

A linear translation from LTL to the first-order modal µ-calculus

Citation for published version (APA):
Cranen, S., Groote, J. F., & Reniers, M. A. (2010). A linear translation from LTL to the first-order modal µ-
calculus. (Computer science reports; Vol. 1009). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2010

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/9524c93a-a89b-4ae5-a1d6-10f09bff2b31

A linear translation from LTL to the

first-order modal µ-calculus

Sjoerd Cranen Jan Friso Groote Michel Reniers

{s.cranen, j.f.groote, m.a.reniers}@tue.nl
Eindhoven University of Technology

Department of Mathematics and Computer Science

Den Dolech 2, 5612 AZ, Eindhoven, The Netherlands

Abstract

The modal µ-calculus is a very expressive temporal logic. In particular, logics such as LTL,
CTL and CTL* can be translated into the modal µ-calculus, although existing translations of
LTL and CTL* are at least exponential in size. We show that an existing simple first-order
extension of the modal µ-calculus allows for a linear translation from LTL. Furthermore, we
show that solving the translated formulae is as efficient as the best known methods to solve
LTL formulae directly.

1 Introduction

Designing complex distributed systems in such a way that they behave correctly is a challenging
task. One attempt to deal with this challenge is to describe the system using a behavioural
modelling formalism, such as interacting automata or process algebra. Experience teaches that
such descriptions are not by itself correct and therefore it is useful to establish so called behavioral
properties such as absence of deadlock, safety and liveness properties that are described in a modal
logic.

We use mCRL2 as a behavioural modelling formalism, which is a process algebraic behavioural
specification formalism endowed with data and time, which is used extensively to model real life
systems [1, 13]. Properties about the behaviour of processes are described in a modal µ-calculus
enriched with data and time, the first-order modal µ-calculus [14]. The modal µ-calculus [9, 17]
is an extension of Hennessy-Milner logic [16] with fixpoint operators.

By using data in mCRL2, one can specify state machines with an infinite action alphabet, giving
rise to the need for a formalism that can express behavioural properties over such systems. The
first-order modal µ-calculus, in which quantification over data can be used and in which fixpoint
variables may have data parameters, fulfills this need and is more practical as it is syntactically
less minimalistic. It is very expressive and—after some training—very pleasant to use. Indeed,
over the years we have not yet encountered any behavioural property that we could not express in
this formalism. Driven by these positive results, we developed theories [12, 15] and tools to verify
properties in the first order modal µ-calculus with data. These tools are distributed in the open
source and freely available mCRL2 toolkit [1, 13].

The purpose of this paper is to formally establish what we already experienced in practice,
namely that the first order µ-calculus with data is indeed very expressive in the sense that prop-
erties formulated in other modal logics can be translated to it with only a linear growth in size.

Already in 1986, Emerson and Lei suggested that the modal µ-calculus might serve as a uniform
model checking framework, and showed that CTL can be translated succinctly into the modal µ-
calculus, but also noted that the only known translation from CTL* to the µ-calculus was not
succinct [10]. But if the modal µ-calculus is to become a framework for model checking, it is

1

certainly of importance that system properties can be expressed in a formula that is roughly
comparable in size with a CTL* formula.

The original translation that Emerson and Lei mentioned consisted of the composition of an
unpublished translation from CTL* to PDL-∆ by Wolper, and a translation from PDL-∆ to the
µ-calculus [10].

A simpler translation procedure was proposed in [8], but this translation still yields formulae
doubly exponential in the size of the input formula. Only in 1996, this translation was improved
upon by Bhat et al. with an algorithm that translates CTL* to an equational variant of the modal
µ-calculus, only causing a single exponential blowup.

In this paper, we use a strategy similar to that of Bhat et al., but as the complexity of their
construction is in the translation of the linear fragments of formulae, we focus on translating LTL.
We show that a linear translation to the first-order modal µ-calculus is possible using only very
simple data types.

From the context of the mCRL2 toolkit, there is also a very practical reason to have a succinct
translation from LTL or CTL*. For those unfamiliar with the modal µ-calculus, or for those
who favour these logics over the modal µ-calculus (and admittedly, many people do at the time
of writing), a linear translation enables us to easily use available µ-calculus-checkers to verify
properties formulated in these other formalisms also. To support this, we show that model checking
the translated formula is as efficient as the most efficient known algorithms for model checking the
original.

2 LTL and Büchi automata

In this section we introduce LTL and its semantics in terms of Kripke structures. Then, a trans-
lation from LTL to Büchi automata is discussed, which is the basis of the translation presented
in section 4. Readers familiar with the subject matter may skip any part of this section, although
we point out that the rest of this article relies quite heavily on the topics presented in sections
2.3 and 2.4, and therefore also on the notation used in those sections. Furthermore, we note that
Kripke structures considered in this article are always deadlock free. It will become clear that this
restriction is not relevant for the translation in section 4.

2.1 Kripke structures

A Kripke structure M is a tuple 〈S,→, I,AP, L〉, where

• S is a set of states,

• → ⊆ S × S is a transition relation,

• I ⊆ S is a set of initial states,

• AP is a set of atomic propositions, and

• L : S → 2AP is a labeling function.

A path π is a (possibly infinite) sequence s0, s1, . . . of nodes from S in which every pair si, si+1 of
subsequent nodes satisfies si → si+1.

The size of a Kripke structure M, denoted |M|, is equal to the number of states plus the number
of transitions in M, i.e. |M| = |S|+ |→|.

A state s ∈ S is called a deadlock state iff there is no s′ ∈ S such that s→ s′.

2.2 LTL

The following grammar defines the set of well-formed propositional LTL formulae over some set
AP of atomic propositions.

ϕ,ψ ::= a | ¬ϕ | ϕ ∧ ψ | , ϕ | ϕUψ

2

In the above, a ∈ AP. The semantics of an LTL formula are defined on paths in a Kripke structure
〈S,→, I,AP, L〉. If π is such a path and πi denotes π without its i first states, then π satisfies an
LTL formula ϕ, written π |= ϕ, according to the semantics below.

π |= a iff s is the first state of π and a ∈ L(s)

π |= ¬ϕ iff not π |= ϕ

π |= ϕ ∧ ψ iff π |= ϕ and π |= ψ

π |= ,ϕ iff π1 |= ϕ

π |= ϕUψ iff ∃j∈N(πj |= ψ) and ∀i<j(πi |= ϕ)

A Kripke structure M = 〈S,→, I,AP, L〉 satisfies an LTL formula ϕ, denoted M |= ϕ, if and only
if π |= ϕ for all π ∈ I × S∗, i.e. all paths starting in an initial state of M satisfy ϕ.

The following standard abbreviations are used:

ϕRψ = ¬(¬ϕU¬ψ)

true = a ∨ ¬a false = ¬true

3ϕ = trueUϕ 2ϕ = falseRϕ

In this paper we use the notion of subformulae. Every atomic proposition in an LTL formula ϕ
is a subformula of ϕ. Furthermore, every operator occurring in ϕ, together with its argument(s),
forms a subformula of ϕ.

2.3 Nondeterministic Büchi automata

A nondeterministic Büchi automaton is defined as a tuple 〈Q,Σ, δ, Q0, F 〉 where

• Q is a set of states,

• Σ is a signature,

• δ : Q× Σ→ 2Q is a transition function,

• Q0 ⊆ Q is the set of initial states and

• F ⊆ Q is the acceptance set.

If the signature is not relevant, Σ and δ may be replaced by a transition relation �⊆ Q×Q. A
run in a Büchi automaton is an infinite sequence of states q0, q1, . . . such that ∃p∈Σ qi+1 ∈ δ(qi, p)
for all i ∈ N. Such a run is accepting if and only if it passes through an accepting state infinitely
often, i.e. {i | qi ∈ F} is infinitely large.

A generalized Büchi automaton is a Büchi automaton that has a set of acceptance sets F rather
than a single acceptance set F . A run q0, q1, . . . in such an automaton is accepting if and only if
it passes through a state in every acceptance set infinitely often, i.e. for all F ∈ F , {i | qi ∈ F} is
infinitely large.

The accepted language of a (generalized) Büchi automaton is the set of all accepting runs in that
automaton starting in a state from Q0. The product of a Kripke structure M = 〈S,→, I,AP, L〉
and a Büchi automaton A = 〈Q,AP, δ, Q0, F 〉 is defined as the Büchi automaton M ⊗ A =
〈Q′,�, Q′0, F

′〉, where

• Q′ = S ×Q,

• 〈s, q〉� 〈s′, q′〉 if and only if s −→ s′ and q′ ∈ δ(q, L(s)),

• Q′0 = {〈s0, q〉 ∈ Q′ | s0 ∈ I ∧ ∃q0∈Q0
q ∈ δ(q0, L(s0))} and

• F ′ = {〈s, q〉 ∈ Q′ | q ∈ F}.

Note that the signature of A is the set of atomic propositions from M.

3

2.4 Translation from LTL to Büchi automata

Below we sketch how to create a generalized Büchi automaton A for an LTL formula ϕ of which
the accepted language consists of all sentences (paths) that satisfy ϕ. Checking that the accepted
language of M⊗A is empty is then sufficient to conclude that there is no path in M that satisfies
ϕ. The below definitions construct such a Büchi automaton for an LTL formula. These definitions
are taken from and explained in full in [3].

The closure of an LTL formula ϕ is the set Closure(ϕ) of all subformulae of ϕ and their
negation. Double negations are omitted, i.e. formulae of the form ¬¬φ are represented by φ. For
example, Closure(aU¬b) is defined to be the set {a,¬a,¬b, b, aU¬b,¬(aU¬b)}.

An LTL automaton is a generalized Büchi automaton A = 〈Q,Σ, δ, Q0,F〉 belonging to an
LTL formula ϕ over AP.

• Q is the largest subset of 2Closure(ϕ) such that for all B ∈ Q we have the following:

– ψ /∈ B ⇔ ¬ψ ∈ B
– ψ1 ∧ ψ2 ∈ B ⇔ ψ1 ∈ B and ψ2 ∈ B
– if ψ1 Uψ2 ∈ Closure(ϕ), then

∗ ψ2 ∈ B ⇒ ψ1 Uψ2 ∈ B
∗ ψ1 Uψ2 ∈ B and ψ2 /∈ B ⇒ ψ1 ∈ B

• Q0 = {B ∈ Q | ϕ ∈ B}

• F = {Fψ1 Uψ2 | ψ1 Uψ2 ∈ Closure(ϕ)}, where
Fψ1 Uψ2 = {B ∈ Q | ψ1 Uψ2 /∈ B or ψ2 ∈ B}

• δ(B,A) = B′ if and only if

– A = B ∩AP

– For every ,ψ ∈ Closure(ϕ): ,ψ ∈ B ⇔ ψ ∈ B′

– For every ψ1 Uψ2 ∈ Closure(ϕ): ψ1 Uψ2 ∈ B ⇔ (ψ2 ∈ B ∨ (ψ1 ∈ B ∧ ψ1 Uψ2 ∈ B′))

An LTL automaton AG = 〈QG,ΣG, δG, QG0 ,F〉 can be transformed to a normal Büchi automaton
by making a copy for every acceptance set and linking those copies together cyclically. This
construction is also explained in [3]. We give a precise definition here. Suppose that k = |F| for
some k and f : {0, . . . , k−1} → F enumerates F in an arbitrary way. A regular Büchi automaton
that is equivalent to AG is given by A = 〈Q,Σ, δ, Q0, F 〉, where

Q = QG × {0, . . . , k − 1} Q0 = {〈q, 0〉 ∈ Q | q ∈ QG0 }
Σ = ΣG F = {〈q, i〉 ∈ Q | q ∈ f(i)}

and where δ is defined as follows:

〈p, 〈q′, j〉〉 ∈ δ(〈q, i〉) iff 〈p, q′〉 ∈ δG(q) and

{
i = j, q /∈ f(i)

(i+ 1) mod k = j q ∈ f(i)

The resulting Büchi automaton accepts the same language as AG.

3 The first-order modal µ-calculus

In this section we introduce a first order extension of the modal µ-calculus. It is a propositional
variant of the µ-calculus described in [12]. In this formalism, a notion of data is used, which we
present first.

A data sort D is a set of atomic elements, associated with a semantic set D. Operations on data
sorts represent operations on their semantic sets and yield (closed) terms that represent elements

4

from those sets. We assume the existence of an interpretation function [[]] that maps a closed
term t of sort D to an element [[t]] of D.

Throughout the paper, we assume that for a sort D there is an associated set of variables D
of sort D. A data environment ε : D → D is used to map variable names to elements of D. In the
obvious way, [[]] is extended to open terms, and we denote the data element associated with an
open term t given a data environment ε with [[t]]ε.

We write ε[d 7→ v] to denote a data environment ε′ for which ε′(d′) = ε(d′) for all d′ 6= d and
ε′(d) = v.

In this paper we assume the existence of a data sort B representing the booleans B and a sort
N representing the natural numbers N.

3.1 Syntax and semantics

We assume the existence of sort D with variables D that corresponds to some semantic set D as
explained earlier. The syntax of a µ-calculus formula is defined by the following grammar:

ϕ ::= b | p | X(d) | ¬ϕ | ϕ ∧ ψ | [·]ϕ | (µX(d :D = e) . ϕ)

In the above, b is a Boolean expression, p is an atomic proposition (sometimes called propositional
constant), d ∈ D is a variable name, e is a data expression of sort D and X is a fixpoint variable
taken from a set X of variable names.

The interpretation of a µ-calculus formula ϕ, denoted by [[ϕ]]ρε, is given in the context of a
data environment ε : D → D, a predicate environment ρ : X → (D→ 2S) and a Kripke structure
〈S,→, I,AP, L〉.

[[b]]ρε ,

{
S, [[b]]ε

∅, otherwise

[[p]]ρε , {s ∈ S | p ∈ L(s)}, p ∈ AP

[[X(e)]]ρε , ρ(X)([[e]]ε)

[[¬ϕ]]ρε , S \ [[ϕ]]ρε

[[ϕ ∧ ψ]]ρε , [[ϕ]]ρε ∩ [[ψ]]ρε

[[[·]ϕ]]ρε , {s ∈ S | ∀s′∈S(s→ s′ ⇒ s′ ∈ [[ϕ]]ρε)}

[[∀d:Dϕ]]ρε ,
⋂
v∈D

[[ϕ]]ρε[d 7→v]

[[µX(d :D = e).ϕ]]ρε , (µΦ)([[e]]ε)

Where Φ : (D → 2S)→ (D → 2S) is given as

Φ , λF :D → 2S .λv :D.[[ϕ]]ρ[X 7→F]ε[d7→v]

It is important to note that the least fixpoint of Φ does not always exist. However, if in the above
definition, ϕ is transformed to positive normal form [6], in which negation only occurs on the level
of atomic propositions and in which all bound variables are distinct, then the existence of such
a fixpoint is guaranteed. This claim is justified by the fact that we can define an ordering v on
D → 2S such that f v g if and only if for all d :D, f(d) ⊆ g(d). Then 〈D → 2S ,v〉 is a complete
lattice and because the functionals are monotonic over this lattice (see [12]), Tarski’s theorem [18]
can be applied to establish that the least fixpoint of Φ exists.

Furthermore, this fixpoint may be approximated by applying Φ a number of times to the
infimum of the lattice (in case of a least fixpoint) or to the supremum of the lattice (for a greatest
fixpoint).

5

We use the following standard abbreviations to denote some useful derived operators, where
ϕ[¬X/X] stands for the expression ϕ in which every occurrence of X has been replaced by ¬X:

ϕ ∨ ψ , ¬(¬ϕ ∧ ¬ψ)

〈·〉ϕ , ¬[·]¬ϕ
∃d :Dϕ , ¬∀d :D¬ϕ

νX(d :D = e) . ϕ , ¬µX(d :D = e) .¬ϕ[¬X/X]

For readability, we allow fixpoints to be parameterised with multiple data parameters, separated
by commas, rather than using a structured sort and projection functions. We also introduce one
non-standard abbreviation. If P is a set of atomic propositions, then the µ-calculus formula P
represents states that are labelled with exactly the labels in P :

P ,
∧
a∈P

a ∧
∧

a∈AP\P

¬a, P ⊆ AP

When a data domain Γ is used that consists of the single element γ (i.e. when data is not used),
the formula σX(d : Γ = γ) . ϕ is abbreviated to σX .ϕ (for σ ∈ {µ, ν}).

In the following text we assume that D = D to make reasoning about the semantics of a
formula less troublesome. In section 4.1 we show how to use standard sorts N and B to enable
automatic solving of these formulae.

4 Translating LTL to the first-order µ-calculus

Translation of LTL to the standard propositional µ-calculus is not straightforward, in the sense
that a simple syntactic translation procedure has not been found. Consider the following two
standard translations from LTL to the µ-calculus.

pU q
trans
= µX . (p ∧ [·]X) ∨ q pR q

trans
= νX . (p ∨ [·]X) ∧ q

The above translations appear often in literature, and at first sight seem very convenient. For
example, it is easy to see that a translation for 3q = trueU q and 2q = falseR q can be obtained
from the above by simply substituting p for true and false respectively, yielding µX . [·]X ∨ q
and νX . [·]X ∧ q respectively. However, 32q cannot be obtained by the same simple syntactic
replacing, as that would result in the formula µX . [·]X ∨ νY . [·]Y ∧ q, which expresses the CTL
formula AFAG q. The following µ-calculus formula is the proper translation of 32q.

µX . νY . [·]X ∨ (q ∧ [·]Y)

We use a variant of this formula to translate LTL to the first order modal µ-calculus. Notice
that this formula expresses the absence of an accepting path in a Büchi automaton if we label
all non-accepting states of that automaton with q. Because a translation to Büchi automata is
already known, it seems natural to use the above as a framework for our translation.

We note that the above formula can be replaced by the formula µX . νY . (¬q∧ [·]X)∨(q∧ [·]Y),
which appears stronger at first sight. This alteration does not change the meaning of the formula,
because both fixpoints must identify the same set of nodes, and therefore in particular [·]Y ⇒ [·]X.
We use a similar construction in this paper to make the complexity analysis easier, even though
we do not need this alternative formulation for our proof of correctness.

The introduction of data allows us to formulate certain properties more concisely, by exploiting
repetitive structures in the formula. Consider for instance the following formula.

µX . 〈·〉X ∨ (p(0) ∧ µY . 〈·〉Y ∨ (p(1) ∧ µZ . 〈·〉Z ∨ p(2)))

6

This formula expresses that first a state in which p(0) holds is reachable, then a state in which
p(1) holds and finally one in which p(2) holds. This formula (and any extension thereof) can also
be expressed as follows:

µX(i : N = 0) . 〈·〉X(i) ∨ (p(i) ∧ 〈·〉X(i+ 1)) ∨ i ≈ 3

In the above, i ≈ 3 has the standard arithmetic meaning of ‘i equals 3’. Note that the formula
has collapsed the fixpoints into a single one, and that the number of boolean operators has also
diminished.

Another example is the following formula, which expresses that out of the first 2k states visited,
k states must be labelled with p:

µX(n : N = 0,m : N = 0) . (n ≈ k ∧m ≈ k) ∨
([·]X(n+ 1,m) ∧ p) ∨
([·]X(n,m+ 1) ∧ ¬p)

The size of this formula is O(log k)—because we have to write down k—where the equivalent in
the normal µ-calculus would take O(2k) space (or O(k2) in the equational µ-calculus).

We now return to the problem of translating LTL to the first-order µ-calculus. We base our
translation on Büchi automaton representations of LTL formulae as referred to in section 2.3. This
representation is encoded into a data structure consisting of booleans and natural numbers. We
express a µ-calculus property that in a sense ‘synchronizes’ steps in the Büchi automaton (utilizing
the data structure) with steps that are made in the transition system against which the formula
is checked. Keeping this synchrony intact, we can use the standard translation of 32q to express
that this Büchi automaton does not accept any path of the transition system.

Formally speaking, we assume that we are given some Büchi automaton A, and construct a
µ-calculus formula that accepts an initial state of the transition system M it is interpreted on if
and only if L(M⊗A) = ∅, i.e. the accepted language of the product of the Kripke structure and
the Büchi automaton is empty.

Definition 1 (T, T ′,Tr). We define a translation function Tr that generates a µ-calculus formula
from a Büchi automaton. Let A = 〈Q,Σ, δ, Q0, F 〉 be a Büchi automaton.

Tr(A) = ∀q∈Q,p∈Σ

(
(p ∧ ∃q0∈Q0

q ∈ δ(q0, p))⇒ T (q)
)

with T (q) defined as

T (q0) =µX(q′′ : Q = q0) . T ′(q′′)

T ′(q′′) =νY (q : Q = q′′) .

∀p,q′:q′∈δ(q,p)[·]
(
p⇒

(
(X(q′) ∧ q ∈ F) ∨ (Y (q′) ∧ q /∈ F)

))
In the above, note that the quantifier selects those q′ and p that form a single step in the Büchi

automaton from state q. The implication (p ⇒ . . .) ensures that the required property is only
checked along paths realising such steps. In this manner, the quantifier and implication realise
the aforementioned synchrony. In effect the formula µX . νY . [·]X ∨ (q /∈ F ∧ [·]Y) is checked on
the paths of the Büchi automaton that have a corresponding path in the Kripke structure (i.e.
exactly the paths in M⊗A).

Before we look at the properties of this translation, we introduce a notational convention that
will make the syntax less hairy, and we introduce definitions for X̂n and Ŷ n, which are used in
the proofs of lemmata 1 and 2.

The semantics [[T (q0)]]ρε of this formula is (µΦ)(q0), where

Φ = λX̂ : Q→ 2S .λq̂ : Q.[[T ′(q′′)]]ρ[X 7→X̂]ε[q′′ 7→q̂]

7

As explained in section 3, we can calculate this fixpoint by starting with an initial approxima-
tion X̂0 that is the minimal element of the lattice 〈Q → 2S ,v〉, and then choosing the next
approximation X̂m+1 = Φ(X̂m).

Because X̂0 = λq̂ :Q.∅ can be written as λq̂ :Q.[[false]]ρ[X 7→X̂
−1]ε[q′′ 7→q̂] (regardless of how we

define X̂−1), every approximation X̂m+1 can be rewritten to the form λq̂ :Q.[[φ]]ρ[X 7→X̂
m]ε[q′′ 7→q̂].

To increase legibility, we omit the interpretation function and abbreviate this to λq′′ :Q.φ[X̂m/X],
where φ[X̂m/X] is the formula φ with all occurrences of X replaced by X̂m.

We can now inductively define the approximations for T as follows:

X̂0 = λq′′ :Q.false

X̂m+1 = λq′′ :Q.νY (q :Q = q′′) .

∀p,q′:q′∈δ(q,p)[·]
(
p⇒

(
(X̂m(q′) ∧ q ∈ F) ∨ (Y (q′) ∧ q /∈ F)

))
Note that T is equal to X̂α for some sufficiently large α. Similarly, we can approximate T ′, given
an approximation X̂m of T :

Ŷ 0
m = λq :Q.true

Ŷ n+1
m = λq :Q.∀p,q′:q′∈δ(q,p)[·]

(
p⇒

(
(X̂m(q′) ∧ q ∈ F) ∨ (Ŷ nm(q′) ∧ q /∈ F)

))
Using these definitions, we show the relationship between the µ-calculus formula of definition 1
and the Büchi automaton it was generated from.

Lemma 1 (⇒). Given are a Büchi automaton A = 〈Q,Σ, δ, Q0, F 〉 and a Kripke structure M =
〈S,→, I,AP, L〉. If s0 |= T (q0), then there is no accepting run in M⊗A from state 〈s0, q0〉.

Proof. We give a proof by contraposition. Suppose that there is a run π = 〈s0, q0〉, 〈s1, q1〉, . . .
in M ⊗ A that is accepting. We prove that s0 6|= T (q0) by showing that ∀m∈N∀i∈N si 6|= X̂m(qi)
by using induction on m. It then follows that ∀i∈N si 6|= T (qi). The induction hypothesis is the
following.

∀i∈N si 6|= X̂m(qi) (1)

For m = 0, this trivially holds. For m > 0 we have to show that the greatest fixpoint T ′ of Y does
not contain any of these si either. We show that there is some n for which ∀i∈N si 6|= Ŷ nm(qi) and
therefore ∀i∈N si 6|= T ′(qi).

Observe that, because of the definition of the transition function of M ⊗ A, si −→ si+1 and
qi+1 ∈ δ(qi, L(si+1)) for all i ∈ N. The definition of Ŷ n+1

m therefore implies that if si |= Ŷ n+1
m (qi),

then we must also have si+1 |= L(si+1)⇒ ((X̂m(qi+1) ∧ qi ∈ F) ∨ (Ŷ nm(qi+1) ∧ qi /∈ F)). Because
by definition si+1 |= L(si+1), and because of (1), we have an even stronger implication:

For n ∈ N, if si |= Ŷ n+1
m (qi), then si+1 |= Ŷ nm(qi+1) and qi /∈ F (2)

Suppose that qi ∈ F for some i, then si+1 6|= Ŷ nm(qi+1) ∧ (qi /∈ F) for any n, and it follows
immediately that also si 6|= Ŷ 1

m(qi). Now suppose qi /∈ F . Because π is an accepting run, there
must be some k ∈ N for which qi+k ∈ F , in which case si+k 6|= Ŷ nm(qi+k) for any n. In particular
this holds for n = 1 and therefore we have, by transitivity of implication (2), si 6|= Ŷ k+1

m (qi).

Lemma 2 (⇐). Given are a Büchi automaton A = 〈Q,Σ, δ, Q0, F 〉 and a Kripke structure M =
〈S,→, I,AP, L〉. If s0 6|= T (q0), then there is an accepting run in M⊗A from state 〈s0, q0〉.

Proof. Let si ∈ S and assume that si 6|= T (qi). Let � be the transition relation of M ⊗ A. We
show that si 6|= T (qi)⇒ ∃n∈N n > 0 ∧G(si, qi, n), where G is defined as follows.

G(s, q, n) =

{
q ∈ F ∧ s 6|= T (q), n = 0
∃s′∈S,q′∈Q 〈s, q〉� 〈s′, q′〉 ∧G(s′, q′, n− 1), n > 0

In other words, either 〈si, qi〉 is an accepting state of M⊗A or there is a finite path from 〈si, qi〉
to an accepting state of M⊗A that again does not satisfy T (qi).

8

Choose an arbitrary m ∈ N. Notice that because si 6|= T (qi), also si 6|= X̂m(qi). For this reason
there must be some k > 0 for which si 6|= Ŷ km(qi). Filling in the definition of Ŷ km(qi), we get

si 6|= ∀p,q′:q′∈δ(q,p)[·]
(
p⇒

(
(X̂m(q′) ∧ qi ∈ F) ∨ (Ŷ k−1

m (q′) ∧ qi /∈ F)
))

In particular, this means that there exist an si+1 such that si −→ si+1 and qi+1 such that qi+1 ∈
δ(q, L(si+1)) for which the following holds:

si+1 |= L(si+1) ∧ ¬
(

(X̂m(qi+1) ∧ qi ∈ F) ∨ (Ŷ k−1
m (qi+1) ∧ qi /∈ F)

)
(3)

Because m was chosen arbitrarily, this also implies that si+1 6|= T (qi+1). We therefore prove
that G(si, qi, k − 1). As the only assumption on si was that si 6|= T (qi), we then also have
G(si+1, qi+1, k

′ − 1) for some k′ > 0. But then, by definition of G and the fact that 〈si, qi〉 �
〈si+1, qi+1〉, we also have G(si, qi, k

′′) for k′′ > 0.
Suppose qi ∈ F . Then G(si, qi, 0) holds trivially. Now suppose qi /∈ F . We prove by induction

on k that si 6|= Ŷ km(qi) ⇒ G(si, qi, k − 1). For the base case we fill in k = 1 in (3) and obtain
qi ∈ F . We had already assumed that si 6|= T (qi), so we have found that G(si, qi, k − 1) holds.

In the case that k = n + 1, the assumption that qi /∈ F in combination with (3) yields
si+1 6|= Ŷ nm(qi+1). The induction hypothesis then yields G(si+1, qi+1, n−1), and because 〈si, qi〉�
〈si+1, qi+1〉 also G(si, qi, k − 1).

Theorem 1. Let A = 〈Q,Σ, δ, Q0, F 〉 be a Büchi automaton and M = 〈S,→, I,AP, L〉 be a Kripke
structure. The language of their product is empty, i.e. L(M⊗A) = ∅ if and only if M |= Tr(A).

Proof. Note that s0 |= p ∧ ∃q0∈Q0
q ∈ δ(q0, p) for exactly those s0 ∈ S and q ∈ Q for which 〈s0, q〉

is in the set of initial states of M⊗A. The language of M⊗A is empty if and only if there is no
accepting run starting in any of these states. Tr(A) demands that in these states T (q) must hold.
Lemmas 1 and 2 show that s0 |= T (q) is true if and only if there is no accepting run in M ⊗ A
starting in 〈s0, q〉.

Finally, we note that the given translation is also correct for Kripke structures with deadlock
states, since paths ending in deadlock are never accepting and deadlock states make the [·] modality
in the µ-calculus formula hold trivially.

4.1 Data specifications

We have formulated our translation in such a way that it uses a Büchi automaton directly (Q, δ,
Q0 and F occur in our formula). In order to use existing techniques [7] to be able to automatically
check the µ-calculus formula against a Kripke structure, and also to exploit the structured manner
in which we can build a Büchi automaton from an LTL formula, we encode Q into a datatype
which consists of only Booleans and natural numbers.

Let ϕ be an LTL formula consisting of subformulae Ψ, and let A be a Büchi automaton
constructed for ϕ as described in section 2.4. Because of the way A was constructed, it may be
described using only Booleans and natural numbers. Recall that a state in A is represented by a
set of subformulae q ∈ 2Ψ and a counter c ∈ {0, . . . , k − 1}, with k the number of until operators
in ϕ.

Now we use the fact that, given some mapping from Ψ to {0, . . . , |Ψ|}, we can substitute 2Ψ

by the isomorphic domain B|Ψ|. The counter can be represented by a value from N, and so we
may represent states by an element from Bn × N.

By P (q) we denote the set of atomic propositions of which the corresponding bit in q is set,
i.e. if q represents a set Φ ⊆ 2Ψ, then P (q) = Φ ∩AP.

We proceed by giving an encoding of the Büchi automaton corresponding to an LTL formula
ϕ over atomic propositions AP, consisting of arbitrarily ordered subformulae ψ0 . . . ψn. We fix a

9

datatype D = Bn ×N and we define the following four mappings:

inQ :D → B inQ0 :D → B

inF :D → B trans :D ×D → B

Intuitively, these mappings represent predicates on states from the Büchi automaton. For instance,
if a data element d :D represents some state q in a Büchi automaton with states Q and acceptance
set F , then inF(d) will have the same truth value as the predicate q ∈ F . The inQ mapping is
needed to identify those elements in D that represent a valid state in the Büchi automaton (there
are subsets of the closure of ϕ that are not in Q, see section 2.4).

We now give the definitions of these mappings. Let U be a set of indices, and let L and R be
mappings from indices to indices. We have i ∈ U, L(i) = j and R(i) = k if and only if ψi = ψj Uψk
for some i, j and k. Let U : N→ U enumerate U in an arbitrary way.

Similarly, let X be another set of indices, such that i ∈ X and R(i) = j if and only if ψi = ,ψj
for some i and j.

inQ(〈b0, . . . , bn, c〉) =
∧
i∈U

(bR(i) ⇒ bi) ∧ (bi ⇒ (bL(i) ∨ bR(i)))

inQ0(〈b0, . . . , bn, c〉) = inQ(〈b0, . . . , bn, c〉) ∧ b0
inF(〈b0, . . . , bn, c〉) = inQ(〈b0, . . . , bn, c〉) ∧ (¬bU(c) ∨ bR(U(c)))

trans(〈b0, . . . , bn, c〉,
〈b′0, . . . , b′n, c′〉)

=
∧
i∈X

(bi ⇔ b′R(i)) ∧∧
i∈U

(bi ⇔ (bR(i) ∨ (bL(i) ∧ b′i))) ∧

inF(〈b0, . . . , bn, c〉)⇔ (c′ = (c+ 1) mod |U|)

Clearly, this specification is linear in the number of subformulae of ϕ.1

We use the fact that q′ ∈ δ(〈b0, . . . , bn, c〉, p) implies that both trans(〈b0, . . . , bn, c〉, q′) and
p = P (〈b0, . . . , bn, c〉) = {a ∈ AP | bI(a)}, where I maps a subformula ψi to its index i. The
µ-calculus formula in definition 1 can be rewritten to the following formula using only quantifiers
over D and using the previously defined mappings (i.e. q ∈ F is replaced by inF(q), q′ ∈ δ(q, p) by
trans(〈b0, . . . , bn, c〉, q′) while replacing all occurrences of p by P (q), etc.).

ψ =∀q0∈D
(
inQ(q0) ∧ ∃q′0∈D(inQ0(q

′
0) ∧ P (q′0) ∧ trans(q′0, q0))

)
⇒

µX(q′′ : D = q0) . νY (q : D = q′′) .

∀q′∈D(inQ(q′) ∧ trans(q, q′))⇒ [·]
(
P (q)⇒

(
(X(q′) ∧ inF(q)) ∨
(Y (q′) ∧ ¬inF(q))

))
The formula may grow to a size linear in n due to the expansion of P (q) to

∧
a∈AP(bI(a) ⇔ a).

4.2 Complexity

We have given a translation from an LTL formula to a first-order µ-calculus formula over a data
structure. We now show that model checking the resulting formula against a Kripke structure has
the same time complexity as other LTL model checking methods. In particular, we establish the
same worst-case time complexity as Bhat et al. [5].

Theorem 2. Let ψ be the µ-calculus formula that is the result of the above translation for an LTL
formula ϕ. Verifying ψ on a Kripke structure M can be done in O(|M|) · 2O(|ϕ|) time.

1We assume that the size of an identifier for a subformula can be seen as a constant. If the number of subformulae
is extremely high, it would be fairer to say that this description has size n log(n).

10

Proof. Using the Bekič principle [4] and the fact that we can transform a µ-calculus formula
into an equational equivalent [2], we transform the first-order modal µ-calculus formula into the
equational modal µ-calculus. Because D is a finite data type, we can transform—in linear time—
the formula to the following system, where N = |D| and h : {1, . . . , N} → D enumerates D. The
inverse mapping is denoted by h−1.

µXψ =
∧
q0∈D

inQ(q0) ∧
∨
q′0∈D

(inQ0(q
′
0) ∧ P (q′0) ∧ trans(q′0, q0))

⇒ Xh−1(q0)

µX0 = Y0

...

µXN = YN

νY0 =
∧
q′∈D

(inQ(q′) ∧ trans(h(0), q′))⇒

[·]
(
P (h(0))⇒ (Xh−1(q′) ∧ inF(h(0))) ∨ (Yh−1(q′) ∧ ¬inF(h(0)))

)
...

νYN =
∧
q′∈D

(inQ(q′) ∧ trans(h(N), q′))⇒

[·]
(
P (h(N))⇒ (Xh−1(q′) ∧ inF(h(N))) ∨ (Yh−1(q′) ∧ ¬inF(h(N)))

)
The structure of the above expression becomes more apparent after computing the truth values of
all expressions that are only dependent on data terms. This computation takes O(|D|2 · log |D|)
time, as trans(q, q′) has to be calculated for every pair q, q′ and every such calculation costs log |D|
time. Note that because |D| = 2|ϕ|, the time complexity for this computation is also 2O(|ϕ|). After
computation, the system can be written as follows, where sets S, S′, S0, . . . , SN contain indices
between 0 and N for which certain data expressions evaluated to true.

µXψ =
∧
i∈S

(∨
j∈S′

P (h(j))
)
⇒ Xi

µX0 = Y0

...

µXN = YN

νY0 =
∧
i∈S0

[·] (P (h(0))⇒ Ri) , R ∈ {X,Y }

...

νYN =
∧
i∈SN

[·] (P (h(N))⇒ Ri) , R ∈ {X,Y }

From this system it is easy to see that when it is checked against a Kripke structure M, the
disjuncts (including implications) disappear, as all P (. . .) terms are substituted by a truth value.
Furthermore, the [·] operators change into conjuncts.

The solution of the resulting system E can therefore be found as the solution of a conjunctive
boolean equation system [11]. Such a solution can be found in O(|E| · |M|) time. The complexity
of checking an LTL formula ϕ through the first-order modal µ-calculus is therefore O(|M|) ·2O(|ϕ|),
as the size of D is exponential in the size of the LTL formula.

11

5 Conclusion

In this paper we presented a translation from LTL formulae to first order µ-calculus formulae.
By using this specific variant of the µ-calculus, we are able to give a translation that is succinct,
but that does not introduce performance penalties when checking the formula against a Kripke
structure. Indeed, the time complexity of LTL model checking via the first order modal µ-calculus
is no worse than that of LTL model checking using the best existing direct method.

It is expected that the translation of LTL formulae can be lifted to a translation of CTL*
formulae much in the same manner as described in [5]. The intuition here is that in a given CTL*
formula, the path quantifiers are state formulae and can in a sense be treated in the same way as
atomic propositions. This leads to an approach where for every path quantifier in a CTL* formula,
a data structure and a µ-calculus formula are generated, which are composed using the structure
of the CTL* formula.
Acknowledgements We would like to thank Tim Willemse for many valuable comments and
discussions.

References

[1] mCRL2 web site. http://www.mcrl2.org.

[2] A. Arnold and D. Niwiński. Rudiments of µ-calculus, volume 146 of Studies in logic and the
foundations of mathematics. North-Holland, 2001.

[3] C. Baier and J.-P. Katoen. Principles of Model Checking. The MIT Press, 2008.

[4] H. Bekič. Definable operation in general algebras, and the theory of automata and flowcharts.
In Programming Languages and Their Definition, volume 177 of LNCS, pages 30–55. Springer,
1984.

[5] G. Bhat and R. Cleaveland. Efficient model checking via the equational µ-calculus. In Logic
in Computer Science (LICS ’96), pages 304–312. IEEE Computer Society, 1996.

[6] J. Bradfield and C. Stirling. Modal µ-calculi. Handbook of Modal Logic, pages 721–756, 2006.

[7] A. van Dam, B. Ploeger, and T.A.C. Willemse. Instantiation for parameterised boolean
equation systems. In Theoretical Aspects of Computing (ICTAC 2008), volume 5160 of LNCS,
pages 440–454. Springer, 2008.

[8] M. Dam. CTL* and ECTL* as fragments of the modal µ-calculus. In 17th Colloquium
on Trees in Algebra and Programming (CAAP ’92), volume 581 of LNCS, pages 145–164.
Springer, 1992.

[9] E. Allen Emerson. Model checking and the mu-calculus. In DIMACS Series in Discrete
Mathematics, pages 185–214. American Mathematical Society, 1997.

[10] E.A. Emerson and C.L. Lei. Efficient model checking in fragments of the propositional mu-
calculus. In Logic in Computer Science (LICS ’86), pages 267–278. IEEE Computer Society
Press, 1986.

[11] J.F. Groote and M. Keinänen. A sub-quadratic algorithm for conjunctive and disjunctive
boolean equation systems. In Theoretical Aspects of Computing (ICTAC 2005), volume 3722
of LNCS, pages 532–545. Springer, 2005.

[12] J.F. Groote and R. Mateescu. Verification of temporal properties of processes in a setting
with data. In Algebraic Methodology and Software Technology, volume 1548 of LNCS, pages
74–90. Springer, 1998.

12

[13] J.F. Groote, A.H.J. Mathijssen, M.A. Reniers, Y.S. Usenko, and M.J. van Weerdenburg.
Analysis of distributed systems with mCRL2. In M. Alexander, W. Gardner, editors, Process
Algebra for Parallel and Distributed Processing, pages 99–128. Chapman Hall, 2009.

[14] J.F. Groote and T.A.C. Willemse. Model-checking processes with data. Science of Computer
Programming, 56(3):251–273, 2005.

[15] J.F. Groote and T.A.C. Willemse. Parameterised boolean equation systems. Theoretical
Computer Science, 343(3):332–369, 2005.

[16] M. Hennessy and R. Milner. On observing nondeterminism and concurrency. In Automata,
Languages and Programming, volume 85 of LNCS, pages 299–309. Springer, 1980.

[17] D. Kozen. Results on the propositional µ-calculus. In Automata, Languages and Programming,
volume 140 of LNCS, pages 348–359, 1982.

[18] A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific journal of
Mathematics, 5(2):285–309, 1955.

13

