16. van Glabbeek, R.J., Höfner, P., Portmann, M., Tan, W.L.: Modelling and verifying
the AODV routing protocol. Distrib. Comput. 29(4), 279–315 (2016). https://doi.
org/10.1007/s00446-015-0262-7

17. van Glabbeek, R.J., Höfner, P., van der Wal, D.: Analysing AWN-specifications
using mCRL2. Technical report, Data61, CSIRO (2018, to appear)

18. Groote, J.F., Mousavi, M.R.: Modeling and Analysis of Communicating Systems.
MIT Press, Cambridge (2014)

19. Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. J.
ACM 32(1), 137–161 (1985). https://doi.org/10.1145/2455.2460

https://doi.org/10.1016/0169-7552(87)90085-7
https://doi.org/10.1016/0169-7552(87)90085-7
https://doi.org/10.1007/s10817-015-9358-9
https://doi.org/10.1007/s10817-015-9358-9
https://doi.org/10.1007/978-3-662-49498-1_5
https://doi.org/10.1007/978-3-662-49498-1_5
https://doi.org/10.1007/978-3-642-36742-7_15
https://doi.org/10.1016/0167-6423(83)90017-5
https://doi.org/10.1016/0167-6423(83)90017-5
https://doi.org/10.1007/978-3-642-28756-5_13
https://doi.org/10.1007/978-3-642-28756-5_13
https://doi.org/10.1007/978-3-642-28869-2_15
https://doi.org/10.1007/978-3-642-28869-2_15
http://arxiv.org/abs/1312.7645
https://doi.org/10.1007/978-3-642-15240-5_3
https://arxiv.org/abs/1711.04240
https://doi.org/10.4204/EPTCS.244.2
https://doi.org/10.1007/s00446-015-0262-7
https://doi.org/10.1007/s00446-015-0262-7
https://doi.org/10.1145/2455.2460

418 R. van Glabbeek et al.

20. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall, Upper Saddle
River (1985)

21. Hwong, Y.-L., Keiren, J.A., Kusters, V.J.J., Leemans, S.J.J., Willemse, T.A.C.:
Formalising and analysing the control software of the Compact Muon Solenoid
Experiment at the Large Hadron Collider. Sci. Comput. Program. 78(12), 2435–
2452 (2013). https://doi.org/10.1016/j.scico.2012.11.009

22. IEEE: IEEE Standard for Information Technology—Telecommunications and
information exchange between systems—Local and metropolitan area networks-
Specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) specifications Amendment 10: Mesh Networking (2011).
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6018236

23. Kant, G., Laarman, A., Meijer, J., van de Pol, J., Blom, S., van Dijk, T.: LTSmin:
high-performance language-independent model checking. In: Baier, C., Tinelli, C.
(eds.) TACAS 2015. LNCS, vol. 9035, pp. 692–707. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46681-0 61

24. Kent, S.: Model driven engineering. In: Butler, M., Petre, L., Sere, K. (eds.) IFM
2002. LNCS, vol. 2335, pp. 286–298. Springer, Heidelberg (2002). https://doi.org/
10.1007/3-540-47884-1 16

25. Luttik, S.P.: Description and formal specification of the link layer of P1394. In:
Lovrek, I. (ed.) 2nd International Workshop on Applied Formal Methods in System
Design, pp. 43–56 (1997)

26. Milner, R.: Communication and Concurrency. Prentice Hall, Upper Saddle River
(1989)

27. Nolte, S.: QVT - Operational Mappings: Modellierung mit der Query Views Trans-
formation. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-540-92293-
3

28. Object Management Group: Meta Object Facility (MOF) 2.0 Query/View/ Trans-
formation Specification (2011). http://www.omg.org/spec/QVT/

29. Park, D.: Concurrency and automata on infinite sequences. In: Deussen, P. (ed.)
GI-TCS 1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981). https://
doi.org/10.1007/BFb0017309

30. Perkins, C.E., Belding-Royer, E.M., Das, S.: Ad hoc On-Demand Distance Vec-
tor (AODV) routing. RFC 3561 (Experimental), Network Working Group (2003).
http://www.ietf.org/rfc/rfc3561.txt

31. Plotkin, G.D.: A structural approach to operational semantics. J. Log. Algebr.
Program. 60–61, 17–139 (2004). Originally appeared in 1981. https://doi.org/10.
1016/j.jlap.2004.05.001

32. Pratt, V.R.: A Decidable mu-Calculus. In: Foundations of Computer Science
(FOCS 1981), pp. 421–427. IEEE Computer Society (1981). https://doi.org/10.
1109/SFCS.1981.4

33. Schmidt, D.C.: Model-driven engineering. Computer 39(2), 25–31 (2006). https://
doi.org/10.1109/MC.2006.58

34. Soley, R., The OMG Staff Strategy Group: Model Driven Architecture (2000).
http://www.omg.org/∼soley/mda.html

35. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework 2.0, 2nd edn. Addison-Wesley, Boston (2009)

36. van der Wal, D.: Modeling AWN networks with an mCRL2 back end. Master’s
thesis, University of Twente (2018)

https://doi.org/10.1016/j.scico.2012.11.009
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6018236
https://doi.org/10.1007/978-3-662-46681-0_61
https://doi.org/10.1007/3-540-47884-1_16
https://doi.org/10.1007/3-540-47884-1_16
https://doi.org/10.1007/978-3-540-92293-3
https://doi.org/10.1007/978-3-540-92293-3
http://www.omg.org/spec/QVT/
https://doi.org/10.1007/BFb0017309
https://doi.org/10.1007/BFb0017309
http://www.ietf.org/rfc/rfc3561.txt
https://doi.org/10.1016/j.jlap.2004.05.001
https://doi.org/10.1016/j.jlap.2004.05.001
https://doi.org/10.1109/SFCS.1981.4
https://doi.org/10.1109/SFCS.1981.4
https://doi.org/10.1109/MC.2006.58
https://doi.org/10.1109/MC.2006.58
http://www.omg.org/~soley/mda.html

	Analysing AWN-Specifications Using mCRL2 (Extended Abstract)
	1 Introduction
	2 The Algebra for Wireless Networks
	3 The Algebra mCRL2 and Its Associated Toolset
	4 Comparing Transition Systems
	5 From AWN to mCRL2
	6 Correctness of the Translation
	7 Implementation
	8 Case Study: The AODV Routing Protocol
	9 Conclusion
	References

