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Preface

When I received my master’s degree at the university of Eindhoven, a little over six
years ago, I was not quite sure what to do next. I had enjoyed my studies, but I even-
tually decided that I should see what computer science is like outside the university
campus. This decision resulted in a job at Imtech ICT Technical Systems (now part
of Axians), where I stayed for a year. Still I wondered whether I would have enjoyed
pursuing a career in academia instead. I am grateful to professors Jan Friso Groote
and Johan Lukkien for giving me the opportunity to answer that question.

Most of the work in this thesis has been carried out within the HTAS ‘VERIFIED’
project. When I started, I was given the assignment to ‘verify the FlexRay protocol’,
which at first sight seemed a straightforward enough goal. The most relevant docu-
ment turned out to be a colour-coded 300 page description of the protocol, which I
printed on the first day, promptly causing the IT desk to ask me whether I knew there
was the option to print in black and white. I realized I was going to need some help
understanding what FlexRay was about. I am grateful to Abhijit Deb, Jan Staschulat,
Bart Vermeulen, and the others at NXP for having me over to ask questions and discuss
my progress.

One person I would like to thank in particular is Reinder Bril, who arranged the
first meeting with NXP Eindhoven. Also after that, he has always shown an interest in
my progress, and we even ended up writing a paper together. The scheduling problem
we looked at still intrigues me; I still keep a document somewhere on my harddrive
with some graphs and numbers that seem to suggest the solution cannot be all that
complicated, yet I have not been able to find it.

As a student, a course assignment resulted in a paper, thanks to MohammadReza
Mousavi and Michel Reniers. When I returned to the university after a year of ab-
sence, working with Michel therefore felt familiar, and I would like to thank him for
co-authoring my first publication as a PhD student.

Over the past five years I have been working in the Formal System Analysis group
at the university of Eindhoven. During that time, I have been given a lot of freedom
to pursue my own interests. Especially in the beginning, this was a mixed blessing,
as I am easily distracted by interesting problems—of which there are many! I would
therefore like to thank Tim Willemse and Bas Luttik not only for working with me and
co-authoring the papers on which this thesis is based, but also for taking so much time
out of their already very busy schedule to help me organize myself.

Thanks also to Erich Grädel, Colin Stirling and Jaco van de Pol for accepting the
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invitation to join the thesis committee. I am aware that this thesis is not exactly a light
read, and I appreciate your efforts to go through it all in detail.

I also want to thank the other people I have worked with. One is Jeroen Keiren, who
I should not only thank for working with me on topics of research, but also for taking on
the project of restructuring and automating the mCRL2 build. It has been an interesting
project. Thanks also to Maciej Gazda. We may have to agree to disagree on certain
subjects (like progressive rock), but on the whole I have enjoyed our conversations
over the past few years.

Sometimes, explaining your problem to someone else is the best way to understand
that problem. I am therefore grateful to Hans Zantema for always being available to
discuss a problem (as long as I can explain the rules of the game!), and also to Erik de
Vink. Even if our discussions have not always led to an immediate solution, they have
always helped me understand my own question better.

Tineke van den Bosch–Zaat I want to thank for doing the things that I did not realise
I did not have to worry about, and for being so patient with my time registration.

Frank Stappers deserves a special mention. Although we have not done any aca-
demic research together, trying to find a way to commercialize formal methods in our
own start-up company has taught me a lot.

I would like to thank some other PhD students for our meetings, drinks and games
together. In no particular order, I would like to thank Maarten Manders for the long
IPA nights, Neda Noroozi for interesting discussions about absolutely anything, Ulyana
Tikhonova, Ana-Maria Sutii, Dana Zhang and Yaping Luo for their hands-on research
on gossip protocols, Yanja Dajsuren for the cooperation that time I did Cars in Context,
Bogdan ‘mr. chairman’ Vasilescu for his neverending appetite, Sarmen Keshishzadeh
for being the most sensible person in my office, Mahmoud Talebi for the frog and the
monkey, Fei Yang for the oranges, Önder Babur for appreciating philosophy, Sebastiaan
Joosten for his magic trick at the PhD meeting, and Josh Mengerink for being louder
than me and Maarten together (IPA needs you!).

Finally, I want to thank my friends and family for their support. Bram, Emma,
Maarten, Marianne, Mark, Paul and Thomas, thanks for staying in touch, it means a
lot to me. Mum, dad, Phil and Bren, thank you for always being there for me and Rosa.
And Rosa, thank you so much for sharing your life with me.
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Glossary

In this thesis you will find many definitions and notational conventions. Some of these
are used across multiple chapters, while others are only used within the chapter they
are defined. To aid the reader, they are listed here per category. Due to readability
considerations, some symbols may have a different meaning depending on the context
they are used in.

General (2.1)

B The set of Booleans {t, f}
t Boolean ‘true’, member of B
f Boolean ‘false’, member of B
N The set of natural numbers

First-order logic (2.1)

V Set of variables
x , y, z, x ′, y ′, z′ Variables from V
Σ Signature, typically 〈R,F ,ar〉
R Set of relation symbols
F Set of function symbols
ar Arity function
A,B,C Structures, typically A= 〈Σ, A,I〉
A, B, C Domains of discourse of A,B,C
I Interpretation function
θ ,η,θ ′ Environments assigning values to variables
θ ≡V η θ and η agree on the variables in V
θ[x 7→ a] The environment θ , updated to map x to a
t, t1, t ′ Terms, built from function symbols and variables
tA,θ Interpretation of a term
ϕ,ψ,χ,ϕ′ First-order formulas
ϕ Àψ, ϕ vψ ϕ is a (strict) subformula of ψ
sf(ϕ) The set of subformulas of ϕ
A,θ |= ϕ, Formula ϕ holds / does not hold in A and θ
A,θ |=/ ϕ
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Automata (2.2)

A Kripke structure or LTS
A The states of A
a, a′ States in A
a0 Initial state of A
B Büchi automaton, typically 〈B, L,→, F, B0〉

Generalized Büchi automaton, typically 〈B, L,→,F , B0〉,
see also Temporal logics (2.4)

B The states of B
L The labels of B
F The accepting states of B
F The acceptance sets of generalized Büchi automaton B
b, b′ States in B
b0, B0 Initial state(s) of B
` State labelling function
AP Set of atomic predicates
→ Transition relation
a→ b Shorthand for (a, b) ∈→
a →l b Shorthand for (a, l, b) ∈→
p, q, p′, q′ Paths
pi The i-th state in p
pi The path p minus its first i states
pq Path concatenation

Lattice operations (2.3)

α,β ,γ Ordinalsd
A Infimum of A

dA Supremum of A
a u a′ Meet of a and a′ (infimum of {a, a′})
a t a′ Join of a and a′ (supremum of {a, a′})
lfp F The least fixpoint of F
gfp F The greatest fixpoint of F
lfpα F The α-th approximation of lfp F
gfpα F The α-th approximation of gfp F

Temporal logics (2.4)

A, a |= ϕ ϕ holds / does not hold in state a of A
A, a |=/ ϕ
a |= ϕ ϕ holds / does not hold in state a of A,
a |=/ ϕ if A is clear from the context
B (Generalized) Büchi automaton, see also Automata
B f LTL automaton for LTL formula f (4.1)
f , g Formula of CTL* or ECTL* (or any sublogic thereof)
A,E CTL* path quantifiers
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Temporal logics (2.4)
X,U,R,F,G CTL* temporal operators
t Formula that holds in all states
f Formula that holds in no state
D Structure used to interpret first-order part of FO-Lµ (4.2.1)
D Domain of discourse of D
S Set of sorts
D, Di Sorts
¹Dº Semantic set associated with sort D
X Set of predicate variables
δ,δ′ Data environment (first-order environment)
θ ,θ ′ Predicate environment
¹tºδ Alternative syntax for tD,δ

ϕ,χ,ψ Formula of FO-Lµ (4.2.2)
¹ϕºθδ Interpretation of a FO-Lµ formula ϕ
[·], 〈·〉 FO-Lµ modal operators
νX (d1 : D1 = t1, . . .) . ϕ, µX (d1 : D1 = t1, . . .) . ϕ

FO-Lµ fixpoint operators

Parity games (5.1)

� Player even
� Player odd
i A player from { �,�}
¬i The opponent of i
G, G′ A parity game 〈V,→,Π,Ω〉
V, V ′, V ∗, U , T Sets of vertices
U ,T Set of sets of vertices
v, v′, u, w Vertices
V/R The partition of V induced by equivalence relation R
[v]R The equivalence class of v under R
Π(v) The player who owns vertex v
Ω(v) The priority associated with vertex v
S∗G,i ,S

∗
i The set of all strategies for player i on G

SG,i ,Si The set of memoryless strategies for player i on G
s, s′, s′ Strategies
s � p Path p is consistent with strategy s
v →s u Paths consistent with s may contain the edge (v, u)
v 7−→U T, v 7−→U U There is a stutter path from v to T (resp. U) through U
v 7−→U There is a path from v that stays in U
v 7−→s,U T, v 7−→s,U U Strategy s forces play from v via U to T (resp. U)
v 7−→s,U Strategy s forces play from v to stay in U
v 7−→i,U T, v 7−→i,U U Player i can force play from v via U to T (resp. U)
v 7−→i,U Player i can force play from v to stay in U
v ≡ u v is related to u by an isomorphism (5.3)
v - u v is related to u by a bisimulation
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Parity games (ctd.) (5.3)

v ' u v is related to u by a stuttering bisimulation
v �� u v is related to u by a governed bisimulation
v ∼ u v is related to u by a governed stuttering bisimulation
v ∼ u v and u are won by the same player

Equational fixpoint logic (6.1)

lfp X x̄ = ϕ
gfp X x̄ = ϕ Fixpoint equations
ε The empty equation system
E ,E ′,F Fixpoint equation systems
E i The equation system E without its first i equations
[X t̄ :E] The EFL fixpoint operator
X t̄ Shorthand for [X t̄ :ε]
F À E F is a subsystem of E
bnd(E) The variables in the left-hand sides of the equations in E
bnd∗(E),
bnd∗(ϕ)

The variables bound in E (resp. ϕ) and its subsystems

fv(ϕ), fv(ϕ) The variables occurring freely in E (resp. ϕ)
σX , x̄X , ϕX The fixpoint symbol, variables and right-hand side associated

with X
<E ,≤E Orderings on bnd∗(E)
SA(θ ,E) The solution of E in A and θ
TA,θ
E The predicate transformer for E in A and θ

fo(ϕ) The first-order part of ϕ (in which equation systems in ϕ are
replaced by ε)

(6.4)

Proof graphs (7.1)

S, S′, S∗ Sets of proof graph nodes
v, v′, u, u′ Proof graph nodes, typically 〈α, X , ā〉
α,β ,γ Booleans
S Set containing the nodes of any proof graph
SY Subset of S containing only nodes with second-order vari-

ables from Y
A � S The smallest submodel of A containing all elements of A oc-

curring in S
A,θ |= v The statement that node v represents holds in A and θ
A,θ α|=ϕ Shorthand for A,θ |= ϕ⇔ α= t

v• The set of successors (postset) of v
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Chapter 1

Introduction

Building correctly functioning software, or correctly functioning logical circuits, is dif-
ficult. This is not only witnessed by the ever growing list of software bugs that caused
great financial or material damage, but also by the amount of effort that program-
mers and circuit designers (let us call them ‘designers’) spend to find mistakes in their
designs.

To detect mistakes, designers often employ some form of testing. Testing consists of
‘trying out’ the design—or parts of the design—a number of times, each time providing
different inputs to it. For a program that calculates a new value based on a set of input
values, this can be done by trying the program with a number of different input values
and checking that the results it provides are correct. The design of a logical circuit
can be tested in a similar way: by putting different signals on the input pins, and
measuring and checking the values of the output pins, one can gain a certain degree
of confidence that the design is correct. For control systems that take their input from
sensors and send their output to actuators, one can try out the system a number of
times by supplying fake sensor information for a period of time, and measuring that
during that time the system indeed generates the right actuator signals.

Testing is an empirical technique that can be used in almost any field of science.
For example, most consumer products are subject to some form of testing. If you
work in an office, the chances are that a prototype of your chair has been subjected
to thousands of ‘sitting down’ movements by a machine, to ensure that the chair will
not collapse when you sit down on it, three years after you purchased it. While at first
sight it may seem silly to have a machine that can do nothing more than sit on a chair
all day, there is a very practical reason to build it: it is the simplest way to establish
that the chair meets the demands. Even though we know a lot about materials and
mechanics, it is very difficult to guarantee, just by looking at the design, that an office
chair with all its adjustable parts can withstand a certain load.

Logical designs, such as computer programs and circuit designs (at gate level, not
the physical circuit designs), have a rather special property. Unlike our chair, the
quality of software is not dependent on the quality of welds, fluctuations in the density
of polymer parts or the amount of time that friction-reducing grease can do its job. A
logical design consists of only components that behave in a completely predictable way,
and which still behave predictably when combined to form a larger whole.

For example, the line of C code ‘x = 1;’ performs a very predictable task: after
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2 h Introduction

this line is executed, the value of x is equal to 1, whatever its value was before. If a
computer executes this program, and does not behave in this manner, then it is fair to
say that the computer has in fact executed a different program, or at least that it has
failed to execute this one. Likewise, in a logical circuit, if the two inputs of a binary
and-gate are given a high signal, then the output is also high. If you find an and-gate
that does not have this behaviour, then for all practical intents and purposes, it is fair
to say that it is in fact not an and-gate, whatever it says on the label. In short: logical
designs do not just exhibit behaviour, they define it.

The field of formal methods tries to exploit this property, by trying to calculate
whether a design is correct, rather than trying to establish this by testing the design.
We can establish that an apple and an orange hit the ground at the same time if we
drop them from a church tower at the same moment, without actually performing
this experiment. We can do this because scientists, presumably grown tired of being
bombarded with fruit, created a model that describes the movement of falling apples
and oranges. If we repeat this experiment in practice, it may turn out that the two
fruits do not hit the ground at precisely the same moment, because the model is not
perfect: maybe we did not have an exact measurement on the gravity, perhaps we did
not account for air friction, or maybe the moon was just a bit too close to the earth at
the time of the experiment.

While the gravity model for our falling fruits may be inaccurate in places, the
complete predictability of the components of our logical designs allow us to create
perfect behavioural models for these designs. Using formal methods, one can therefore
hope to calculate perfect answers to questions we might have about that behaviour.

There is much more to be said about the applicability of formal methods, testing
and the combination of the two, but this discussion is not in the scope of this thesis.
The work in this thesis is based on the premise that formal methods are useful for
detecting errors in logical designs. The rest of this chapter is intended to make the
context of the results in this thesis clearer, and to explicitly state the research questions
that are addressed in subsequent chapters.

Section 1.1 sketches the context in which this work was done. It explains the origin
of some of the concepts that recur in later chapters and attempts to give an intuition
to the most basic notions used there. Section 1.2 explains why fixpoints are of interest
when checking logical designs for errors, and illustrates how fixpoint logics can be used
to encode verification problems. With this context in mind, the research questions that
are treated in this thesis are stated in Section 1.3.

1.1 Model checking, equivalence checking,
and process algebras

If the behaviour of a design is given as a mathematical structure, and a question about
that design is given by a formula of some temporal logic, model checking can often be
employed to calculate the answer to the question. The term was coined by Clarke and
Emerson in 1981 [CE82], and is elucidated 27 years later as follows.
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We used the term Model Checking because we wanted to determine if the
temporal formula f was true in the Kripke structure M , i.e., whether the
structure M was a model for the formula f . Some people believe erro-
neously that the use of the term “model” refers to the dictionary meaning
of this word [. . . ] and indicates that we are dealing with an abstraction of
the actual system under study. — E.M. Clarke [Cla08]

Nowadays, the term is often used in a less strict sense; M is often not a Kripke struc-
ture, and it is commonly accepted that checking the validity of a first-order formula
in a given structure is also an instance of the model checking problem. Two aspects,
however, are universally agreed on:

– a model checker exhaustively calculates whether a model satisfies some property,
and

– this calculation is done mechanically.

Note that we use the word ‘model’ in the aforementioned dictionary meaning of the
word here; we use it to refer to a description of a design. In most cases, it is assumed
that a model is a transition system: a directed graph, with labels on the nodes and/or
edges that represent observations that can be made about the system.

As a small example, we will look at a model of a computer science professor. Note
that, anno 2014, a computer science professor is neither a computer program nor a
logical circuit, and our model may therefore be inaccurate. Any questions we answer
about the model may therefore not be entirely accurate either. Our model, which we
shall name A, is the following transition system:

A=
work

work work
eat

Figure 1.1: A possibly inaccurate model of a computer science professor.

Such a model should be viewed as a description of behaviour: if the professor is
in the left state, he will do some work (which we can observe), after which he either
is still in the left state, or has moved to the right state; if he is in the right state, he
will either do some work and stay in the right state, or he will eat something (this too
we can observe) after which he is back in the left state. The observable actions of the
professor in this case are ‘work’ and ‘eat’.

A simple question one could ask is ‘will this professor always do more work eventu-
ally?’ The answer is of course ‘yes’: in the left state, the professor will always do more
work, and in the right state, if the professor chooses not to do any work but instead
eats something, he will end up in the left state again in which he has no choice but to
work again. Note that it is not true of this professor that he will eventually always eat
something: he might stay in the left state indefinitely.

Industrial systems can be mapped to a behavioural model in much the same way
as the professor. Observable actions of an X-ray machine may be ‘radiate’, ‘show error’,
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‘notice button press’, and so on. Properties of interest could be of the form ‘will the
X-ray machine eventually always radiate the patient when it has noticed the button
being pressed?’

Answering questions about the model of our professor is easy enough to do man-
ually; we do not need the help of a computer to calculate the answers. However, for
an industrial system, the number of states in its behavioural model is typically too
large to compute answers manually. Later, we will take a closer look at one method
to compute them mechanically, but first we will look at ways to express properties of
interest about a given system. For an overview of developments in model checking,
we refer to [Cla08] and the references therein.

1.1.1 Modal logic and equivalences

We said before that the ‘work’ and ‘eat’ actions are the only things we can observe
about our professor. To see why this is reasonable, suppose that in the left state in
Figure 1.1, the professor is content, but in the right state, the professor is hungry.

Because we assumed that the professor’s working and eating are the only observ-
able actions, we have in particular assumed that we cannot discern anything else about
the professor: we cannot ask him how he feels, and we cannot learn anything from his
facial expression (the only information we can use, is the information in Figure 1.1).
More specifically, this means that we cannot directly observe that the professor is hun-
gry. At the very best we can deduce, after observing the professor eat, that he must
have been hungry.

Given that no direct queries about the internal state of the professor are possible,
a natural question is to ask how we can express properties that only reason about
the observable behaviour. This question is answered by modal logics. Such logics
reason about the observable behaviour from the viewpoint of a state of the system.
For instance, although we may not ask ‘is the professor hungry?’, we are allowed
to ask ‘can the professor eat something in his current state?’ This question is posed
only in terms of observable events, and is therefore allowed. Note that we are able
to distinguish the states in Figure 1.1, because this question is answered differently
for both states. For an overview of modal logics, we refer the interested reader to
[BBW06]. Brief descriptions of the syntax and semantics of the modal logics that are
used in this thesis are given in Section 2.4.

Modal logics distinguish states of a system based on their observable behaviour.
Therefore, two distinct states may satisfy the same formulas of a given modal logic,
because their behaviour is the same. This gives rise to the notion of behaviour-based
equivalences on transition systems: if the only thing we can observe about a system
(the professor) is the actions it performs, and from one state the system can perform
exactly the same actions, and in the same order, as from another state, then we cannot
distinguish those two states.

We illustrate the concept with an extended model A′ of our professor. To be able
to refer to the states of the model in the text, we annotate each state with a name,
but we do not consider these names to be part of the model. The model is a variant
of the one in Figure 1.1. The right state in that figure is called r here, and we have
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split the left state into two states, called l1 and l2. Suppose that in l1 the professor is
not hungry, and in l2, the professor is hungry, but also under a lot of pressure to finish
some work. In l1, therefore, the professor must first do some work before he is hungry
enough to consider eating something, while in l2, the professor is hungry, but first
does some work to releave his stress. Let us assume that eating has a calming effect
on the professor, so after eating he returns to l1: calm and not hungry. His behaviour
is depicted in Figure 1.2.

A′ = l1

r

l2

work

work

work
eat

work

work

work

Figure 1.2: A three-state model of a computer science professor.

Now, if we can only observe the professor’s working and eating, there is no way for
us to tell whether he is in l1 or in l2 by observing his future behaviour. We can detect
the difference between l1 and r and between l2 and r, because in r, the professor has
the possibility of eating, which he does not have in l1 and l2. But from l1 and l2, the
professor has the exact same possibilities: either he performs some work and ends
up in a state that has the same possibilities as l1 and l2 again (namely l1 or l2), or
he performs some work and ends up in r (which we can identify as being a different
state). More formally, the states are divided into two equivalence classes, {l1, l2} and
{r}, and we can only distinguish two states if they are in different equivalence classes.
The notion of equivalence that is illustrated here is called bisimilarity: in our example,
l1 and l2 are bisimilar.

Bisimulation was first studied in the context of concurrent programming [Par81]
(an almost identical notion was proposed by Milner [Mil80]), where it was used in an
automata-theoretic setting to prove properties of concurrent programs. By showing
that the initial states of automata induced by two different programs are bisimilar, Park
was able to show that these two programs gave rise to the same execution traces.

Apart from bisimulation, one can think of many similar concepts. Simulation, for
instance, is the asymmetric counterpart of bisimulation: a state simulates another state
if it can display all the behaviour that the other state has. Weaker forms of simulation
and bisimulation have also been investigated, in which for instance some actions have
been marked as ‘unobservable’ (this is useful when composing a model from several
smaller models). An overview of these relations is given in [Gla93].

Notions of bisimilarity and similarity can be used in the analysis of systems. One
approach is to make a much simplified view of your system in the form of a transition
system, and checking that the actual system in some sense simulates the simplified one.
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This approach is followed by the refinement checker FDR [Gib+14]. Conversely, one
can try to extract a smaller system from a larger one, such that the larger one is related
via some simulation or bisimulation to the smaller one. Under certain conditions,
verifying that properties hold on the smaller system is sufficient to conclude that these
properties also hold on the larger system.

1.1.2 Process algebra

Until now, we have only said that a system model is usually some kind of directed graph.
Our examples were small enough to be able to simply draw this graph. Obviously, this
manner of presenting models is inept when we are talking about systems with millions
of states. In such cases, we want a more compact representation.

There are various ways to do this, each with their own advantages and disadvan-
tages. One particular strategy that had a great influence on the model checking tools
used in this thesis (we will touch upon this in the next section), is to write down such
a graph as a term in a process algebra. A process algebra consists of a collection of
actions, which form the set underlying the algebra, together with a few operations on
those primitives, such as sequential composition, alternative composition, and parallel
composition. To make the notation more compact, and to allow the process algebra
to express infinite-state systems, a notion of ‘data’ can be added. A brief overview of
the history of process algebras is sketched in [Bae05]. We refer the interested reader
to [BPS01] for more information about process algebras.

In the remainder of this section, we illustrate the use of process algebra as a speci-
fication language. We first illustrate the use of process algebra without data, and then
show how data can be used to create a more compact description.

Let us take another look at the second model of the professor. Our set of actions is
{work, eat}. Let us denote sequential composition of actions by ·, and alternative com-
position of (nondeterministic choice between) processes by +. The states l1, l2 and r
are then represented by the unique solution to the equations for Professor, StressedPro-
fessor and HungryProfessor, respectively, in the following system of process equations:

Professor= work · Professor

+work ·HungryProfessor

+work · StressedProfessor;

StressedProfessor= work · StressedProfessor

+work ·HungryProfessor;

HungryProfessor= work ·HungryProfessor

+ eat · Professor;

This specification says, for instance, that the Professor process (which represents state
l1) can choose to do either of three things: it can choose to perform a ‘work’ action
and then behave like the Professor process again, it can perform a ‘work’ action and
behave like the HungryProfessor process (representing r) or it can perform a ‘work’
action and behave like the StressedProfessor process (representing l2). For the precise
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semantics of the above (which is in fact a term of the mCRL2 process algebra), see
[GM14].

To conclude our section about process algebra, we have a brief look at a notion of
data for process algebra, which will make the expression above more compact.

The idea is to parameterize process names with a number of first-order variables,
representing some element of a first-order structure A. The right hand side of the
process equation is then a process algebra term in which the functions and relations
of A may be used. With the introduction of data also comes a generalisation of the
‘+’ operator, denoted by the

∑

sign, and a conditional operator f → P1 � P2, where
f is a first-order logic formula over A (in which free first-order variables may occur).
The conditional process f → P1 � P2 is equal to P1 if f holds in A, and is equal to P2
otherwise. The notation f → P1 is shorthand for f → P1 � δ, where δ, the deadlock
process, is the identity element for the ‘+’ and

∑

operators.
Suppose we are working in the context of a first-order structure that contains the

elements {Content, Stressed, Hungry}, in which ≈ is the identity relation and > is a
binary relation such that Hungry > Stressed > Content. The model of the professor
can then be expressed by the process term in Figure 1.3.

Professor(m) =
∑

m′
m′ > m∨m′ ≈ m→ work · Professor(m′)

+m≈ Hungry→ eat · Professor(Content)

Figure 1.3: The computer science professor as a process with data.

The process ‘Professor(Hungry)’ from Figure 1.3 specifies the same process as ‘Hun-
gryProfessor’ earlier; this can be seen by substituting ‘Hungry’ for m and expanding
∑

m′ m
′ > m→ work · Professor(m′) to

Content> Hungry∨Content≈ Hungry→ work · Professor(Content) �δ
+ Stressed> Hungry∨Content≈ Hungry→ work · Professor(Stressed) �δ
+ Hungry> Hungry∨Hungry≈ Hungry→ work · Professor(Hungry) �δ,

which is bisimilar to δ + δ + work · Professor(Hungry), which is again bisimilar to
work · Professor(Hungry). Similar expansions can be done for the other values of m,
yielding processes bisimilar to those given before.

Aside from being a convient abbreviation mechanism, the quantification provided
by the summation operator brings something new to the table. Where regular pro-
cess algebra only has alternative composition (‘+’) and hence can only specify finite
branching structures, the process X (m) =

∑

m′ a · X (m
′) is infinitely branching if A is

infinite.
Finally, we note that this data extension can also be done in a many-sorted setting.

In this case, the condition of the conditional process operator is an expression of many
sorted first-order logic, and all variables are assigned a sort. This approach is taken
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by the ACP-based process algebra mCRL2 [GM14] that is used in Chapter 3 to create
a system model.

1.2 Fixpoints

There are many ways to solve the model checking problem, but for this thesis, one
method is of particular importance: encoding the problem in a formula of some fixpoint
logic, and then solving that formula.

One of the most expressive modal logics is the (modal) μ-calculus, also written Lµ,
introduced by Kozen in 1983 [Koz83]. Emerson and Lei first gave a model checking
algorithm for Lµ in [EL86], praising the logic for its ability to capture fairness con-
straints, and showing that a number of other temporal logics (CTL, FCTL, PDL and
PDL-∆) could be translated into Lµ. They stressed that these translations are succinct,
in the sense that the size of the resulting Lµ formula is linear in the size of the origi-
nal formula. Hence their model checking algorithm provided a fairly efficient way to
model check formulas from all these logics.

The expressive power of Lµ lies not in its modal operators (only the standard box
and diamond modality from modal logic are present, where CTL* in addition has
operators like F and U, and PDL-∆ has the Kleene star and ∆ operator). It is the least
fixpoint operator µ and greatest fixpoint operator ν that, combined with these simple
box and diamond modalities, make it possible to express any linear and branching
time property.

Example. Returning to the model of our professor, we might want to know whether
there is a possibility that at some point in the future, the professor is able to eat some-
thing. This can be expressed by the following Lµ formula.

µX . 〈eat〉t∨ 〈·〉X

To see how this formula encodes the property of interest, we informally explain its
semantics. Every Lµ formula represents the set of states of the model under scrutiny
(in our case, the model of the professor) in which the formula holds. The formula
t (‘true’) is defined to hold in every state. The diamond modality 〈eat〉ϕ is true for
those states that have an outgoing edge labelled ‘eat’ to a state in which ϕ holds. In
particular, 〈eat〉t therefore represents all states that have an outgoing ‘eat’ transition.

The formula 〈·〉X says that there is an outgoing transition to a state in which X
holds (the ‘·’ can be seen as a wildcard; in our case 〈·〉X can be read as an abbreviation
of 〈eat〉X ∨ 〈work〉X , as ‘eat’ and ‘work’ are the only actions in our system). However,
X is a variable, which has the potential to represent any set of states.

In this formula, the X is bound by a least fixpoint operator, µ, which defines the
set of states that X represents. It requires that X is the smallest set of states such that
〈eat〉t∨ 〈·〉X holds for exactly the states in X . Let us try to find this set of states, given
the model of the professor of Figure 1.2.

We are looking for a set of states that contains all states in which 〈eat〉t∨〈·〉X holds.
In particular, this set must always include the set of states in which 〈eat〉t holds. This is
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the singleton set {r}, because r is the only state from which an ‘eat’ action is possible.
We therefore conclude that X represents a superset of {r}. By the same reasoning, X
must also include the states in which 〈·〉X holds. Because we know that X holds in r,
X must therefore also hold in any state that can reach r in one step. This means that X
must also hold in l1 and l2, so the set represented by X is a superset of {l1, l2, r}. These
are all the states in the system, and so we conclude that our property holds for all states
of the professor, or in other words, that A is a model for the formula µX . 〈eat〉t∨〈·〉X .
Note that if X = {l1, l2, r}, then indeed every state in this set has either an outgoing
transition labelled ‘eat’ or an outgoing transition to a state in which X holds. �

This example shows how the least fixpoint operator in Lµ can be employed to
express a reachability property: we used it to characterize those states in A from
which in a finite number of steps a state can be reached from which an ‘eat’ action
is possible. Dually, the greatest fixpoint operator ν can be used to express invariants.
Combinations of these two fixpoint operators allow for even more complex properties
(involving, for instance, fairness. We will not go into detail here, for an introduction
to Lµ see, e.g., [CGP99]).

1.2.1 Boolean equation systems

The Lµ model checking problem can be encoded into a formula of an equational, propo-
sitional (non-modal) fixpoint logic called Boolean equation systems (BES) [And92;
Mad97]. This logic corresponds to Lµ without the modal operators, which are trans-
lated to ordinary conjunctions and disjunctions in the translation procedure. Roughly
speaking, the idea is to introduce an equation for every state of the system, of which
the right hand side corresponds to the Lµ formula. Because each equation is associated
with a unique state, the modalities in the Lµ formula can be resolved: a formula 〈·〉 f
can be translated to a disjunction of statements, one for each successor of the current
state, that are true if and only if f holds in the corresponding successor state.

The result of the encoding is a system of Boolean fixpoint equations that equate
a set of Boolean variables with propositional formulas in which those variables again
occur. The solutions of the variables in the system then correspond to the solution to
the model checking problem. The details of this translation are given in Maders thesis
[ibid.], we only illustrate the idea with an example.

Example. To translate the formula ϕ = µX . 〈eat〉t ∨ 〈·〉X from the previous example
to a Boolean equation system, we introduce an equation µXs = ϕs for each state
s ∈ {l1, l2, r}. Here, ϕs is the formula 〈eat〉t ∨ 〈·〉X , in which every 〈a〉ψ modality is
resolved for state s: it is replaced by the formula

∨

s→a t
ψt . The result is the following

BES:

µX l1 = X l1 ∨ X l2 ∨ X r

µX l2 = X l2 ∨ X r

µX r = t∨ X l1 ∨ X r
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Note that in the equations for l1 and l2, the 〈eat〉t subformula gives rise to a disjunction
∨

li−→eat
t
tt that has a disjunct for each successor state t that is reachable via an ‘eat’

action. Because l1 and l2 do not have such successors, this disjunction disappears in
the first two equations. In the equation for X r , we see this disjunction appear as the
constant t. The other disjuncts (in all equations) correspond to the target states of the
outgoing transitions in each state.

The solution to this system is an assignment of Booleans bl1 , bl2 and br to the
variables X l1 , X l2 and X r such that bl1 , bl2 and br are the smallest (w.r.t. the ordering
f< t) values that satisfy the equations. The solutions for X l1 , X l2 and X r then indicate
whether ϕ holds in l1, l2 and r, respectively. These solutions can be found easily by
noticing that X r = t because t appears in the disjunction, and then substituting t for
X r in the first two equations. �

1.2.2 Parameterized Boolean equation systems

Based on Mader’s encoding of the model checking problem, a method was developed
to model check processes described by a process algebra with data [Mat98; GM99].
This method uses Boolean equation systems, extended with a notion of data, called pa-
rameterized Boolean equation systems (PBES). A similar first-order extension of Boolean
equation systems called predicate equation systems (PES) was introduced by Lin [Lin96]
and was also used by Zhang and Cleaveland [ZC05]. Both formalisms achieve the
same thing: the model checking problem can be encoded compactly in a system of
first-order fixpoint equations, and moreover, this encoding is no longer limited to fi-
nite state spaces.

Example. Let our professor be described by the process algebra term in Figure 1.3.
Like in the previous example, we will check the formula µX . 〈eat〉t ∨ 〈·〉X holds on
this process. The following PBES encodes this problem:

µX (m) = (m≈ Hungry∧ t)∨
(∃m′ (m

′ > m∨m′ ≈ m)∧ X (m′))∨
(m≈ Hungry∧ X (Content))

This single equation PBES expresses that X is the smallest unary relation (using the
correspondence between unary relations and sets: smallest w.r.t. the subset relation)
that is equivalent to the expression on the right hand side. To see how the model
checking problem is encoded in this PBES, note the following.

A formula of the form µX . ϕ gives rise to an equation for X , where X is equated
to ϕ in which the modal operators are resolved.

Every state of the process that Figure 1.3 represents is identified by an element
of the model A over which the process algebra term was formulated (to recall, the
elements in that model are {Content, Stressed, Hungry}). In the modal formula, X is
a predicate on states. Therefore, in the PBES, X is a unary relation on states.

To resolve the modality in 〈eat〉t for state m, we have to establish whether the ‘eat’
action is enabled from that state. From Figure 1.3, it is readily seen that this is the case
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when m ≈ Hungry. In the target state of that transition (Content), t must hold. Note
that the t in the Lµ formula is a predicate on states that always holds. The translation
therefore translates the statement ‘t holds for the state Content’ to the Boolean constant
t (the confusion here is caused by our overloaded use of the symbol t, as a constant
predicate on states in Lµ, and as a Boolean constant in the BES). This explains the first
disjunct: m≈ Hungry∧ t.

The second two disjuncts are from the 〈·〉X subformula. This modality is resolved
by looking at all transitions that are possible, and asserting that X holds for the target
state of one of those transitions. From state m, the summation in Figure 1.3 allows
outgoing transitions to m′, if m′ > m∨m′ ≈ m. The statement that one of these target
states satisfies X is captured by the expression ∃m′ (m′ > m∨m′ ≈ m)∧ X (m′). What
remains is to take into account the ‘eat’ transition from Figure 1.3 in the same manner,
leading to the final disjunct m≈ Hungry∧ X (Content).

Solving this system is again not difficult. The relation that X represents must at
least contain the element ‘Hungry’, due to the first disjunct. The second disjunct then
requires that the other two elements also are included, because Hungry > Content∧
X (Hungry) and Hungry> Stressed∧ X (Hungry). �

The PBES formalism has a few advantages. It is rather compact, and its instances
can in many cases be solved by algebraic reasoning. This was emphasized in [GW04],
where manual algebraic techniques are proposed based on a notion of equivalence of
equation systems, and later also for the PES formalism in [ZC05], in which a proof
system is developed as the basis for an on the fly model checker. Using symbolic
techniques, the Gauß elimination technique for BESs can be extended to work for
PBESs [GW05a]. The automated model checkers mentioned here both suffer from the
problem that they are not complete: the richness of first-order logic makes it easy to
write down undecidable problems, and in practice it is difficult to write software that
can handle sufficiently rich decidable fractions without restricting users too much in
their freedom to formulate processes in the way they desire (usually, some syntactic
restriction is needed to make the input suitable for such tools).

A PBES over a finite structure can be instantiated to an equivalent finite BES, which
can be used to solve the PBES [DPW08]. In some cases, even PBESs over infinite
structures can be instantiated to finite BESs. Due to the correspondence between
Boolean equation systems and parity games, a graph based formalism, parity game
solvers can also be used to solve BESs. One advantage of this approach is that it
only relies on being able to establish equality between states of the system (to avoid
calculating the answer for the same state more than once); it does not need to decide
equivalence of first-order formulas.

The instantiation technique is especially useful in combination with algebraic tech-
niques. An instantiated PBES may grow very large, and algebraic techniques can help
to simplify the PBES prior to the instantiation, thus reducing the size of the resulting
BES. Several such techniques have been researched over the past years. The simplest
reductions analyse the PBES to find parameters that are unused; eliminating these pa-
rameters may substantially reduce the amount of BES variables needed to instantiate
the PBES [OWW09]. More advanced techniques try to find conditions under which
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parameters become irrelevant (for instance because they will be assigned a new value
before they are used again), and use this information to limit the number of values that
the parameters of a fixpoint variable can take when instantiating the PBES [KWW13;
KWW14]. Abstraction in the PBES setting can also lead to considerable size reduction,
subsuming some of the previously mentioned techniques, and can in some cases yield
a PBES that can be expanded to a finite BES, while expansion of the original PBES
does not terminate [Cra+ed].

1.3 In this thesis

The research described in this thesis covers a few different topics, all related to model
checking via fixpoint logic.

Chapter 3 This chapter concerns a communication protocol called FlexRay, that is
designed for use in the automotive industry. As this protocol is intended to be used in
many in-car applications, including safety critical ones, we would like to establish that
the communication protocol itself is not flawed. For reasons explained in more detail
in Chapter 3, the initial phase of the protocol, in which communication between nodes
is set up, is the part that exhibits the most interesting behaviour. Once communication
is set up correctly, nodes in the network will communicate according to the same,
predefined schedule, which reserves time slots on the communication channel for each
node. This makes it easy to see that once the communication is set up correctly, nodes
do not interfere with each other. We therefore focus on the initial phase of the protocol
in our case study, trying to answer the following question.

Does the FlexRay startup sequence always terminate succesfully?

It turns out that it is not a trivial task to answer this question. Apart from some issues
with the nature of the FlexRay specifications—it is not at all clear what level of service
the protocol is intended to guarantee, making it difficult to establish what a ‘succesful’
termination of the startup sequence entails—a number of technical issues pop up. The
remaining chapters in this thesis address those issues.

The results from this chapter were originally published in the following paper.

[Cra12a] S. Cranen. Model checking the FlexRay startup phase. In FMICS, pages
131–145, 2012.

A more detailed, preliminary version of that paper is available as a technical report.

[Cra12b] S. Cranen. Model checking the FlexRay startup phase. Technical Report
12-01, Technische Universiteit Eindhoven, 2012.

Chapter 4 While executing the case study of Chapter 3, its progress was regularly
discussed with project partner NXP, a manufacturer of, amongst others, FlexRay chips.
During one of these meetings I wanted to explain what exactly I was going to verify
on the model I created. The first-order modal μ-calculus formulas from Chapter 3
appeared on my slides, and I spent a long time pointing at various bits, trying to give
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an intuition about what the various symbols in the formulas achieve. Proponents of
modal μ-calculus emphasize its high expressivity; in this case, I would have settled for
a more readable, less expressive logic like CTL*.

Given that the modal μ-calculus is more expressive than CTL*, a natural question is
to ask whether any CTL* formula can be efficiently translated into a μ-calculus formula.
Already in 1992, Dam had presented a translation from CTL* to the propositional
modal μ-calculus [Dam92], but this translation yields formulas that are much larger
than the original: in the worst case, their size grows with a factor that is doubly
exponential in the size of the input formula. Two years later, Bhat and Cleaveland
presented a translation to an equational variant of the propositional modal μ-calculus
[BC96], which only caused an exponential blowup of the formula. The mCRL2 toolset,
which we used to check the FlexRay models, uses a (non-equational) first-order μ-
calculus. We therefore asked ourselves if this first-order aspect resolves the issue of
the blowup in the translation. More specifically, given a first-order extension of the
propositional modal μ-calculus called FO-Lµ, we asked:

Is there a succinct translation from CTL* to FO-Lµ?

By ‘succinct’ we mean that the translation may only yield formulas that are a constant
factor larger than the original formula. Using a translation from CTL* to Büchi au-
tomata, and exploiting the expressivity of the data language in mCRL2 to encode this
translation, we positively answer this question, giving rise to a second question:

Can the resulting FO-Lµ formula be checked on a system as efficiently as
the original formula?

It turns out that model checking the resulting formula indeed has the same complex-
ity as model checking the original, suggesting that the translation can be an easily
implementable way of extending μ-calculus model checkers to support CTL*.

The results from this chapter have been published in the following paper.

[CGR11] S. Cranen, J.F. Groote, and M.A. Reniers. A linear translation from CTL* to
the first-order modal μ-calculus. Theoretical Computer Science, 412:3129–3139, 2011.

An earlier version appeared as a technical report.

[Cra10] S. Cranen, J.F. Groote, and M.A. Reniers. A linear translation from LTL to
the first-order modal μ-calculus. Technical Report 10-09, Technische Universiteit Eind-
hoven, 2010.

Chapter 5 State space explosion is a well-known problem in the model checking
community, and it nearly always manifests itself when model checking industrial ap-
plications. The FlexRay case study was no exception; we limited ourselves to a minimal
network of three nodes, abstracting away from as much detail as we could, and even
then the largest state spaces we encountered took days to check. Checking a network
with four nodes was infeasible due to large time and memory consumption (an ex-
periment was started on a computation server with 1TB of main memory, but after a
month of computing, the experiment ended unfinished, in a server crash.
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When model checking via parameterized Boolean equation systems, most of the
time is spent in generating and solving parity games. These are graph structures that
capture the semantics of the parameterized Boolean equation system; the solution of
the game is the answer to the encoded verification problem. The classical state space
explosion problem (the system model consists of too many states) translates in this
setting to the parity games having too many states.

Classical state space reduction techniques provide a generic way to reduce the
number of states in the system model, in such a way that certain classes of properties
are preserved in the reduced system. For this to be practical, these classes have to be
chosen large enough so as not to lose too much expressivity, but they must be small
enough to make a decent reduction possible.

In contrast to the classical setting, the structure that suffers from the state space
explosion in our case also captures the semantics of the formula that is checked. One
could theorize that a reduction on such a structure therefore could, generally speaking,
eliminate more system states, because we can effectively reduce with respect to a single
formula, rather than a class of formulas.

Keiren and Willemse already showed in 2011 that a parity game reduced using
strong bisimilarity (an equivalence relation that is normally used to reduce state spaces
of system models) has the same solution as the original parity game [KW11]. The
reduced game is smaller, and can therefore be solved in less time than the original.
Furthermore, experiments showed that in most cases it is quicker to first minimize the
parity game and then solve it, as opposed to solving the original game directly. In
other words: the speedup achieved by solving a smaller game was in general larger
than the penalty induced by having to calculate the bisimulation quotient.

Strong bisimulation is the finest relation that is commonly used to reduce state
spaces, and it preserves a very large class of properties (namely, all properties that can
be expressed in the modal μ-calculus). In the setting of parity games, however, we are
only interested in preserving the solution: we only need to preserve a single property.
Reducing a parity game using a coarser relation will produce a smaller game, and will
therefore, hopefully, speed up solving the parity game.

In joint work with the authors of the aforementioned paper we therefore investi-
gated the next natural candidate for parity game reduction: stuttering equivalence.
While it is coarser than strong bisimulation, it is still efficiently computable (in O(n ·
(n+m)) time, where m and n are the number of edges and vertices in the parity game,
respectively [GV90]). The question we asked was:

Can stuttering equivalence be used to reduce parity games?

The answer to this question was ‘yes’, and moreover, experiments indicated that indeed
there was a small performance gain compared to reduction using strong bisimilarity.
An obvious next question is to ask whether there are efficiently computable relations
that are even coarser than stuttering equivalence. One aspect of parity games that is
taken into account by stuttering equivalence, is that vertices are owned by different
players, and that the solution of the game depends on which player owns which nodes.
Stuttering equivalence therefore never relates two vertices that are owned by different
players. Sometimes, however, the structure of the graph makes it irrelevant which
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player owns a vertex. Essentially, the solution of the game is not so much determined
by which player owns a vertex, but by the vertices towards which a player can move.
If from a certain vertex the opponent can force the owner of the vertex to move in a
way that is beneficial to the opponent, then that vertex might as well have been owned
by the opponent. This idea of forced moves makes that vertices with different state
labels (different owners, in this case) sometimes are easily seen to be won by the same
player. We therefore ask ourselves the following question.

Can stuttering equivalence on parity games be weakened to take forced
moves into account?

Drawing inspiration from idempotence identifying bisimilarity [KW11], a relation
defined on Boolean equation systems (which are closely related to parity games), we
define a relation called governed stuttering bisimilarity. This relation is coarser than
stuttering, still preserves the solution, and can be computed with a similar algorithm.
Although the worst-case time complexity of calculating the quotient is worse than that
for stuttering bisimilarity, in practice it is not much slower to compute than stuttering
bisimilarity, while it yields better reductions.

The results from this chapter have been published in the following publications.

[CKW11] S. Cranen, J.J.A. Keiren, and T.A.C. Willemse. Stuttering mostly speeds up
solving parity games. In M. Bobaru, K. Havelund, G.J. Holzmann, and R. Joshi, editors,
NFM 2011, volume 6617 of LNCS, pages 207–221, 2011.

[CKW12b] S. Cranen, J.J.A. Keiren, and T.A.C. Willemse. A cure for stuttering parity
games. In A. Roychoudhury and M. D’Souza, editors, ICTAC 2012, volume 7521 of
LNCS, pages 198–212, 2012.

A technical report appeared that includes the proofs omitted in the latter paper.

[CKW12a] S. Cranen, J.J.A. Keiren, and T.A.C. Willemse. A cure for stuttering parity
games. Technical Report 12-05, Technische Universiteit Eindhoven, 2012.

There is some overlap in this chapter with the PhD thesis of Jeroen Keiren, in collabo-
ration with whom most of this work was done:

[Kei13] J.J.A. Keiren. Advanced reduction techniques for model checking. PhD thesis,
Technische Universiteit Eindhoven, 2013.

Chapters 6 and 7 Fixpoint logics have the advantage of being a very generic mech-
anism with which a wide variety of problems can be solved. As more and more tech-
niques are developed to perform analysis on the relatively compact fixpoint formulas
to reduce their complexity before solving them in the parity game setting [OWW09;
OW10; KWW13; KWW14; Cra+ed], the use of fixpoint logic for model checking pur-
poses is becoming more attractive.

An important downside, however, is that the state of the art solvers that are used to
compute the solution to fixpoint formulas, and therefore the solution to the encoded
verification problem, provide no more than a true/false verdict. In the FlexRay case
study, it has occurred that after two days of computing, the solution to a fixpoint
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formula turned out to be false, while we expected it to be true. Apparently there
was a mistake in our model, but without any additional information, it is very hard
to establish what went wrong. Due to the long computation time, a trial-and-error
approach in fixing the error in the model is not very practical either.

To make model checking via fixpoint logic easier to use, we would like to have a
model checker that provides us with an explanation. In LTL and CTL* model checking
with specialized model checking algorithms, such explanations are usually returned by
the algorithm in the form of a counterexample (in case the formula does not hold on
the model) or a witness (in case the formula holds). In [Tan02], Tan and Cleaveland
suggest a witness extraction procedure that involves calculating a proof object they
call a support set, which is then used to extract counterexaples and witnesses. Our
initial question is whether this approach can be used for first-order fixpoint logics, and
whether we can extract sensible diagnostics for all μ-calculus model checking problems,
rather than only for the CTL* fragment.

Can counterexamples and witnesses be generated for fixpoint formulas
that encode arbitrary μ-calculus model checking problems?

Besides model checking problems, also equivalence checking problems (deciding
whether two states are related by some fixpoint-definable relation) can be encoded in
fixpoint logic. This versatility of fixpoint logic leads to another natural question.

Can counterexamples and witnesses be generated for fixpoint formulas
that encode arbitrary equivalence checking problems?

We partially answered these questions in the setting of parameterized Boolean equa-
tion systems (PBES), an equational first-order fixpoint logic that underlies the software
tools that were used in the FlexRay case study. The results were published in [CLW13].
Because the resulting techniques seemed applicable to a wider range of logics, in par-
ticular the much studied least fixpoint logic (LFP), this thesis presents a more general
result that is applicable to both PBES and LFP. We do this by first defining a logic we call
equational fixpoint logic (EFL), of which PBES and LFP are normal forms, in the sense
that they are syntactic fragments of EFL, and every EFL formula can be translated to
a PBES formula and to an LFP formula. This is done in Chapter 6. We then continue
in Chapter 7 with the question of finding counterexamples and witnesses for EFL.

Based on Tan and Cleaveland’s notion of support set we define proof graphs, which
are graph structures that represent the proof for the validity or invalidity of a fixpoint
formula, but which exclude the first-order part of the proof. In fact, we show that proof
graphs provide an alternative semantics for the fixpoint operator, in the sense that a
fixpoint formula is true in a model if and only if there is a proof graph that witnesses
this, and likewise, a formula is false in a model if and only if there is a proof graph
that witnesses this.

For fixpoint formulas that encode model checking or equivalence checking prob-
lems, we show that proof graphs contain enough information to easily extract coun-
terexamples and witnesses. In particular, we show that for LTL model checking, linear
counterexamples and witnesses (traces) can be extracted, and that for ∀CTL* we can
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extract tree-like counterexamples as described in [Cla+02]. Our method of counterex-
ample and witness extraction is generic in the sense that for any fixpoint formula that
encodes a comparison between a model A and a model B, it extracts those parts of A
and those parts of B that are needed to replicate the proof of (in)validity of the for-
mula. We therefore can also generate counterexamples and witnesses for equivalence
checking problems. In an example, we show how this is done for stuttering bisimilarity,
and how the resulting counterexamples can be interpreted.

Chapters 6 and 7 extend the work presented in the following paper.

[CLW13] S. Cranen, B. Luttik, and T.A.C. Willemse. Proof graphs for parameterized
Boolean equation systems. In P.R. D’Argenio and H. Melgratti, editors, CONCUR 2013,
volume 8052 of LNCS, pages 470–484, Springer, 2013.





Chapter 2

Preliminaries

2.1 First-order logic

Throughout this thesis, you will find references to concepts from first-order logic.
There are many variations of first-order logic; this section presents the variant used
in the thesis. This section is not intended as a logic primer, it is merely included to
fix some of the concepts and notation used in the thesis; the reader is presumed to
already be familiar with first-order logic.

We start with the syntax, which is defined in terms of a signature. Throughout this
thesis, we will use N to denote the set of natural numbers, and B to denote the set
{t, f} of Booleans.

In the remainder, we assume the existence of an infinite set of variables V and a
disjoint set of logical symbols containing the symbols ¬, ∧, ∨,⇒, ∀ and ∃.

Definition 2.1. A signature Σ is a tuple 〈R,F ,ar〉 where:

– R is a set of relation symbols,
– F is a set of function symbols and
– ar: R∪F → N is a function that assigns an arity to each symbol in the signature.

Furthermore, R,F ,V and the set of logical symbols are pairwise disjoint.

Function symbols with arity 0 are sometimes called constants, and 1-ary, 2-ary and
3-ary symbols are often called unary, binary and ternary, respectively.

Signatures give us a collection of syntactic elements to work with. A structure adds
to this a domain of discourse that contains all the semantic objects that we wish to
consider, and a mapping between syntax (the signature) and semantics (the domain
of discourse).

Definition 2.2. A structure A is a tuple 〈Σ, A,I〉 where:

– Σ is a signature,
– A is a set of objects (the underlying set or domain of discourse) and
– I is the interpretation function that maps each relation symbol R in Σ to a subset of

Aar(R), and that maps each function symbol f in Σ to a mapping of type Aar( f )→ A.

h 19 g
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If left unspecified, we will assume that the domains of discourse of the structures
A,B,A′ etc. are called A, B, A′ and so on.

The function symbols in a signature, together with the set of variable names, allow
us to define tree-like structures we call terms. Given a signature Σ= 〈R,F ,ar〉 the set
of terms of Σ is defined inductively as follows.

– If x ∈ V, then x is a term.
– If t1, . . . , tn are terms, and f ∈ F with ar( f ) = n, then f t1 . . . tn is also a term.

In a structure A= 〈Σ, A,I〉, a term t of Σ is associated with a unique element of A,
if the term does not contain variables. If it does contain variables, then the element of
A that is represented by t depends on the value that these variables take. We introduce
the notion of environment, which gives a valuation to variables. Then, in the context
of A and an environment θ , t can be associated with a unique element from A.

Definition 2.3. In the context of a structure A, an environment (usually called θ ,η,θ ′,
etc.) is a mapping of type V → A.

It is often useful to construct new environments out of existing ones by updating
the mapped value for a single variable. If x ∈ V and a ∈ A, then θ[x 7→ a] denotes the
environment that maps y ∈ V to a if y = x , or to θ (y) otherwise. Given environments
θ and η, if θ (y) = η(y) for all y in some set of variables V , then θ and η are said to
agree on the variables in V , denoted θ ≡V η.

The interpretation tA,θ of a term t in the context of a structure A = 〈Σ, A,I〉 and
environment θ is defined as follows:

– if t ∈ V, then tA,θ = θ (t);
– if t = f t0 . . . tn, then tA,θ = I( f )(tA,θ

0 , . . . , tA,θ
n ).

In this manner, syntactic structures (terms) are associated with semantic objects (ele-
ments from A). Formulas of first-order logic add operators with which we can reason
about these objects.

Definition 2.4. Given a signature Σ = 〈R,F ,ar〉, the set of first-order formulas over Σ
is defined as follows.

– If t1, . . . , tn are terms, and R ∈R with ar(R) = n, then Rt0 . . . tn is a formula.
– If ϕ is a formula, then ¬ϕ is a formula.
– If ϕ and ψ are formulas, then ϕ ∨ψ is a formula.
– If ϕ is a formula and x ∈ V, then ∃x ϕ is a formula.

Formulas obtained by the first rule are called atomic formulas. Throughout this
thesis, we will be using the following commonly used abbreviations:

ϕ ∧ψ¬ ¬(¬ϕ ∨¬ψ)
ϕ⇒ψ¬ ¬ϕ ∨ψ
∀x ϕ ¬ ¬∃x ¬ϕ
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The set sf(ϕ) of subformulas of a first-order formula ϕ is defined inductively as
follows:

sf(ϕ) =







{ϕ}, if ϕ is atomic

{ϕ} ∪ sf(ψ1)∪ sf(ψ2) if ϕ is ψ1 ⊕ψ2, with ⊕ ∈ {∧,∨,⇒}
{ϕ} ∪ sf(ψ) if ϕ is ∀x ψ,∃x ψ or ¬ψ

We often write ψv ϕ instead of ψ ∈ sf(ϕ). We use ψ À ϕ to denote ψv ϕ ∧ψ 6= ϕ.
We say that a first-order formula ϕ holds in a model A= 〈Σ, A,I〉 and environment

θ , denoted A,θ |= ϕ, according to the following recursive definition:

– A,θ |= Rt0 . . . tn if and only if 〈tA,θ
0 , . . . , tA,θ

n 〉 ∈ I(R).
– A,θ |= ¬ϕ if and only if not A,θ |= ϕ.
– A,θ |= ϕ ∨ψ if and only if A,θ |= ϕ or A,θ |=ψ.
– A,θ |= ∃x ϕ if and only if there is some a ∈ A such that A,θ[x 7→ a] |= ϕ.

2.2 Automata

Although nowhere in this thesis we are primarily concerned with automata, they do
play a central role in model checking. As such, they also are essential in some of the
proofs, and in our illustrations of how model checking techniques are applied. We
therefore give some very minimal definitions of commonly used concepts.

Kripke structures A Kripke structure is a tuple A = 〈A, AP,→,`, a0〉 where A is a
set of states, AP is a set of atomic predicates that label the states of the automaton,
→⊆ A× A is a binary transition relation, `: A→ 2AP a state labelling function, and
a0 ∈ A the initial state. The initial state may be omitted if is not important in the
context in which the Kripke structure is used. If for every a ∈ A there is some a′ ∈ A
such that a→ a′, then the transition relation is said to be total.

Labelled transition systems A labelled transition system (LTS) is a tuple A= 〈A, L,→
, a0〉 where A is a set of states, L is a set of transition labels,→⊆ A× L×A is a ternary
transition relation, and a0 the initial state. Again, the initial state may be omitted.

Büchi automata A Büchi automaton is a tuple B = 〈B, L,→, F, B0〉 where B is a set
of states, L is a set of transition labels,→⊆ B × L × B is a ternary transition relation,
F ⊆ B is a set of accepting states and B0 ⊆ B is the set of initial states of the automaton.
We assume the transition relation is total in the sense that for every state b ∈ B there
are at least one x ∈ L and b′ ∈ B such that (b, x , b′) ∈ → (which we will usually
denote b →x b′). We write B(b0) to denote a Büchi automaton B with initial state b0
(i.e., B0 = {b0}).

Although there is a lot more to be said about Büchi automata, we will use only
this minimal definition in this thesis. The use of this structure will become apparent
in Section 2.4, where we show how Büchi automata can be used to specify behaviour.
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Paths A path through a Kripke structure A is a sequence a0 . . . an such that ai ∈ A for
all i ≤ n and ai → ai+1 for all i < n. This notion is extended to infinite paths in the
obvious manner, and to labelled transition systems and Büchi automata by demanding
that ∃l∈L ai →

l ai+1 for all i < n. If p is a path, then p0 denotes the first state on the
path, p1 the second, and so on. Path concatenation is denoted by juxtaposition: if p is
a finite path of length n+ 1, q is a path, and pn→ q0, then pq is again a path. Finally,
we introduce notation for path suffixes: pi denotes path p without its i first states.

2.3 Lattices and fixpoints

In the chapters that follow, we use logics and modal logics with fixpoint operators.
Here we present very briefly the basic notions that underly these logics. We assume
the reader is more or less familiar with these concepts, and this section therefore serves
merely as a reminder.

Partially ordered sets. A binary relation R is a partial order on a set A if and only
if it is reflexive, antisymmetric and transitive. If A is a set and v is a partial order on
A, then 〈A,v〉 is called a partially ordered set. Given a set B ⊆ A, if a ∈ A is such that
b v a for all b ∈ B, then a is an upper bound for B in A. Likewise, if a v b for all b ∈ B,
then a is a lower bound for B in A. If a is an upper bound of B, and for all other upper
bounds a′ of B, a v a′, then a is called the least upper bound, or supremum, of B, and
is denoted dB. Dually, if a is a lower bound of B and all lower bounds a′ of B are
such that a′ v a, then a is the greatest lower bound, or infimum, of B, and is denotedd

B. Note that these least and greatest upper bounds need not exist.

Lattices. If every {a, b} ⊆ A has a supremum and an infimum, then 〈A,v〉 is called a
lattice, and we define a meet operator u: A× A→ A and a join operator t: A× A→ A
such that a u b yields the infimum of {a, b}, and a t b yields the supremum of {a, b}.
If every B ⊆ A has a supremum and an infimum, then 〈A,v〉 is called a complete lattice.

Fixpoints. Let 〈A,v〉 be a complete lattice, and let F : A→ A be a mapping that maps
A onto itself. Its fixpoints are defined to be the elements of A for which F returns the
same element again, i.e., they are defined as the set fp(F) = {a ∈ A | F(a) = a}.

F is called monotone if a v b implies F(a) v F(b) for all a, b ∈ A. By a result
of Tarski [Tar55], 〈fp(F),v〉 is again a non-empty complete lattice if F is monotone.
We can therefore define a least fixpoint lfp F =

d
fp(F) and a greatest fixpoint gfp F =

dfp(F). Note that the least and greatest fixpoint are again elements of fp(F), because
we can take the infimum and supremum in 〈fp(F),v〉 instead of in 〈A,v〉. The least and
greatest fixpoint can be computed using the following (transfinite) recursive definitions
[Mos74], in which α is an ordinal.

lfpα F = F( d

β<α

lfpβ F) gfpα F = F(
l

β<α

gfpβ F)

Note that in particular, dβ<0 lfpβ F = d; =
d

A and
d
β<0 gfpβ F =

d
; = dA. For

large enough α, lfp F = lfpα F and gfp F = gfpα F .
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2.4 Temporal logics

When reasoning about the behaviour of systems, it is often convenient to assume that
the behaviour of the system under scrutiny is described by a Kripke structure (or la-
belled transition system, in which not the states, but the transitions are labelled), and
to formulate properties of these systems in a logic that is interpreted in the context
of a particular state in that particular system. For instance, if someone says that ‘all
roads lead to Rome’, we will most likely interpret this as ‘from your current location,
all paved roads (as opposed to railroads and hiking trails) lead to Rome’. To make this
context explicit, we introduce common notation for all temporal logics. If A represents
a system (for instance, the European road network), a is a state in that system (say, a
state labelled with ‘Eindhoven’), and ϕ is a formula in some temporal logic (‘all roads
lead to Rome’), then we write

A, a |= ϕ

to express that ϕ holds for state a in A. In our example, we have now made explicit
that we are only considering European roads, and that our starting point is Eindhoven.

To make formal reasoning about Kripke structures possible, a plethora of temporal
logics is available, with a varying degree of expressiveness and readability. We present
a few of the more common ones that will be used in subsequent chapters.

Büchi automata If the labels of a Büchi automaton B = 〈B, L,→, F, B0〉 are formulas
of a temporal logic, then we can use it to describe the behaviour of a Kripke structure
A= 〈A, AP,→,`〉.

If b0 ∈ B0, then an infinite path b0 −→
f0 b1 −→

f1 . . . is called a run on a state s0 ∈ A
if there is a path s0→ s1→ . . . in A such that A, si |= fi for all i. The run is accepting if
there are infinitely many i such that bi ∈ F . A simple (and common) choice for such
a temporal logic is to to choose L = 2AP: one can interpret subsets of AP as temporal
formulas, by defining A, a |= P (for P ⊆ AP) if and only if P = `(a). In the case of
the ECTL* logic, described later in this section, the transitions of Büchi automata are
labelled with more complicated formulas.

A generalized Büchi automaton is a Büchi automaton that has a set of acceptance
sets F rather than a single acceptance set F . A run b0 −→

f0 b1 −→
f1 . . . of such an

automaton is accepting if and only if it passes through a state in every acceptance set
infinitely often, i.e., for all F ∈ F , {i | bi ∈ F} is infinitely large.

CTL*, CTL and LTL We use the definition of CTL* and LTL as given in [CGP99]. We
first describe the syntax of so-called state formulas and path formulas. Given some
non-empty set AP of atomic predicates, the syntax of a state formula is given by the
following grammar:

f ::= a | ¬ f | f ∨ f | Ag

In the above, a ∈ AP and g is a path formula generated by the following grammar, in
which f is again a state formula:

g ::= f | ¬g | g ∨ g | Xg | g U g
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CTL* formulas are state formulas as described by the top grammar. Subformulas are
defined in the same way as is done for first-order logic. The size of a CTL* formula f ,
denoted | f |, is the number of subformulas it contains. The following derived constants
and operators are in common use.

t¬ a ∨¬a F f ¬ t U f E f ¬ ¬A¬ f

f¬ ¬t G f ¬ ¬F¬ f

f ∧ g ¬ ¬(¬ f ∨¬g) f R g ¬ ¬(¬ f U ¬g)

Computation tree logic (CTL) is a subset of CTL*. It can be characterized using the
derived operators, using the following grammar:

f ::= a | ¬ f | f ∨ f | AX f | AG f | A f U f

Linear temporal logic (LTL) is also subset of CTL*. LTL formulas are CTL* formulas
of the form Ag, where the A and E operator do not occur in g, i.e., the formulas defined
by the following grammar:

f ::= Ag

g ::= a | ¬g | g ∨ g | Xg | g U g

The semantics of CTL* formulas (and LTL formulas) is defined on states in a Kripke
structure A= 〈S,→, AP,`〉, in which→ is total. We will write A, s |= f if CTL* formula
f holds in state s ∈ S. If g is a path formula, then we also define p |= g for every
path p in A, meaning that g holds along p. If a is an atomic predicate, f and f ′ are
state formulas, and g is a path formula, then the interpretation for state formulas is as
follows:

A, s |= a iff a ∈ `(s)
A, s |= ¬ f iff not A, s |= f
A, s |= f ∨ f ′ iff A, s |= f or A, s |= f ′

A, s |= Ag iff p |= g for all paths p starting in s

The interpretation for path formulas is described by the following rules, where f is a
state formula, and g and g ′ are path formulas.

A, p |= f iff A, p0 |= f
A, p |= ¬g iff not A, p |= g
A, p |= g ∨ g ′ iff A, p |= g or A, p |= g ′

A, p |= Xg iff A, p1 |= g
A, p |= g U g ′ iff A, pk |= g ′ for some k and A, p j |= g for all 0≤ j < k.

If it is clear from the context which Kripke structure should be used to evaluate a CTL*
formula, we will omit it and write s |= f rather than A, s |= f .

ECTL* CTL* can be extended to a slightly more expressive formalism by replacing
path formulas by Büchi automata. Instead of Eg, with g a path formula, we define EB
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to be a valid formula if B is a Büchi automaton labelled with ECTL* formulas, with the
following interpretation:

A, s |= EB iff there is an accepting run of B on s

The subformula relation is defined as for CTL*, with the additional rule that a formula
ϕ is a subformula of EB if it occurs in the labels of B. The subformula relation is
still well-founded: it cannot be the case that an ECTL* formula ϕ contains a Büchi
automaton that uses ϕ as a transition label.

∃CTL*, ∀CTL* and ∃ECTL* Negation is quite a powerful operator in CTL*. If its
use is not restricted, both A and the derived operator E can be used. Using the A
operator, one can create formulas that can only be satisfied by states with more than
one outgoing transition. Formulas that do not use A, and that only use E in the scope
of an even number of negations only express the existence of a path that satisfies a
certain property; if such a formula holds in a state in some structure, then that structure
therefore only needs to have states with at most one outgoing transition. ∃CTL* is the
subset of CTL* that contains only such formulas. Obviously, it is less expressive than
CTL* itself. Its dual is ∀CTL*, the subset of CTL* in which only formulas are allowed
in which E occurs in the scope of an odd number of negations (i.e., only the A operator
is used). Its distinguishing power is equal to that of ∃CTL*, because the negation of an
∀CTL* formula an ∃CTL* formula. Similarly, ∃ECTL* is ECTL* restricted to formulas
in which E only occurs in the scope of an even number of negations.





Chapter 3

FlexRay

In the year 2000, a consortium was established with the goal to design a new, time-
triggered communication protocol for use in the automotive industry that would out-
perform CAN and TTP in both speed and reliability. At the end of 2009, the consortium
was disbanded, leaving a final version of a time-triggered protocol called FlexRay. The
final protocol definition, a 336 page document, became available in 2011, and is cur-
rently being transformed into an ISO standard.

Already in 2006, the first commercially available cars were equipped with FlexRay
networks, enabling new algorithms for vehicle control because of its higher bandwidth.

Since FlexRay will be the basis for communication in many vehicles to come, we
would like to establish that the protocol is correct, i.e., that a system that is imple-
mented according to the latest specification behaves predictably and shows no unde-
sirable behaviour. We base our notion of correctness on the requirements document
[Fle05c] that was composed by the FlexRay consortium.

The FlexRay protocol requires that nodes are synchronised in order to communi-
cate. The procedure of starting up a FlexRay network therefore is of particular interest,
because it involves a distributed algorithm that should reach such a synchronised state
in a reasonable amount of time. This procedure should work for any given startup
scenario, and should be to some extent fault-tolerant.

We choose to formalise the FlexRay protocol by means of a model written in the
mCRL2 specification language [GM14]. This language has extensive support for the
use of data in models, and allows us to create a concise model that stays close to the
specification. Fault tolerence is checked by explicitly modelling a number of faults that
should be allowed to occur, according to the requirements document, and requiring
the same properties to hold as for fault-free scenarios.

We have created a model that captures the details of that part of a node that or-
chestrates its operation while the node is starting up. Analysis of the model reveals a
scenario in which the network does not correctly deal with a single failing node. To
our knowledge, this scenario was not documented before.

The structure of this chapter is as follows. We start by giving a brief overview
of the FlexRay protocol, and describe how the startup procedure works. We then
briefly discuss the requirements that the startup procedure should satisfy. After that,
we show how we arrived at our model: we discuss the abstractions that we applied
and we demonstrate how mCRL2 fragments are related to the protocol specification.

h 27 g
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We then describe the method used to verify the presented model, and subsequently
present the verification results. We discuss related research, before wrapping up with
some conclusions and suggestions for future work.

3.1 FlexRay

We base our analysis on the 3.0.1 version of the protocol [Fle09]. A FlexRay network
consists of a number of nodes that are each connected to one or two communication
mediums, called channels. The two channels may be used to create redundancy, or to
connect to two different sets of nodes. A channel may itself consist of a number of
infrastructure components, but can be as simple as a pair of copper wires. FlexRay
is a time-triggered protocol, which is to say that a clock that is synchronised across
the network dictates which node has the right to write messages to a communication
medium. This in contrast to for instance CAN, which is event-triggered: whenever the
event occurs that a node wishes to send a message, the CAN protocol decides at that
moment whether that node is allowed to do so, based on some priority scheme.

A schedule records which node has access to the medium at what time. The schedule
is an access scheme that defines for a finite period (which is called a cycle in the protocol
specification) the allocation of bandwidth to network nodes. Indefinite repetition of
the schedule allows any node to decide at any moment in time which node is allowed
to write to the medium.

This scheme is only strictly followed in that part of the schedule that is called
the static segment (although we should note that there are features that allow a user
to slightly deviate from the scheme). The FlexRay requirements document [Fle05c]
states that the aim of the protocol is to provide both ‘deterministic’ communication
and ‘on-demand’ communication. To this end, part of the schedule may be left unde-
cided; this part is called the dynamic segment. A priority based selection scheme is
implemented on top of a time-triggered access scheme to dynamically allocate band-
width to nodes that need it in the dynamic segment. We will not consider the use of a
dynamic segment, and will therefore not describe the details of its implementation.

In the static segment of the schedule, time is divided into slots, and each slot is
allocated to a network node that is allowed to send data in that slot. Data is sent in
structured packets called frames. Some frames play a special role in the protocol: they
can be marked as sync frame or as startup frame. A sync frame is a frame that is used
by all nodes in the network to adjust the local view on the global clock. This is done
using a variant of the clock synchronisation algorithm of Lundelius and Lynch [LL84].
A startup frame is a sync frame that is allowed to be sent during startup of the network,
which we describe in more detail in the next section.

To communicate over a FlexRay network, the network must first be brought to a
state in which it is synchronised, and aware of the communication schedule and the
current position in that schedule. Firstly, the network is woken up; a special symbol is
sent over the channel that causes nodes to switch to an active mode.

When woken up, a distinction is made between coldstart nodes and non-coldstart
nodes. Coldstart nodes will attempt to initiate communication on a silent bus when
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woken up, where non-coldstart nodes will wait until they detect ongoing communica-
tion and then integrate. For each node (coldstart or non-coldstart) we call the period
in which it is awake and trying to establish communication or trying to integrate into
existing communication the startup phase of that node.

During this startup phase, clock synchronisation is initialised and some consistency
checks are done. In the next section we describe in more detail how this is done.
When startup is completed, all nodes in the network should have reached agreement
on what the global time is. Communication then proceeds according to the aforemen-
tioned schedule. We note here that the term cycle for one execution of the schedule is
somewhat confusing here, because nodes keep track of a cycle counter, which is reset
periodically (with a period smaller than 65 cycles), and which must correspond to the
other nodes’ cycle counters. Hence the behaviour of a node is only truly cyclical in this
period of cycles. The structure of a communication cycle is however always the same,
and we will therefore use the term communication schedule to refer to this structure.

3.1.1 The startup phase

We study the behaviour of FlexRay networks during the startup phase of the protocol.
In this phase, a distinction is made between coldstart nodes and regular nodes. Cold-
start nodes are the only nodes that are allowed to start sending data on the bus if there
is no activity on the bus yet. A FlexRay network can be configured to have any number
of coldstart nodes, with a minimum of three (or two if the network consists of only
two nodes).

When the network is awake and a coldstart node is requested by a client application
to start communication, the node will start by listening to the bus for a duration that
is equal to the length of two schedule cycles, to detect ongoing traffic. Note that
we cannot yet speak of real cycles, because there is no shared time base. We will
however not always be this strict and will sometimes say ‘cycle’ when we mean ‘the
local estimation of the duration of a cycle’, and we will similarly speak of ‘bits’ and
‘slots’.

If no communication is detected during this first listening phase, the coldstart node
will decide to send a collision avoidance symbol, or CAS. The CAS is a signal to the
other nodes to indicate that some node is trying to initiate communication: if another
(coldstart) node sees a CAS, it will wait for another two cycles, expecting to hear more

node 1

node 2

node 3

bus

Legend CAS Frame header Frame body Noise

Figure 3.1: Three nodes starting up. The BUS line is the combined signal of the three nodes.
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from the node that sent the CAS.
It may be the case that two or more nodes simultaneously decide to send a CAS. To

resolve this situation, a leader is selected based on the schedule. The first node sched-
uled to send a startup frame will become the leader. This is implemented as follows:
as soon as a coldstart node has started sending the CAS, it moves to a collision reso-
lution stage. During four cycles, it sends its startup frames according to the schedule,
but if it sees a frame header on the bus, it aborts its startup attempt and returns to
the listening stage. The result is that the first to send a frame after sending the CAS is
the node that will initiate communication. Because the CAS was sent simultaneously,
the clocks of the competing nodes are synchronized (within a certain error margin),
which guarantees that the frames they send do not overlap and are therefore readable
by the receiving nodes.

After four cycles, the initiating node checks during two consecutive cycles whether
it sees a frame from another node. If this is the case, then the startup phase ends for
this node. If only one frame is seen, then the initiating node considers the startup
attempt failed, and it goes back to the listening stage. If no frames were seen, then
apparently no other nodes followed the initiative, so it is assumed that there simply
were no other nodes ready to start communication yet. The initiating node waits for
one cycle, and then resends the CAS and repeats the procedure.

If, in the listening phase, ongoing communication was detected, then a node will
attempt to join in by first waiting for two consecutive frame headers from the same
node to synchronise the clock with. It then checks during two cycles that either the
node it synchronised on is still sending frames, or that at least two nodes are sending
frames each cycle. If this is the case, it enters normal operation, if it is not, then it
aborts its startup attempt and returns to the listening stage.

An example run of a fault-free startup is shown in Figure 3.1, where nodes 1 and
2 start simultaneously, and node 3 joins in a little later.

3.1.2 Requirements

The FlexRay protocol defines a startup procedure by specifying the local behaviour
of a FlexRay node. It is therefore not immediately clear how the startup phase can
be defined at the level of a FlexRay network, and what this startup phase should
ensure. We take inspiration from the FlexRay requirements document [Fle05c] in
which we find requirements on a more global level. Regarding startup of networks,
the requirements document specifies a number of faults that the system must be able
to deal with when starting up:

The wake-up and start-up of the ‘communication system’, the integration
of ‘nodes’ powered on later and the reintegration of failed ‘nodes’ shall be
fault-tolerant against: the temporary/permanent failure of one or more
‘communication modules’ (down to one module sending in the static part
for mixed or pure static configurations), the temporary/permanent failure
of one or more communication ‘channel(s)’ in a redundant configuration,
and the loss of one or more ‘frames’. — [Fle05c], p. 84
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The fault-tolerance mentioned here is interpreted differently for different types of
faults. This classification is given a bit further in the same document:

To say that “a cluster is able to start up in the presence of a fault” has a
meaning that depends on the type of fault.

– Fault class 1: The fault is associated to a channel or a star: All nodes
which are intended to participate in communication and are connected
to the other channel reach a state where they communicate to one an-
other as scheduled. They reach this state within a defined maximum
time.

– Fault class 2: The fault is associated to a node: All fault-free nodes which
are intended to participate in communication reach a state where they
communicate to one another as scheduled. They reach this state within
a defined maximum time.

– Fault class 3: Transient fault: All nodes which are intended to participate
in communication reach a state where they communicate to one another
as scheduled. They reach this state within a defined maximum time (For
a value see the requirements specification).

The requirement then gives some faults that FlexRay networks should be robust
against. In some cases, the use of both FlexRay channels is required to ensure correct
operation. The scope of this thesis only covers single-channel networks, and therefore
all faults in class 1 are considered fatal (if the only used channel is not working, then
no communication can take place).

The class 2 and 3 faults within the scope of our investigations are the following
(we again quote, and numbering corresponds to the numbering in [Fle05c]).

3 A single I/O signal/pin connecting two of the components communi-
cation module, bus guardian or bus driver has become disconnected
inside one of the nodes in the cluster. e.g. [sic] bus driver’s Transmit
Enable input disconnected.

3b signal wave form degraded on one channel [only has to work in cer-
tain circumstances].

4 A single arbitrary node in the cluster is not communicating on all
attached channels for whatever reason. It doesn’t transmit anything,
or it starts to transmit somewhat later than the other nodes.

5 A single clock oscillator in the cluster erroneously runs at the wrong
frequency. [. . .]

6 A node (e.g. coldstart node) cannot receive any communication ele-
ment on all its attached channels.

8 A star cannot receive any communication element of a certain branch
[only has to work in certain circumstances].

9 A periodic reset event is present in a node.
12 One single bit of a communication element on one channel flips.
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13 For a given time of less than one frame length, all present channels
are forced to an arbitrary pattern.

14 A bus driver in a node cannot receive anything.
15 A bus driver in a node cannot transmit anything.
17 A coldstart node sends sporadically CASs. After occurrence, the fault

does not manifest itself for at least 10 communication cycles.
18 No node is operational except of 2 fault free nodes and these two

nodes are assigned to perform startup (“coldstart nodes”). (Req ID
326)

Our aim is to verify that in the listed cases, the correctly functioning nodes in a FlexRay
network will indeed ‘communicate to one another as scheduled’. This leaves quite
some room for interpretation. For instance, in scenario 17, a faulty node keeps disturb-
ing the bus every once in a while. While it is doing so, the other nodes can obviously
be prevented from communicating according to schedule. We therefore give our own
definition of what it means to start up successfully, based on the requirements above:

The network has successfully started if the startup procedure has terminated
successfully, and during one cycle in which none of the non-faulty nodes are
executing their startup procedure, every frame that is sent by a non-faulty
node is received by all other non-faulty nodes, unless a faulty node or transient
fault prevents reception.

The verification carried out in this chapter is based on this definition of correct
startup behaviour.

3.2 Model

The protocol specification defines the FlexRay protocol in terms of SDL (Specifica-
tion and Description Language, [ITU99]) diagrams and accompanying text, which, as
stated in the introduction, is intended to provide “a reasonably unambiguous descrip-
tion of the mechanisms and their interactions” involved in the protocol. Furthermore,
“an actual implementation should have the same behavior as the SDL description, but
it need not have the same underlying structure or mechanisms”. We are interested in
this behaviour, and therefore construct a model that we can directly relate to the SDL
description. Our aim is to create a model that is as close to the SDL description as
possible, so that the behaviour of the model can be straightforwardly interpreted. We
illustrate with snippets of mCRL2 code how this is done in Section 3.2.3.

A single FlexRay node consists of 12 concurrently running, interacting processes,
called controller host interface (CHI), protocol operation control (POC), macrotick gener-
ation (MTG), clock synchronization startup (CSP-A, CSP-B), clock synchronization pro-
cessing (CSP), media access control (MAC-A, MAC-B), frame and symbol processing (FSP-
A, FSP-B) and coding/decoding (CODEC-A, CODEC-B). Some of these processes are
dedicated to serve a single channel (A or B), and are hence duplicated. These pro-
cesses are shown in Figure 3.2. The discrete behaviour during the startup phase is
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media access
control

MTG CSP

POC

CHI

CODEC-A

FSP-AMAC-A

CSS-A

to / from host

MAC-B

CODEC-B

CSS-B

FSP-B

channel A + B channel A + B

Figure 3.2: The context of the POC process (based on Figure 2–2 in [Fle09]). Arrows indicate
(directed) communication between components. The components that we model are printed in
boldface.

governed by the POC process. We therefore aim to model this process in detail, while
abstracting away as much as possible from the other processes. The parts of the nodes
that we do model are printed in boldface in Figure 3.2.

3.2.1 Abstractions

We are, as stated before, interested in the discrete behaviour of a FlexRay network dur-
ing the startup phase. This means we do not want to take into account timing aspects
such as propagation delays, clock speed and so on. Like time, data also influences
the behaviour of the protocol, but again we desire a limited level of detail: only those
features of the data structures used in FlexRay which influence the decisions made in
the POC process are modelled. We describe the abstractions we use in more detail
below.

Environment During startup, the CHI process is used to feed back information to
the client application. It may also influence the POC process by enabling the so-called
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coldstart inhibit mode, which causes a coldstart node to not actively start communica-
tion by sending a CAS. We assume none of the nodes are ever put in this mode, and
hence leave out the CHI altogether.

The FSP process performs validity checks on the symbols that are decoded by the
coding / decoding process. The only way in which FSP influences the POC process
is by emitting a fatal protocol error signal, which happens when FSP detects that the
node that it is part of is sending across a boundary in the schedule. We assume that
CODEC and MAC processes function correctly, which should prevent this error from
occurring. We therefore do not model FSP.

Communication and calculation Component interactions are modelled in the SDL
description as signals being sent from one component to another. We make the assump-
tion that messages are received the moment they are sent. This eliminates the need
for (possibly unbounded) queues to model interactions between processes. Similarly,
we assume that calculations take no time to complete.

Time In [Mal08; MN10], Malinský and Novák present a model of the startup phase
of a FlexRay network. Their approach is to make no assumption about the correct
working of the clock synchronisation protocol, and they subsequently show that several
parameters of their model can be adjusted in such a way that the network model does
not properly start up. Although our choice of modelling language does allow us to
model timed behaviour, our chosen approach to stay as close to the specification as
possible severely restricts the timing aspects we can model. This is mainly due to the
fact that timing differences give rise to an enormous state space blowup, and it is often
infeasible to prove that the resulting extra states are confluent, bisimilar or otherwise
related before expanding the entire state space. Due to this blowup, Malinský needs
a substantial amount of manual reasoning to create a model that is small enough to
perform verification on, and Zhang [Zha06] uses a hand crafted Isabelle/HOL model
to verify timing properties. In both cases, it is difficult to establish that their models
faithfully represent the FlexRay specification.

Our approach is fundamentally different. We assume that the nodes in a network
are always synchronised, so that we may abstract away from the clock synchronisa-
tion mechanism altogether and instead focus on the discrete behaviour of the startup
protocol. This approach is similar to that of [Ste05b]. As the clock synchronisation
mechanism is rather data intensive (it stores time stamps and performs calculations
on them), this abstraction decreases the size of the model significantly, at the cost of
not begin able to detect errors in the clock synchronisation mechanism.

We implement a discrete clock by means of a synchronisation barrier: all processes
synchronise every clock tick. The resolution of the clock is chosen to match the dura-
tion of a single bit (gdBit in [Fle09]). In the mCRL2 modelling language, this amounts
to allowing some actions to occur only in combination with a matching action from ev-
ery other concurrently running process (details are discussed in Section 3.2.3). There
is no need for a separate clock process.

Data Although we are modelling time at a resolution suitable to model every bit
that is communicated in the protocol as-is, doing so leads to a state space that is
much too large. For example, a frame containing 16 bits of data requires 80 bits
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on the bus. For a network of three nodes, each sending a single frame, not taking
into account any time in which the bus should be idle, simply summing up the initial
phasing of nodes (assuming they start within one cycle of each other) would already
take millions of states, and modelling every frame that could possibly be sent would
be out of the question. We therefore try to compress the bit patterns into a minimal
form that preserves some of the properties of real bit patterns on the bus.

Four types of symbols are of interest during startup: the CAS, frame headers, frame
bodies and the channel idle recognition point (CHIRP). The latter is not a pattern that is
actively sent, but a symbol that is decoded (meaning that a CHIRP event is generated
by the CODEC) when no node sends data for a certain amount of time. Whenever a
CHIRP is decoded by a node, it considers the bus to be idle until it detects that data is
sent over the bus. We have chosen the symbols such that we can model the events that
POC responds to. For instance, we need to be able to model the event that a frame
header has been decoded from the bus, because the SDL diagrams in [Fle09] prescribe
that such an event should trigger a reaction from POC.

To limit the size of the state space, we no longer require the amount of bits to be
realistic: we allow frames consisting of a one-bit frame header and a one-bit frame
body, and the CAS (which is usually at least 11 bits long) can be only two bits long.
We design the model such that we can choose the size of our symbols arbitrarily.

length(FRAME_HEADER(id))
︷ ︸︸ ︷

Hid Did Did · · ·

length(FRAME_BODY(id))
︷ ︸︸ ︷

Bid Did Did · · · Did

CAS CAS · · · CAS
︸ ︷︷ ︸

length(CAS)

None None · · · None
︸ ︷︷ ︸

length(CHIRP)

Figure 3.3: Encoding of symbols on the bus.

In our model, each bit on the bus can have one of six values: Hid , Did , Bid , CAS,
None or Noise. The encoding of symbols is shown schematically in Figure 3.3. For
frame data, every bit also carries an id field that identifies its sender. This is used as an
abstraction of the CRC checksum in the frame header and frame body: we assume the
CRC is perfect, i.e., that it passes if and only if the series of bits is equal to the sequence
that was originally sent. We model this by checking that all bits in the sequence are
sent by the same sender, and make sure that each id is only used by one node in our
model.

We assume that the simultaneous sending of two bits that are not of value None
will always result in Noise. In existing implementations, the CAS is a sequence of
‘dominant’ bits, so two simultaneously sent CAS signals result in a valid CAS symbol
again. The protocol does however not require this. In this chapter we choose to not
take into account this notion of dominance, so nodes have maximal potential to disturb
each other’s transmissions. We have performed verification on models where we have
taken dominance into account, but this did not yield different results.
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Figure 3.4: Detail of the Node and Bus processes.

3.2.2 Structure

We model a network consisting of three coldstart nodes that are all attached to a single
channel in a bus topology. The channel is modelled by a process called Bus, which runs
in parallel with three Node processes, each representing one coldstart node. The bus
and the nodes synchronise on every clock tick. In between clock ticks, the bus goes
through a writing phase, in which every node may write data to the bus using a Put
action, and a reading phase, in which every node retrieves the combined signal using
a Get action.

Figure 3.4 shows the structure of a node and how it is connected to the bus. Each
node process consists of three communicating processes running in parallel: the POC
process, which models the Process Operation Control SDL process, the MAC process,
which (coarsely) models the Media Access Control SDL process and the CODEC process,
which is a coarse model of the Coding/Decoding SDL process for one channel. The
arrows indicate communication, and are labelled by the actions in the model that
implement this communication. The dotted lines show which actions are synchronised
every clock tick (the bus, bit, wait and Encode actions can only occur on a clock tick).

The MAC process is responsible for dispatching encoding requests to the CODEC. It
can be ordered by POC to send a CAS, after which it starts sending frames periodically,
or, in the case of integration into existing traffic, it can be requested to start sending
frames immediately (but according to the schedule). When a startup attempt fails, it
can be requested to go back to an inactive mode again.

The CODEC is modelled as a process that either reads from or writes to the bus.
When in reading mode, it processes bits it reads from the bus, and does not write
anything to the bus (which is implemented as writing silence to the bus). When it is
in writing mode, bits it reads from the bus are ignored, and it writes an encoding of
the last requested symbol to the bus. This can be seen from Figure 3-18 in [Fle09],
where decoding is explicitly halted when an encoding request is received by the CODEC



3.2. Model g 37

enter startup
prepare

tStartup := pdListenTimeout;
tStartupNoise := gListenNoise * pdListenTimeout;
vRemainingColdstartAttempts := gColdstartAttempts;
’update vRemainingColdstartAttempts in CHI’

STARTUP

INTEGRATION_
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coldstart check

enter
coldstart join

abort
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Figure 3.5: The POC startup phase, taken from [Fle09]. Grey parts are excluded from our
model.

process.
The POC process is defined by a number of SDL procedures that call each other.

We follow this structure by modelling each SDL procedure by its own mCRL2 process.
Every process can be seen as a superstate that is input enabled with respect to the
signals coming from MAC and CODEC. Only SDL procedures that are executed by
coldstart nodes are modelled. Figure 3.5 shows the SDL diagram from [Fle09] that
describes the top-level structure of the POC process, and shows which parts of the
process we have modelled.

Decisions in these procedures that involve signals coming from the clock synchroni-
sation mechanism—POC for instance uses timers and signals that are generated at the
start of a cycle—are emulated using minimal local administration (usually a counter
that is incremented after every clock tick).
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3.2.3 The mCRL2 model

The complete model with which the results in this chapter can be reproduced is in-
cluded in the mCRL2 distribution1, version 201409.1, and can be found in the exam-
ples folder in the category ‘industrial’. In this section, we explain some of the details
of the model.

Extended syntax In order to create a more structured specification, an extension of
the mCRL2 syntax was used. This syntax is not meant to provide a semantic extension
of the language, but merely to syntactically abbreviate some common constructs so as
to remove clutter. We therefore merely give an explanation of how to read the syntax,
but do not recommend using it in any other setting.

The syntax is best explained using an example. Consider the following specifica-
tion:

proc X = nested(n: Nat) {

initial state A =

a(n) . B(0);

state B(m: Nat) =

m < 10 -> b . B(m + 1)

+ m == 10 -> b . X(n + 1)

}

This specification is translated to the following, pure mCRL2 specification.

proc X(n: Nat) = X’A(n: Nat);

proc X’A(n: Nat) = a(n) . X’B(n, 0);

proc X’B(n: Nat, m: Nat) =

m < 10 -> b . X’B(n, m + 1)

+ m == 10 -> b . X(n + 1);

The intuition is that every nested block defines some parameters that are shared by
the states defined in it. The states are mCRL2 process specifications, and can therefore
again be defined in terms of nested blocks.

A state may add parameters to the list provided in its associated nested statement.
Duplicate parameter names are not allowed. When a process or state name is used
within a state, a name lookup is done first in the scope of the current nested block,
then in the one above that etc.

Obviously, name clashes are a big problem in this construction. The models pre-
sented in this document therefore use unique variable and process names in such a
way that the translation scheme does not cause any ambiguity.

Bus model We wish to verify properties of a network with a deaf node (a node
that cannot read anything from the bus) and a mute node (a node that cannot write
anything to the bus). The easiest way to deal with this is to see such faulty behaviour
as a trait of the physical bus.

The physical bus is modelled as a process that reads, per time slot, a signal from all
connected nodes that are not mute and delivers the combination of all those signals

1The tool kit can be downloaded from http://www.mcrl2.org.

http://www.mcrl2.org
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back to all connected nodes that are not deaf.

proc Bus(r, w: Sender, s: Signal) =

(r <= NODES + 1) -> (

sum s’: Signal . put’(r, s’) .

Bus(r + 1, w, if(r == mute, s, combine(s, s’)))

) <> (

(w <= NODES + 1) -> (

get’(w, if(w == deaf, NONE, s)) . Bus(r, w + 1, s)

) <> (

bus(s) . Bus(1, 1, NONE)

)

);

Every node is identified with a value from Sender. The Signal data type contains the
values that bits on the bus can take (as explained on page 35).

If a node is not sending, it is modelled as a node that is sending silence. The
combination of a signal and silence is that signal. The combination of two signals is
defined to be noise.

When a bit has been sent and received in this manner, the bus action marks the
progress of time and the process repeats itself (it is part of the clock tick barrier).

In the full model, two variants of the bus are included. One of them reads in an
arbitrary order, and one reads in a fixed order. The former was used for verification
purposes (because it is the more general model), but the model as listed above was
used to generate the traces in Section 3.3, as it is quicker. The reason the model that
performs reads and writes in an arbitrary order is more time-consuming to generate is
that it generates more states, and uses set operations where the ordered model needs
only enumerated and integral types.

POC model Because the FlexRay protocol specification is already quite formal (in the
sense that a systematic notation is used to describe processes), we set out to create our
model in a way that remains as close to the specification as possible. Because a large
part of the specification is abstracted away, we cannot use an automated conversion
to an mCRL2 model, but where our model attains the same degree of detail as the
original specification, we attempt to make our translation as systematic as possible.
We have taken the diagrams from Chapter 7.2 in [Fle09] as the basis for our model.
The semantics of these diagrams is given in [ITU99].

To create a model that would not inevitably blow up to unreasonable proportions,
we use a slightly simplified version of these semantics. We assume that the calculations
in the diagrams do not take time; moving from one state to the next can then be seen
as an instantaneous change. Secondly, we assume that signals do not take time to
be delivered. In [ITU99], event queues are used to capture the semantics of these
phenomena. This would lead to a very large state space, as the state of the queues
must be taken into account. Our simplifications eliminate the need for queues. The
downside is that not all possible sequences of events that may occur in reality are
modelled; for instance, in our model, signals from other processes only arrive when
the receiving process is ready to process them.

We note here that the FlexRay specification does not claim to use the precise SDL
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semantics (in fact, it claims that it may not do so). Given that the specification is
at the detail level of a reference implementation, this is not surprising, as the use of
event queues would be infeasible in a hardware implementation. The specification
does however not give any guidelines on how to interpret the diagrams, which is why
we have taken the official SDL semantics as a starting point.

Using the simplified semantics, the SDL diagrams in Chapter 7.2 of [Fle09] were
translated into mCRL2 code (using a slightly altered syntax, see appendix 3.2.3). As
an example, we show the part of the mCRL2 code that models the ‘coldstart collision
resolution’ diagram in the specification (Figure 7–16 in [Fle09]):

state ColdstartCollisionResolution(timer: Nat) =

(

% Inputs from CODEC

decode(CAS) . bit . AbortStartup()

+ sum id’: Sender . decode(FRAME_HEADER(id’)) .

hdr(id, id’) . AbortStartup()

+ sum id’: Sender . decode(FRAME(id’)) .

ColdstartCollisionResolution()

% Wait for four cycles

+ (timer < FRM_START(id) + CYCLE_length * 4 - 1) ->

bit . ColdstartCollisionResolution(timer=timer + 1)

+ (timer >= FRM_START(id) + CYCLE_length * 4 - 1) ->

bit . cs_cons . ColdstartConsistencyCheck(0)

)

Looking at SDL diagram 7–12, we see a single state in which the POC may respond to
a number of different events:

– SyncCalcResult. This event is emitted by the clock synchronisation process, just
before a new communication cycle starts. We assume a global clock with a resolution
of one bit, of which the ticks are modelled by the bit actions. Rather than waiting
for four SyncCalcResult events, we instead look at the global clock to decide when
four cycles have passed.

– header received on A/B. This event is emitted by CODEC right after a frame header
has been received. It is modelled using the decode action with a FRAME_HEADER

parameter.
– symbol decoded on A/B. This event is emitted by CODEC right after a collision avoid-

ance symbol or media test symbol is decoded. It is again modelled using the decode

action, this time with a CAS parameter.

In the mCRL2 model, we need to absorb decode(FRAME(id’)) events (not doing so
would prevent the source from sending the event, thus potentially leading to deadlock
states). In the semantics of SDL [ITU99], this corresponds to discarding an event from
the event queue when it cannot be processed.

To allow time to progress in a state, we must additionally allow the bit action to
occur. The above piece of code implements a timeout of four cycles by letting time
progress for four cycles, and then moving to the ‘coldstart consistency check’ state. If
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a CAS or frame header is received before the timeout occurs, the startup is aborted.

MAC Media access control is modelled by the mCRL2 process below. It starts in
inactive mode (not shown) and can then receive macCAS, macStart and macStop com-
mands.

proc MAC(id: Sender, togo: Int, active: Bool) =

macCAS . encode(CAS) .

MAC(active=true, togo=FRM_START(id) + length(CAS))

+ macStart . MAC(active=true, togo=FRM_START(id))

+ macStop . wait . MAC(active=false)

+ active -> (

(togo > 0) -> (

wait . MAC(togo=togo - 1)

) <> (

encode(FRAME_HEADER(id)) . MAC(togo=CYCLE_length)

)

) <> wait . MAC();

When a macCAS command is received, it requests the CODEC to send a collision avoid-
ance symbol and then switches to active mode. In the specification, MAC waits for one
macrotick before sending the CAS, but it seems that the waiting for the macrotick is
not intended as a delay, but merely as a check that the clock synchronisation process
has started. Since we assume a global clock, we do not need to model this delay.

When a macStart command is received, the MAC proceeds to active mode, and
when it receives a macStop command, it goes back to inactive mode. In active mode,
MAC periodically requests CODEC to encode a frame.

CODEC The CODEC is modelled as a process that either reads from or writes to the
bus. Its task is to translate symbols into bit patterns, and vice versa. When in reading
mode, it processes bits it reads from the bus, and writes silence to the bus (i.e., it does
not write anything to the bus). When it is in writing mode, bits it reads from the bus
are ignored, and it writes an encoding of the last requested symbol to the bus.

Remainder As can be seen from Figure 3.2, the POC process communicates with
all other processes. We covered MAC and CODEC, and we argue that we may safely
omit models for the remaining processes. By assuming a global clock, we can avoid
modelling the macrotick generation, clock synchronisation startup and clock synchro-
nisation processes. Furthermore we assume that nodes are never in coldstart inhibit
mode. This eliminates the influence of the controller host interface, so we can also
omit a model for that process. During startup, only the clock synchronisation depends
on events generated by frame and symbol processing, so this process is also ignored.

3.2.4 Verification

Our goal is to verify that our model satisfies the requirement from Section 3.1.2, i.e.,
that the network starts up correctly in the presence of certain faults. The faults that
are within the scope of our investigations can all be seen as instances of a few general
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problems: either a node is not able to send anything, a node is not able to receive any-
thing, or the bus misbehaves in such a way that symbols are not always transmitted
correctly. Only the periodic resetting of a node requires the node to display slightly
more complicated behaviour. Two faults described in [Fle05c] comprise a node spo-
radically disturbing the bus; from the perspective of the correctly functioning nodes,
however, this is not different to having a noisy bus.

Since for the POC a noisy signal is observably equal to no signal at all (the CODEC
simply does not generate events), we model a limited set of scenarios. Each of the
descriptions below describes two scenarios: one in which the node with the lowest
identifier is the faulty node, and one in which another node is faulty. This is necessary
because the protocol relies on a leader election mechanism that is not quite symmetric:
although the process descriptions for startup are the same for every node, the leader
that will be elected depends on the configuration of the nodes. The candidate config-
ured with the lowest identifier will be elected as leader. At least one failure scenario
(viz. the resetting node scenario below) [Ste05a] is only possible if the node with the
lowest identifier is the faulty node.

In this manner, the following categories of scenarios are modelled.

Two nodes A faulty node does not switch on at all, so effectively there are only two
nodes present in the network.

Silent node A faulty node is not able to send anything. Although we do model this
separately, we note that this scenario is equivalent to the two-node scenario
if we are not interested in the behaviour of the faulty node. We include this
scenario because it shows that the silent node is still able to integrate into the
communication correctly, albeit in a read-only mode.

Deaf node A faulty node does not receive anything.

Resetting node A node resets itself periodically.

Noisy channel Signals sent by nodes are corrupted on the channel. We use a noise
model that consists of a burst length and a maximum backoff time. The burst
length determines the maximum number of sequential bits that are corrupted,
the maximum backoff time determines the maximum number of sequential bits
that pass through the channel unaltered. Due to practical limitations, we were
only able to model this scenario in a two-node scenario.

For each of these scenarios, we check that the correctly functioning nodes start up.
We do this by checking three properties. The first is absence of deadlock; a reachable
deadlock would indicate an error in the model, rather than in the FlexRay protocol,
for the construction of the model is such that time is always allowed to progress.

Absence of deadlock is checked while traversing the state space. The other two
properties are used to check whether the model violates our definition of correctness
from Section 3.1.2. In fact, we encode a slightly stronger definition: every non-faulty
node successfully terminates their startup procedure exactly once, and after all non-
faulty nodes have terminated their startup procedure, they will keep communicating
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according to schedule forever. When we present the results of our verification, we will
see that weakening these properties to only require that communication according
to schedule lasts for at least one cycle only affects the results of the ‘noisy channel’
scenario. On the other hand, for the scenarios in which the properties are satisfied,
this stronger formulation gives us more confidence that the protocol is correct (and
that our model is correct).

These last two properties are formulated in the first-order modal Lµ (see, e.g.,
[GM99; GM14]). For brevity, we use mathematical syntax rather than concrete mCRL2
Lµ syntax, and constructs to help the mCRL2 toolset (e.g., to prevent quantifiers from
being expanded forever) are left out. The [A]ϕ operator expresses that ϕ must hold
after every sequence of actions satisfying the regular expression A. These regular ex-
pressions have sets of actions as their alphabet. The set of all actions occurring in the
system is denoted Act; the complement (w.r.t. Act) of a set of actions A is denoted A.
The singleton set {a} is denoted by a.

It is important to note that these formulas only represent the intended properties
correctly if the system they are checked on is deadlock free, as otherwise the [A]ϕ
subformulae might trivially hold.

The second property asserts that eventually all correctly functioning nodes enter
normal operation exactly once, an event that is flagged by the enter_operation action.
It is expressed by the following formula, in which N is the total number of nodes and
C is the set of correctly functioning nodes:

µX (r : 2N = C) .
(

r 6= ;
∧ (∀i:N [enter_operation(i)](i ∈ r ∧ X (r \ {i}))∨ (i /∈ C ∧ X (r)))
∧ [{enter_operation(i) | i ∈ N}]X (r)

)∨ (
r = ; ∧ [Act∗ · {enter_operation(i) | i ∈ C}]f

)

The set r keeps track of which correctly functioning nodes are still running their startup
procedure, and is initially assigned the value C . The least fixpoint X ensures that all
paths along which r 6= ; are finite. The subformula

(∀i:N [enter_operation(i)](i ∈ r ∧ X (r \ {i}))∨ (i /∈ C ∧ X (r))

removes i from r when along such a path the enter_operation(i) action is encountered.
By requiring that i ∈ r ∨ i /∈ C after every enter_operation action, we enforce that
every process may execute this action only once. The conjunct that follows this subfor-
mula expresses that along these paths, actions other than enter_operation may occur
(although they do not affect r).

From states in which X holds, we can reach a state in which the following holds:

r = ; ∧ [Act∗ · {enter_operation(i) | i ∈ C}]f.

Because of how we defined r to change along the path to this state, we know that when
we arrive in this state, every node in C has executed its corresponding enter_operation
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action once, and in which the second conjunct holds, which says that no node from C
will ever do an enter_operation action again (f holds for all paths satisfying the regular
expression Act∗ · {enter_operation(i) | i ∈ C}, i.e., such paths are not allowed).

The last property says that eventually all correctly functioning nodes will keep
receiving each other’s messages. Even though our model is not intended to model the
ongoing traffic after startup, we have constructed our model in such a way that this
property should hold. If this property does not hold, then it is likely that the nodes did
not synchronise correctly. It is characterized by the following formula:

µX . [Act]X ∨
νY (s : Symbol= firstsymbol) .
µZ(r : 2N = C \ sender(s)) .
(

r 6= ;
∧ (∀i:N,s′:Symbol

[Decode(i, s′)]((i ∈ C ∧ s = s′ ∧ i ∈ r ∧ Z(r \ {i}))∨
(i /∈ C ∧ Z(r)))

)
∧ [{Decode(i, s′) | i ∈ N∧ s′ : Symbol}]Z(r)

)∨ (
r = ;

∧ Y (nextsymbol(s))
)

Fixpoint X holds in every state where always eventually Y will hold. We assume
that firstsymbol and nextsymbol are mappings (constants are treated as mappings of
arity zero) that define the FlexRay schedule, i.e., they define a repetitive pattern
of frame headers and frame bodies that we expect to see on the bus. Then Y is
true in states from which all correct nodes will decode firstsymbol first, followed by
nextsymbol(firstsymbol), etcetera: it represents an infinite repetition of finite paths
along which the currently scheduled symbol is decoded. The sender of a symbol is
excluded from the set of recipients. The subformula

[Decode(i, s′)]((i ∈ C ∧ s = s′ ∧ i ∈ r ∧ Z(r \ {i}))∨ (i /∈ C ∧ Z(r)))

makes sure that correct nodes can only decode the right symbol, and can do so only
once (by removing them from r), but allows faulty nodes to decode arbitrary symbols.

3.3 Results

The results in this section were initially obtained using the July 2011 release of the
mCRL2 toolset. Verification of the properties was done by linearising the mCRL2 spec-
ification and combining it with the formulae to form parameterised Boolean equation
systems. These were instantiated to Boolean equation systems, which were in turn re-
duced modulo stuttering equivalence on parity games. The resulting smaller equation
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systems were then solved. A description of this procedure can be found in [CKW11],
and is also described in Chapter 5 of this thesis.

With the 201409.1 release of the mCRL2 toolset, which contains the FlexRay spec-
ification in its catalogue of example specifications, the parity game reduction is no
longer necessary to speed up the process. Instead, a more efficient parity game solver
[Ver13] can be used to obtain these results. Detailed instructions on how to repro-
duce the results in this section can be found in the readme-file that accompanies the
specification.

We note that it is also possible to check eventual startup and eventual communica-
tion by visual inspection. By hiding all actions but enter_operation and then reducing
the state space using branching bisimulation, the first property can be checked by
searching for cycles in the reduced state space. The second property can be checked
manually by hiding all but Decode, reducing the state space using divergence preserv-
ing branching bisimulation and then visually inspecting all strongly connected compo-
nents.

All three properties hold for the ‘no faulty nodes’ and ‘two nodes’ scenarios. The
other fault scenarios we discuss seperately. The figures that illustrate each scenario
are generated from traces in our model.

Mute node All three properties hold on the system. Manually inspecting the bran-
ching-bisimulation reduced state space reveals that the failing node can in this case
enter normal operation using the wrong schedule (see Figure 3.6.a). The clock syn-
chronisation process will allow this scenario, and frame and symbol processing will
also not detect the mistake while the startup protocol has not finished. The mistake
is harmless, however, because the silent node cannot disturb ongoing communication,
and does not violate any requirement because it is the failing node that suffers the
consequences. As soon as normal operation is entered, the clock correction process or
the frame and symbol processing process of the faulty node will notice the error. A
next attempt to integrate will succeed, because there is then already ongoing traffic.

Deaf node The state space is deadlock free, but neither of the properties hold, be-
cause there is a possibility of the network not starting at all. This violates requirement
2111 nr. 6 in [Fle05c]. Figure 3.6.b shows such a scenario.

The deaf node can happen to align its frames with those of another startup node,
causing only the headers of the other node to be readable on the bus. The non-faulty
node that is broadcasting startup frames will not detect that every sent frame is cor-
rupted by the faulty node. Because the non-faulty node’s frame headers are untouched,
all other nodes will wait until it gives up after the maximum number of startup at-
tempts.

Although this scenario is a valid trace in our model, it exposes an inaccuracy in the
model: because we did not model the non-coldstart behaviour, Node 3 simply stops
after it spent its maximum number of coldstart attempts (three in this case). In reality,
it would switch to an integrating mode, and would still be able to start up the network
together with Node 1.

This inaccuracy was noted by the authors of [Kor+13], in which the scenario is
changed slightly to expose the faulty behaviour: if each node starts with two remain-
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ing coldstart attempts (this is the minimal allowed configuration value), then Node
1 has spent one attempt after this scenario, and has one attempt left. The FlexRay
protocol demands that at least two coldstart attempts are available in order to initiate
a coldstart, which results in Node 1 switching to integration mode just like Node 2
and 3. We note that in the case of three or more coldstart attempts for at least two
non-faulty nodes, the network will always start up because at least one node will be
left with enough attempts to initiate a coldstart again.

The scenario was reproduced in our model, taking into account the ratios of the
lengths of symbols and idle times on the bus (also taking into account overhead like
frame / byte start sequences), and taking into account bus idle time that is enforced
by the protocol (more specifically, the ‘action point offset’ and the idle time between
the frame end sequence and the next slot boundary). The result is shown in Figure

(a) Mute node
node 1

node 2

node 3

bus

(b) Deaf node
node 1

node 2

node 3

bus

(c) Deaf node (fixed)
node 1

node 2

node 3

bus

(d) Resetting node
node 1

node 2

node 3

bus

Legend: CAS Frame header Frame body Noise

Figure 3.6: Traces extracted from the FlexRay startup phase model.
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3.6.c, where the following key configuration values are used.

gdSampleClockPeriod 0.0125 µs pSamplesPerMicrotick 2
pMicroPerMacroNom 240 gdTSSTransmitter 9 gdBit
gdStaticSlot 4 MT gPayloadLengthStatic 3

Resetting node The state space is deadlock free, but neither of the properties hold.
This violates requirement 2111 nr. 9 in [Fle05c]. Although this scenario was already
known (it was described in [Ste05b]), the emergence of the trace in Figure 3.6.d gives
us confidence that our model is correct. The trace shows that the leading node may
cause startup of the network to fail by resetting itself every time it has sent a frame. In
fact, it would just have to send the frame header, but the way we modelled our reset
behaviour does not allow this.

It should be noted that in this scenario it is required that node 1 be the faulty node,
which is not necessary in the scenarios for deaf and mute nodes.

Noisy channel The results depend very much on the parameters of the noise model.
For an arbitrary noise pattern, it is obvious that the system will not start up. The
channel could simply decide to corrupt all traffic going through it. The noise model
we chose guarantees that some information will come through. Checking exactly for
which values of maximum burst size and maximum backoff period the system starts
correctly is too big a task, but simply trying a few settings soon gives an idea of how
robust the system is. We made the following observation.

If there is noise on the channel for too long while nodes are trying to commence the
startup procedure, then obviously startup may fail. The interesting scenarios are those
in which some information can be communicated. However, if the minimum backoff
time is less than the time needed for fault-free startup, then one of the sync frames
of the leading coldstart nodes can always be corrupted, causing either the schedule
initialisation or the consistency check of the other nodes to fail. If the presence of noise
is the only anomaly in the system, then the minimum backoff time being at least the
time required for fault-free startup is enough to guarantee that the system will come
up.

It is interesting to note that in the verification of these properties, memory usage
was not the bottleneck; the largest model used in our verification was that in which
the resetting node was modelled, which consisted of around 26 million states and
76 million transitions. Generating this state space is rather time-consuming however,
most likely due to the multi-way communication used to model the clock tick, which
can give rise to rather large guard expressions.

The verification of properties on the network via instantiation of parameterised
Boolean equation systems suffers from a similar problem. Although solving the gen-
erated equation system can be done quickly, generation takes a lot of time. This is
currently preventing us from performing verification on models of networks with more
than three nodes.
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3.4 Related work

The FlexRay protocol has been studied quite extensively, from different perspectives.
In this section we give a brief overview of previous studies known to us, and describe
the aspects that these studies cover.

The German Verisoft project2 is a project in the automotive realm that has the
verification of the FlexRay protocol as a sub-goal. Within this project, Kühnel et al.
aim to provide a framework in which distributed applications can be verified if they
use a combination of an OSEKTime compliant (real-time) operating system, FTCom
(a fault-tolerant communication layer for OSEKTime operating systems) and FlexRay
communication [KS06b]. They use the FOCUS [BS01] language as a basis for their
toolkit. A model is created on a specification that is “based on” the FlexRay protocol
specification version 2.0. They apply the following abstractions to simplify their model
[KS06a]:

1. All clocks are synchronized, i.e. clock synchronization is not modelled.
2. Start-up behaviour is not modelled (because the clocks are synchronised).
3. The coding/decoding process is not modelled.
4. Bus guardians are not modelled.
5. Only the static segment of a communication cycle is modelled, not the dynamic

segment.
6. Slots are assumed to have a size of one tick in FOCUS.
7. Lossiness of the channel is not modelled.
8. Single-channel nodes are modelled.

The above lists the aspects of FlexRay that are not modelled, but we could not find a
textual explanation of the part of FlexRay that is incorporated in the model. Instead,
a specification in FOCUS is given directly, and it is shown—using a theorem prover—
that the used interface specification of the FlexRay component is indeed refined by the
presented model [Spi06].

The clock synchronization mentioned in abstraction 1 is a modification of a clock
synchronisation protocol described by Lundelius and Lynch [LL84]. Barsotti et al. have
verified (amongst other protocols) the latter [BNT07; Fon+05] using a combination of
a theorem prover and an SMT3 solver. Zhang notes, however, that the correctness of
the FlexRay clock synchronisation protocol does not trivially follow from the correct-
ness of Lundelius and Lynch’s algorithm [Zha06].

The start-up behaviour (not modelled because of abstraction 2) is addressed by
Malinsky in [Mal08; MN10]. He uses UPPAAL to create a timed-automata representa-
tion of a system consisting of two coldstart nodes and one non-coldstart node. Using a
few different settings for a number of FlexRay parameters, this system is checked for
deadlock, and it is checked that the system starts up normally. It should be noted that
this setup is not a valid FlexRay setup, because in a network with three nodes all nodes
must be coldstart nodes, according to [Fle09]. However, the requirements document

2http://www.verisoft.de/SubProject6.html
3Satisfiability Modulo Theories
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[Fle05c] does state that startup must succeed when, due to a fault, only two coldstart
nodes are active.

Local bus guardians [Fle05b] are considered by Zhang, who proves three func-
tional properties under the assumption of synchronised clocks [Zha08]. This partially
addresses abstraction 4, although central bus guardians [Fle05a] are not taken into
account. Zhang does however mention research done towards systems employing a
central bus guardian in another industry standard, Time-Triggered Architecture4.

Pop et al. have looked into properties related to the dynamic segment in a FlexRay
communication cycle as meant in abstraction 5. Their analysis is however of a rather
different kind, as they provide a schedulability analysis based on a correctly working
protocol [Pop+08]. Such results can be extremely useful in proving correctness of a
distributed application, as it may guarantee that—under given circumstances—data
will travel through the system.

Botaschanjan et al. present a methodology that uses the framework developed
in the Verisoft project [Bot+06]. The method aims at formally modelling tasks (a
concept taken from the automotive industry) in the FOCUS tool. The application logic
can then be verified, while automatic, verified code generation should ensure that
these properties still hold in the deployed system. Later this approach is refined and
formalised [Bot+08].

Steiner uses the SAL model checker to find failures in the startup protocol [Ste05a;
Ste05b]. He identifies a scenario in which the system does not start up due to a single
fail-silent node.

3.5 Closing remarks

We have modelled a 3-node FlexRay network during communication start-up, using the
mCRL2 modelling language. The core of the model was constructed by translating SDL
specifications of the process operation control process on every node, which implements
most of the discrete behaviour of a node during start-up. We formulated two properties
on the model in the first-order modal µ-calculus.

Analysis of the model revealed two violations of the FlexRay requirements, one of
which is a scenario that was not known before. This error could be detected because
our model captures more details of the specification than the models used in [Ste05a].

It would be interesting to check the same properties on a 4-node network, as the
newly uncovered fault scenario seems to rely on the current, very minimal setup. Cur-
rently the verification of a 4-node network is too time consuming. The culprit seems
to be the multi-way communication that is used to implement our assumption of syn-
chronously running nodes. We consider it future work to see if this problem can be
avoided by choosing a different synchronisation method, or if it can be remedied by
preprocessing the specifications that are currently processed directly by the mCRL2
toolset.

If the aforementioned scaling issues can be overcome, it would be interesting to
also extend the model by adding more detail to the MAC, FSP and CODEC processes

4http://www.vmars.tuwien.ac.at/projects/tta
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defined in the protocol specification, in the same manner as was now done for the POC
process.

Although the FlexRay standard is declared final, and therefore the issues that were
discovered can not be addressed by changing the standard, the use of (local or central)
bus guardians can prevent the described failures. Kordes et al. describe how such an
approach can be used to prevent the failures described in this chapter [Kor+14].



Chapter 4

A succinct translation from
CTL* to FO-Lµ

In the previous chapter, we used mCRL2, a process algebraic behavioural specification
formalism endowed with data and time, which is used extensively to model real life
systems [Cra+13; GM14]. Properties about the behaviour of processes are described
in variant of Lµ that is enriched with data and time, which we shall call first-order
modal µ-calculus, or simply FO-Lµ [GW05a]. Lµ [Koz83; Eme97] is an extension of
Hennessy-Milner logic [HM80] with least and greatest fixpoint operators.

By using data in mCRL2, one can specify state machines with an infinite action
alphabet, giving rise to the need for a formalism that can express behavioural prop-
erties over such systems. FO-Lµ, in which quantification over data can be used and
in which fixpoint variables may have data parameters, fulfills this need. Like Lµ, it
is very expressive, but it is more practical because it is syntactically less minimalistic.
Over the years, theories [GM99; GW05b] and open-source tools have been developed
to verify properties in FO-Lµ.

Already in 1986, Emerson and Lei suggested that Lµ might serve as a uniform
model checking framework, and showed that CTL can be translated succinctly into Lµ.
However, they also noted that the only known translation from CTL* to Lµ was not
succinct [EL86]. But if Lµ is to become a framework for model checking, it is certainly
of importance that system properties can be expressed in a formula that is roughly
comparable in size with a CTL* formula.

The original translation that Emerson and Lei mentioned consisted of the compo-
sition of an unpublished translation from CTL* to PDL-∆ by Wolper, and a translation
from PDL-∆ to Lµ [EL86]. A simpler translation procedure was proposed in [Dam92],
but this translation still yields formulae doubly exponential in the size of the input
formula. Only in 1996, this translation was improved upon by Bhat and Cleaveland
with an algorithm that translates CTL* to an equational variant of Lµ, only causing a
single exponential blowup [BC96].

In this chapter, we show that a linear translation to the first-order modal Lµ is
possible using only very simple data types. We use a strategy similar to that of Bhat
and Cleaveland: we first focus on translating LTL, and then extend the translation to
handle CTL* formulae.

From the context of the mCRL2 toolkit, there is also a very practical reason to have
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a succinct translation from LTL or CTL*. For those unfamiliar with the modal Lµ, or
for those who favour these logics over Lµ (and admittedly, many people do so at the
time of writing), a linear translation enables us to easily use available Lµ-checkers to
verify properties formulated in these other formalisms also. To support this, we show
that model checking a translated formula is as efficient as the most efficient known
algorithms for model checking the original.

This chapter is structured as follows. Section 4.1 shows how an LTL formula can
be represented by a Büchi automaton. In section 4.2, we present the first-order modal
µ-calculus FO-Lµ to which LTL formulae are translated in section 4.3. This translation
is then lifted to one for CTL* in section 4.4.

4.1 Translation from LTL to Büchi automata

In this chapter, we assume that all Kripke structures are finite, and have a total transi-
tion relation (we are using the CTL* definition from Section 2.4, which is only defined
for Kripke structures with a total transition relation).

As we stated in the introduction, we start by translating LTL formulas to FO-Lµ.
Recall from the preliminaries that LTL is the subset of CTL* formulas of the form A f ,
in which A and E do not occur in f .

Below we sketch how to create a generalized Büchi automaton B for an LTL formula
A f of which the accepted language consists of all words (paths) that satisfy ¬ f . If
there is an accepting run of this Büchi automaton on some Kripke structure, then
that Kripke structure must have a path that satisfies ¬ f . If no accepting run can be
found, it is therefore safe to conclude that ¬ f does not hold on all paths, and therefore,
because LTL is closed under negation, f must hold on every path. The definitions below
construct a Büchi automaton with this property for an LTL formula. These definitions
are equivalent to those in [BK08], to which we refer for a full explanation of this model
checking technique.

If A f is an LTL formula, then we define the closure of f , denoted cl( f ), to be the
set of all subformulae of f and their negation. Double negations are omitted, i.e.,
formulae of the form ¬¬g are represented by g. For example, cl(a U ¬b) is defined to
be the set {a,¬a,¬b, b, a U ¬b,¬(a U ¬b)}.

Given an LTL formula A f over atomic predicates AP, the LTL automaton for f is the
generalized Büchi automaton B f = 〈B, 2AP,→,F , B0〉, defined as follows.

– B is the largest subset of 2cl( f ) such that for all S ∈ B we have the following:

– ¬g ∈ S iff g /∈ S
– g ∧ h ∈ S iff g ∈ S and h ∈ S
– if h ∈ S and g U h ∈ cl( f ), then g U h ∈ S
– if g U h ∈ S and h /∈ S, then g ∈ S

– →A is the largest subset of B × 2AP × B such that for all S →A S′:

– A= S ∩ AP
– Xg ∈ S iff Xg ∈ B and g ∈ S′
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– g U h ∈ S iff g U h ∈ B and either h ∈ S, or g ∈ S and g U h ∈ S′

– F = {FgUh | g U h ∈ cl( f )}, where FgUh = {S ∈ B | g U h /∈ S or h ∈ S}
– B0 = {S ∈ B | ¬ f ∈ S}

Theorem 4.1. Let A = 〈A, AP,→,`〉 be a Kripke structure, a ∈ A and let A f be an LTL
formula over AP. Then A, a |= A f if and only if B f has no accepting run on a.

Proof. The generalized Büchi automaton B f is identical to G¬ f defined in Theorem 5.37
in [BK08]. This theorem says that the infinite words of A that satisfy ¬ f are exactly
those in the ω-language of G¬ f . In other words, for every infinite path a0→ a1→ . . .

in A that satisfies ¬ f , there is an accepting path b0 −−−→
`(a0) b1 −−−→

`(a1) . . . in B f , and vice
versa. The path b0 −−−→

`(a0) b1 −−−→
`(a1) . . . is an accepting run of B f on A.

An LTL automaton BG = 〈BG , L,→G , BG
0 ,F〉 can be transformed to a normal Büchi

automaton by making a copy for every acceptance set and linking those copies together
cyclically. This construction is also explained in [BK08]. We give a precise definition
here. Suppose that k = |F | for some k and f : {0, . . . , k − 1} → F enumerates F
in an arbitrary way. A Büchi automaton that is equivalent to BG is given by B =
〈B, L,→, B0, F〉, where:

B = BG × {0, . . . , k− 1}

B0 = {〈S, 0〉 ∈ B | S ∈ BG
0 }

F = {〈S, i〉 ∈ B | S ∈ f (i)}

and where→ is defined as follows:

〈S, i〉 →A 〈S′, j〉 iff S →A
G

S′ and

¨

j = i S /∈ f (i)
j = (i + 1)mod k S ∈ f (i)

The resulting Büchi automaton accepts the same language as BG .

4.2 First-order Lµ

In this section we introduce a first-order extension of Lµ, which we call FO-Lµ. It is a
state-based variant of the (action-based) logic described in [GM99], and a first-order
extension of the logic described in [BC96]. The logic is essentially a many-sorted first-
order logic, extended with the box modality from Hennesy-Milner logic and a fixpoint
operator.

Formulas of FO-Lµ are interpreted on a Kripke structure, i.e., ifϕ is a FO-Lµ formula
and A is a Kripke structure, we may ask whether ϕ holds in a state s of A. As for other
temporal logics, we denote the statement that ϕ holds in s by A, s |= ϕ.

Before we formally define the logic, we will first illustrate the concept with some
examples. Consider the formula ϕ(N), interpreted over a Kripke structure A, and
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defined as follows, in which ≈ denotes the equality relation on natural numbers (to
avoid confusion with other syntactic elements).

ϕ(N)¬ µX (n: N= N) . n≈ 0∨ (p ∧ [·]X (n− 1))∨ [·]X (n)

This formula holds in any state from which p holds at least N times on every path
starting in that state. The fixpoint operator assigns to X a predicate such that X (n)
equals the expression right of the period for all n ∈ N, and then the initialization ‘= N ’
expresses that the entire formula denotes the predicate X (N) obtained in this way.

Note that X (0) always holds (because of the n≈ 0 disjunct). Therefore, A, s |= ϕ(0)
for every state s. X (1) holds in any state in which p holds: the disjunct p∧ [·]X (n−1)
requires that p holds in the current state, and that X (n− 1) (in this case: X (0)) holds
in all successor states. As X (0) holds in all states, so in particular for all successor
states. So A, s |= ϕ(1) for at least all s labelled with p. X (1) also holds in states from
which all paths reach a state labelled with p: if a state s can only reach states s′ for
which X (1) holds in one step, then the disjunct [·]X (n) is true, which means that X (1)
must also hold for s. Inductively continuing this argument, X (1) must therefore hold
for all states that eventually reach a state labelled with p. The least fixpoint operator
µ requires that X (1) is chosen as small as possible, so X (1) holds only for the states
we just identified. Another induction shows that for any N and s, A, s |= ϕ(N) if and
only if all paths from s visit a p-labelled state at least N times.

In a similar way, we can define a property that says that from a state, one can stay
in a p-labelled state for any finite amount of time, after which a state is visited that is
no longer labelled with p:

∀N:N µX (n: N= N) . (¬p ∧ n≈ 0)∨ (p ∧ 〈·〉X (n− 1))

Formulas of the form 〈·〉ψ are the dual of [·]ψ: they express that the current state has
at least one successor for which ψ holds. A similar reasoning can now be followed as
before to see that this formula expresses the desired property.

Note that in the examples above, we used quantification over natural numbers, a re-
lation on natural numbers (equality), and a function from natural numbers to natural
numbers (the − operator). Furthermore, we used quantification over a sort (quantifi-
cation over natural numbers, as opposed to quantification over the Booleans). To give
a semantics to expressions like these, we will associate with every formula a structure
D = 〈Σ,D,I〉, which will be used to interpret them. Sorts are then interpreted as
subsets of D, and quantification in formulas then ranges over these subsets. In this
chapter, we will always be using the same structure. This structure, along with some
notation and definitions to deal with our multi-sorted setting, is detailed in the next
section.

4.2.1 Data

We assume throughout the chapter that we are working in the context of a structure
D = 〈Σ,D,I〉 with signature Σ = 〈R,F ,ar〉, for which R = ;. We deviate from our
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usual notation to stay closer to notational conventions used in other papers about
modal µ-calculi, and write ¹tº rather than tA to denote the interpretation of t in A.

Because we are working in a many-sorted setting, we extend Σ with an additional
set S of sorts (here we deviate from our usual notion of signature). With each sort
D ∈ S, we associate a semantic set ¹Dº ⊆ D.

Function symbols have a sort; that is, every function symbol f with arity ar( f ) = n
is assigned a sort D1 × . . .× Dn → D0 with Di ∈ S for all 0 ≤ i ≤ n (so in particular, if
ar( f ) = 0, then its sort is some D0 ∈ S). Terms are built in the usual way, but with one
extra restriction. For a term f (t1, . . . , tn), in which f has sort D1 × . . .× Dn→ D0, we
require that ¹sort(t i)º ⊆ ¹Diº for all 1≤ i ≤ n.

We assume the existence of a function sort on terms, that assigns to every variable
v ∈ V a single sort sort(v) ∈ S. For a composite term t = f (t1, . . . , tn) with outer
symbol f of sort D1 × . . .× Dn→ D0, we define sort(t) = D0.

To be able to define a fixpoint operator, we introduce a set X of second-order
variables. Each X ∈ X is assigned an arity ar(X ) and a sort D1 × . . .× Dar(X ).

Rather than having a single environment that assigns values to variables, we have
separate environments for first-order variables and for second-order variables, fol-
lowing the notation in [GW05a]. So-called data environments assign values from
¹sort(v)º to first-order variables v ∈ V. Data environments are usually called δ,δ′,
and so on.

Predicate variables must be interpreted in the context of a Kripke structure. Given
a Kripke structure with states S, predicate environments assign a function of the type
¹D1º× . . .× ¹Dnº→ 2S to every X ∈ X of sort D1 × . . .× Dn.

We write δ[d 7→ v] to denote the data environment δ′ for which δ′(d ′) = δ(d ′) for
all d ′ 6= d and δ′(d) = v. Similar notation is used for predicate environments.

We assume the existence of a sort B and constant function symbols t, f, representing
the Booleans, with ¹Bº = B = {t, f} and a sort N , representing the natural numbers,
with ¹Nº = N. For the natural numbers, we assume that we have constants 0,1, etc.,
such that ¹0ºδ = 0, ¹1ºδ = 1, and so on.

4.2.2 Syntax and semantics

FO-Lµ formulas reason about Kripke structures, that is, they partition the states of a
Kripke structure into a set for which the formula holds, and a set for which it does not
hold. The syntax and semantics of FO-Lµ therefore refer to the Kripke structure that it
is evaluated on. For the rest of the chapter, fix a finite Kripke structure A= 〈A, AP,→,`〉.
We will assume that every FO-Lµ formula we encounter is evaluated on A.

Syntax The syntax of a FO-Lµ formula is defined by the following grammar:

ϕ,ψ ::= t | X (t1, . . . , tn) | ¬ϕ | ϕ ∧ψ | [·]ϕ | ∀d:D ϕ |
µX (d1 : D1 = t1, . . . , dn : Dn = tn) . ϕ

In the above, t, t1, etc. are terms, d, d1, . . . ∈ V are first-order variables, D, D1, . . . ∈ S
are sorts and X ∈ X is a fixpoint variable. We require that X has sort D1× . . .×Dn and
sort(di) = Di and ¹sort(t i)º ⊆ ¹Diº for all 1≤ i ≤ n.
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Additionally, we require that sort(t) ⊆ B∪AP∪ 2AP. Intuitively, t is a predicate on
states: t hold in all states, f holds in no state, p ∈ AP holds in those states a such that
p ∈ `(s), and P ⊆ AP holds in those a such that P = `(s).

The fixpoint operator has the same binding strength as the universal quantifier;
both bind weaker than all other operators. When a fixpoint variable has arity zero,
then the parameter list, including the parentheses, is omitted.

The size of a formula ϕ, denoted |ϕ|, is the number of subformulae it contains. The
size of data expressions is defined in the same manner.

Semantics The interpretation of a FO-Lµ formula ϕ in the context of A, a data en-
vironment δ, a predicate environment θ is denoted by ¹ϕºθδ. It defines the set of
states of A for which the formula holds, given specific values for δ and θ . The fact
that a formula holds in a state a of A, in the environments δ and θ , i.e., the fact that
a ∈ ¹ϕºθδ, is denoted A, a |=θ ,δ ϕ. If A, a |=θ ,δ ϕ for every θ and δ (this holds for
any closed formula), then we write A, a |= ϕ. Since we have fixed A for this chapter,
we will usually omit it.

The formal definition of ¹ϕºθδ is given in Table 4.1. In this table, the endofunction
T calculates, given a value for X , the function from ¹D1º × . . . × ¹Dnº to 2S that ϕ
induces. The least fixpoint of the function is then used to give an interpretation to
X , effectively equating the interpretations of X (t1, . . . , tn) and ϕ[t1/d1] . . . [tn/dn] in
the scope of the fixpoint binder (where t i/di denotes the syntactic replacement of
unbound occurrences of di by t i in terms occurring in ϕ).

We use the following standard abbreviations to denote some useful derived op-
erators, where ϕ[¬X/X ] stands for the expression ϕ in which every occurrence of
X (t1, . . . , tn) for unbound X has been replaced by ¬X (t1, . . . , tn):

ϕ ∨ψ¬ ¬(¬ϕ ∧¬ψ)
ϕ⇒ψ¬ ¬ϕ ∨ψ
ϕ⇔ψ¬ (ϕ⇒ψ)∧ (ψ⇒ ϕ)
〈·〉ϕ ¬ ¬[·]¬ϕ
∃d:D ϕ ¬ ¬∀d:D ¬ϕ

νX (d1 : D1 = t1, . . .) . ϕ ¬ ¬µX (d1 : D1 = t1, . . .) . ¬ϕ[¬X/X ]

It is important to note that the least fixpoint of T in Table 4.1 does not always ex-
ist. However, if in the above definition, ϕ can be transformed to positive normal
form [BS06], in which negation only occurs on the level of atomic propositions and
in which all bound variables are distinct, then the existence of such a fixpoint is guar-
anteed. Let X = ¹D1º× . . .× ¹Dnº. The claim that this fixpoint exists is justified by
the fact that we can define an ordering v on X→ 2S (which is the domain of T) such
that F v G if and only if F(v1, . . . , vn) ⊆ G(v1, . . . , vn) for all v1 ∈ ¹D1º, . . . , vn ∈ ¹Dnº.
Then 〈X → 2S ,v〉 is a complete lattice and because T is monotonic over this lattice
(see [GM99]), Tarski’s theorem [Tar55] can be applied to establish that it has a least
fixpoint. Furthermore, this fixpoint may be approximated by applying T a number of
times to the infimum of the lattice (in case of a least fixpoint) or to the supremum of
the lattice (for a greatest fixpoint).
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4.3 Translating LTL to FO-Lµ

In this section we provide a translation of LTL to FO-Lµ. We first remark that this trans-
lation is not straightforward, in the sense that a simple syntactic translation procedure
has not been found. We illustrate the difficulty with a small example. Consider the
following two standard translations from LTL to Lµ.

A p U q
trans
= µX . q ∨ (p ∧ [·]X ) A p R q

trans
= νX . q ∧ (p ∨ [·]X )

The above translations appear often in literature, and at first sight seem very conve-
nient. For example, it is easy to see that a translation for AFq = t U q and AGq = f R q
can be obtained from the above by simply substituting p with t and f respectively,
yielding µX . q ∨ [·]X and νX . q ∧ [·]X respectively. The CTL formula AFAG q can
be obtained in a similar manner, yielding µX . (νY . q ∧ [·]Y ) ∨ [·]X . However, the
LTL formula AFGq cannot be obtained by the same simple syntactic replacing, as we
only have patterns to translate the state formulas AFq and AGq, but not for the path
formula Gq (for a more detailed treatment on the expressive power of CTL and LTL,
including an explanation of this specific case, see [HR04]). The following Lµ formula
is a proper translation of AFGq.

µX . νY . (q ∧ [·]Y )∨ [·]X (4.1)

¹tºθδ ¬















A, ¹tºδ = t

;, ¹tºδ = f

{a ∈ A | ¹tºδ ∈ `(a)}, ¹tºδ ∈ AP
{a ∈ A | ¹tºδ = `(a)}, ¹tºδ ⊆ AP

¹X (t1, . . . , tn)º
θδ ¬ θ (X )(¹t1º

δ, . . . ,¹tnº
δ)

¹¬ϕºθδ ¬ A\ ¹ϕºθδ

¹ϕ ∧ψºθδ ¬ ¹ϕºθδ ∩ ¹ψºθδ

¹[·]ϕºθδ ¬ {a ∈ A | ∀a′∈A a→ a′⇒ a′ ∈ ¹ϕºθδ}

¹∀d:D ϕº
θδ ¬

⋂

v∈¹Dº

¹ϕºθδ[d 7→v]

¹µX (d1 : D1 = t1, . . . ,
dn : Dn = tn) . ϕºθδ ¬ (lfpT)(¹t1º

δ, . . . ,¹tnº
δ)

with predicate transformer T defined as:

T(F : ¹D1º× . . .× ¹Dnº→ 2A)¬ λv1, . . . , vn . ¹ϕºθ[X 7→F]δ[d1 7→v1,...,dn 7→vn]

Table 4.1: Semantics of FO-Lµ over a Kripke structure 〈A, AP,→,`〉.
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We note that this formula can be replaced by µX . νY . (q ∧ [·]Y )∨ (¬q ∧ [·]X ), which
might seem stronger at first sight. The additional conjunct however does not change
the meaning of the formula, because both fixpoints must identify the same set of nodes,
and therefore in particular [·]X ⇒ [·]Y . We use a similar construction in this chapter
to make the complexity analysis easier, even though we do not need this alternative
formulation for our proof of correctness.

Notice that formula (4.1) expresses that eventually, any path will only pass through
states that satisfy q. If q is taken to mean ‘is not an accepting state’, and if we view the
Büchi automaton as a Kripke structure by ignoring the edge labels, then this formula
expresses the absence of an accepting path in a Büchi automaton. Because a translation
from LTL to Büchi automata is already known, it seems natural to use this formula as a
framework for our translation. We will represent the Büchi automaton that is obtained
from the translation in Section 4.1 using the notion of data in FO-Lµ.

Before we start our translation, we illustrate the use of data with some examples.
The introduction of data allows us to formulate certain properties more concisely, by
exploiting repetitive structures in the formula. Consider for instance the following
formula.

µX . 〈·〉X ∨ (p(0)∧µY . 〈·〉Y ∨ (p(1)∧µZ . 〈·〉Z ∨ p(2)))

This formula expresses that first a state in which p(0) holds is reachable, then a state in
which p(1) holds and finally one in which p(2) holds. This formula (and any extension
thereof) can also be expressed as follows:

µX (i : N = 0) . 〈·〉X (i)∨ (p(i)∧ 〈·〉X (i + 1))∨ i ≈ 3

In the above, ¹i ≈ 3ºδ has the standard arithmetic meaning of ‘¹iºδ = ¹3ºδ ’ (we
use a different equality symbol than usual to distinguish it from the syntactic equality
relation on FO-Lµ formulas). Note that the formula above has collapsed the fixpoints
into a single one, and that the number of boolean operators has also diminished.

Another example is the following formula, which expresses that out of the first 2k
states visited, k states must be labelled with p:

µX (n: N = 0, m: N = 0) . (n≈ k ∧m≈ k) ∨
([·]X (n+ 1, m)∧ p) ∨
([·]X (n, m+ 1)∧¬p)

In this formula, m and n count the number of p-states (resp. ¬p-states) that have been
seen; initially they are set to zero, and after every step, 1 is added to n if the previous
state was labelled with p, or to m if it was not. The size of this formula is O(1), where
a straightforward encoding in the normal Lµ would take O(2k) space (or O(k2) in the
equational variant used in [BC96]).

We now return to the problem of translating LTL to the first-order Lµ. We base
our translation on Büchi automaton representations of LTL formulas as described in
Section 4.1. This representation is encoded into a data structure consisting of booleans
and natural numbers. We express a FO-Lµ property that in a sense ‘synchronizes’ steps
in the Büchi automaton (utilizing the data structure) with steps that are made in the
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transition system against which the formula is checked. Keeping this synchrony intact,
we can use the standard translation of AFGq to express that this Büchi automaton does
not accept any path of the transition system.

Formally speaking, we assume that we are given an LTL automaton B f , and con-
struct a FO-Lµ formula that is true in a state s0 of the Kripke structure A it is interpreted
on if and only if L(A) ∩ L(B f ) = ;, i.e., the accepted language of the product of the
Kripke structure and the Büchi automaton is empty. Using Theorem 4.1, we may then
conclude that A |= f .

To aid the reader, we adopt the convention to use s (and s′, s0, etc.) for variables
(which belong to the syntactic domain) denoting Kripke structure states, q, q′, etc., for
variables denoting Büchi automaton states, and a and b for the actual (semantic) states
of Kripke structures and Büchi automata, respectively. For Büchi automaton labels we
use variables p denoting subsets P ⊆ AP.

In the formula we construct, we use the sets and relations defined by our Büchi
automaton. We do distinguish between syntax and semantics of these sets and relations
in our notation; that is, we assume for a Büchi automaton 〈B, L,→, F, B0〉 that there
are data sorts B and L, a mapping→ and sets F and B0 that behave like their semantic
counterparts. For instance, we assume they are defined such that ¹q →p q′ºθδ = ;
is equivalent to ¬¹qºδ −−→¹pºδ

¹q′ºδ. In a similar way we take the liberty of using the
Boolean connectives and the quantifiers both as syntactic elements of FO-Lµ, and as
semantic first-order operations.

Definition 4.1. We define a translation function tr that generates a FO-Lµ formula from
a Büchi automaton. Let B = 〈B, L,→, F, B0〉 be a Büchi automaton.

tr(B) = ∀q0:B q0 ∈ B0⇒ X

where X is a syntactic abbreviation for:

X= µX (q : B = q0) . Y

Y= νY (q : B = q) . Z

Z= ∀p:L ∀q′:B (p ∧ q →p q′)⇒ [·]
�

(X (q′)∧ q ∈ F)∨ (Y (q′)∧ q /∈ F)
�

The variable q is bound twice in this formula, but because the variable declared
second (as a parameter of Y ) is always assigned the value of the first (the parameter
of X ), this can cause no confusion. In the remainder of this document, the variables
q from this formula can therefore be thought of as ‘the current state in the Büchi
automaton’. This makes the presentation of the proofs that follow a little bit easier.

Note that Z quantifies over those q′ and p that form a single step in the Büchi
automaton from state q. The assertion p ensures that the required property is only
checked along transitions in the Büchi automaton that have the label of the current
state in the Kripke structure. In this manner, the quantifier and implication realise the
aforementioned synchrony. In effect the formula µX . νY . [·]X ∨ (q /∈ F ∧ [·]Y ) is
checked on the paths of the Büchi automaton that have a corresponding path in the
Kripke structure (i.e., the runs of B on A).
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If θ is a predicate environment and δ a data environment, then the semantics of X
on A under these environments is ¹Xºθδ. The definition of semantics for FO-Lµ says
this is equal to (lfpT)(¹qºδ), where T : (B→ 2A)→ (B→ 2A) is defined as:

T(X̂ ) = λb . ¹Yºθ[X 7→X̂ ]δ[q 7→b]

As explained in Section 4.2, we can calculate this fixpoint by starting with an initial
approximation X̂ 0 that is the minimal element of the lattice 〈B → 2A,v〉, and then
choosing the next approximation X̂ m+1 = Φ(X̂ m). Concretely, the approximations for
lfpT are given as follows:

X̂ 0(b) = ;

X̂ m+1(b) = ¹Yºθ[X 7→X̂ m]δ[q 7→b]

Note that to compute an approximation for X, we must evaluate the formula Y, the so-
lution of which is again a fixpoint. Therefore, every approximation of X gives rise to a
fixpoint computation for Y under the current approximation for X. This fixpoint compu-
tation can again be done via approximation, leading to the following approximations
for Y.

Ŷ 0
m(b) = S

Ŷ n+1
m (b) = ¹Zºθ[X 7→X̂ m,Y 7→Ŷ n

m]δ[q 7→b]

Note that X̂ m(b) = Ŷ n
m(b) for large enough n. Using these definitions, we show the

relationship between the Lµ formula of definition 4.1 and the Büchi automaton it was
generated from.

For the rest of this section, fix a Büchi automaton B = 〈B, L,→, B0, F〉. Remember
that we already fixed some Kripke structure A = 〈A, AP,→,`〉, and let a0 ∈ A and
b0 ∈ B0.

Lemma 4.1 (⇒). If there is an accepting run of B on a0 that starts in b0, then a0 |=/ θ ,δ X
for all θ and δ such that δ(q0) = b0.

Proof. Let θ and δ be such that δ(q0) = b0. Suppose that there is such an accepting
run, then this is witnessed by sequences a0, a1, . . . and b0, b1, . . . such that ai → ai+1

and bi −−→
`(ai) bi+1 for all i ≥ 0. We prove that a0 |=/ X by showing that ∀m,i∈N ai /∈ X̂ m(bi)

by using induction on m. Because ¹Xºθδ = X̂ m for large enough m, the required result
then follows.

For m= 0, this holds trivially because X̂ 0(bi) = ; for all i. For m= l + 1, assume:

∀i∈N ai /∈ X̂ l(bi) (IH)

We need to show that ∀i∈N ai /∈ X̂ m(bi), which is equivalent to the following:

∀i∈N ai /∈ ¹Yºθ[X 7→X̂ l ]δ[q 7→bi]
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Let i ∈ N. It is sufficient to prove that there is some n for which ai /∈ Ŷ n
l (bi). We will

do so by first showing that ai+k (for some k ≥ 0) is not an element of Ŷ 1
l (bi+k), and

then using an inductive argument to show that ai cannot be in Ŷ n
l (bi) for some n≥ 1.

For the induction step of this argument, we need to derive that a j /∈ Ŷ n+1
l (b j) from the

fact that a j+1 /∈ Ŷ n
l (b j+1). We therefore start by investigating the relationship between

a j and a j+1 by expanding the definition of Ŷ n+1
l in a j ∈ Ŷ n+1

l (b j).
Let θ ′ denote θ[X 7→ X̂ l , Y 7→ Ŷ n

l ]. By the definitions of approximation and the
semantics of FO-Lµ, a j ∈ Ŷ n+1

l (b j) is equivalent to the following:

a j ∈ Ŷ n+1
l (b j)

⇔ a j ∈ ¹Zºθ
′δ[q 7→b j]

⇔ a j ∈ ¹∀p:L ∀q′:B (p ∧ q →p q′)⇒ [·]
�

(X (q′)∧ q ∈ F)∨ (Y (q′)∧ q /∈ F)
�

º

θ ′δ[q 7→b j]

⇔ a j ∈
⋂

P∈L,b′∈B

¹(p ∧ q →p q′)⇒ [·]
�

(X (q′)∧ q ∈ F)∨ (Y (q′)∧ q /∈ F)
�

º

θ ′δ[q 7→b j ,p 7→P,q′ 7→b′]

Expanding the definition of FO-Lµ semantics further, we find:

∀P∈L,b′∈B `(a j) = P ∧ b j →
P b′⇒

a j ∈ ¹[·]
�

(X (q′)∧ q ∈ F)∨ (Y (q′)∧ q /∈ F)
�

º

θ ′δ[q 7→b j ,p 7→P,q′ 7→b′]

⇔∀b′∈B b −−→`(a j) b′⇒

a j ∈ ¹[·]
�

(X (q′)∧ q ∈ F)∨ (Y (q′)∧ q /∈ F)
�

º

θ ′δ[q 7→b j ,p 7→`(a j),q′ 7→b′]

⇔∀b′∈B b −−→`(a j) b′⇒∀a′∈A a j → a′⇒

a′ ∈ ¹(X (q′)∧ q ∈ F)∨ (Y (q′)∧ q /∈ F)ºθ
′δ[q 7→b j ,p 7→`(a j),q′ 7→b′]

In particular, we can instantiate the universal quantifiers to derive that if a j ∈ Ŷ n+1
l (b j),

for δ′ = δ[q 7→ b j , p 7→ `(a j+1), q′ 7→ b j+1]:

a j+1 ∈ ¹(X (q′)∧ q ∈ F)∨ (Y (q′)∧ q /∈ F)ºθ
′δ′

Because a j+1 |=/ θ ′,δ′ X (q′) due to (IH), we have an even stronger implication:

for all j, n ∈ N, if a j ∈ Ŷ n+1
l (b j), then a j+1 ∈ Ŷ n

l (b j+1) and b j /∈ F. (∗)

Because b0, b1, . . . is accepting, there must be some k ∈ N such that bi+k ∈ F . Let k be
such. Note that bi+k ∈ F , so we may derive from (∗) that ai+k /∈ Ŷ 1

l (bi+k). Furthermore,
(∗) implies that ai+ j+1 /∈ Ŷ n

l (bi+ j+1)⇒ ai+ j /∈ Ŷ n+1
l (bi+ j) for all j, so by induction on k

we find ai /∈ Ŷ k+1
l (bi). This is sufficient to conclude our proof, as k + 1 witnesses the

existence of some n for which ai /∈ Ŷ n
l (bi).

Lemma 4.2 (⇐). If a0 |=/ θ ,δ X for all θ and δ such that δ(q0) = b0, then there is an
accepting run of B on a0.
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Proof. In this proof, a and a′ are always taken from A, b and b′ from B and n, m and
k from N. Let θ be a predicate environment and δ a data environment such that
δ(q0) = b0. Assume that a0 |=/ θ ,δ X. Define   ⊆ (A× B)2 as 〈a, b〉  〈a′, b′〉 ¬ a →
a′ ∧ b −−→`(a) b′. We first define a ternary predicate G over A× B ×N.

G(a, b, n) =

¨

b ∈ F ∧ a /∈ ¹Xºθδ[q0 7→b], n= 0

∃a′,b′ 〈a, b〉  〈a′, b′〉 ∧ G(a′, b′, n− 1), n> 0

This predicate is true for those a, b and n for which there is a sequence 〈a, b〉  . . . 
〈a′, b′〉 of length n such that b ∈ F and a /∈ ¹Xºθδ[q0 7→b]. We will prove the following
for all a and b.

a /∈ ¹Xºθδ[q0 7→b]⇒∃k G(a, b, k)∧ k > 0. (∗)

Observe that if this implication holds, we can construct an accepting run of B on a
starting in b, for any a, b for which a /∈ ¹Xºθδ[q0 7→b]. In particular we can then do so
from 〈a0, b0〉, because a0 |=/ θ ,δ X is equivalent to a0 /∈ ¹Xºθδ[q0 7→b0] (the assignment to
q0 in the data environment has no effect). Therefore, proving (∗) is sufficient to prove
the lemma.

Tarski’s theorem implies that a /∈ ¹Xºθδ[q0 7→b] is equivalent to ∀m ∃n a /∈ Ŷ n
m(b),

because ¹Xºθδ[q0 7→b] = X̂ m(b) = Ŷ n
m(b) for sufficiently large m and n, and because

Ŷ n
m(b) ⊇ Ŷ n+1

m (b) and X̂ m(b) ⊆ X̂ m+1(b) for all m and n.
Now take arbitrary m, n, a and b such that a /∈ Ŷ n+1

m (b). Filling in the definition of
Ŷ n+1

m (b) and unfolding the semantics of FO-Lµ like we did in Lemma 4.1, this is equal
to

¬∀b′∈B b −−→`(a) b′⇒∀a′∈A a→ a′⇒

a′ ∈ ¹(X (q′)∧ q ∈ F)∨ (Y (q′)∧ q /∈ F)ºθ[X 7→X̂ m,Y 7→Ŷ n
m]δ[q 7→b,p 7→`(a),q′ 7→b′]

Using De Morgan’s law, we find that there are a′ and b′ such that 〈a, b〉  〈a′, b′〉 and

a′ /∈ ¹(X (q′)∧ q ∈ F)∨ (Y (q′)∧ q /∈ F)ºθ
′δ′ ,

where θ ′ = θ[X 7→ X̂ m, Y 7→ Ŷ n
m] and δ′ = δ[q 7→ b, p 7→ `(a′), q′ 7→ b′]. Expanding

the semantics further, we derive:

a′ /∈ ¹(X (q′)∧ q ∈ F)∨ (Y (q′)∧ q /∈ F)ºθ
′δ′

⇔ a′ /∈ ¹X (q′)∧ q ∈ Fºθ
′δ′ ∧ a′ /∈ ¹Y (q′)∧ q /∈ Fºθ

′δ′

⇔ (a′ /∈ ¹X (q′)ºθ
′δ′ ∨ a′ /∈ ¹q ∈ Fºθ

′δ′)∧ (a′ /∈ ¹Y (q′)ºθ
′δ′ ∨ a′ /∈ ¹q /∈ Fºθ

′δ′)

⇔ (a′ /∈ X̂ m(b′)∨ b /∈ F)∧ (a′ /∈ Ŷ n
m(b

′)∨ b ∈ F)

Summarizing our calculation, we have found

∀m,n,a,b a /∈ Ŷ n+1
m (b)⇒

�

∃a′,b′ 〈a, b〉  〈a′, b′〉 ∧

(a′ ∈ Ŷ n
m(b

′)⇒ b ∈ F)∧ (b ∈ F ⇒ a′ /∈ X̂ m(b′))
�

.

(†)



4.3. Translating LTL to FO-Lµ g 63

Let m be a number so large that X̂ m(b) = ¹Xºθδ[q0 7→b] for all b. We now show that

∀n,a,b a /∈ Ŷ n
m(b)⇒∃k G(a, b, k)∧ (k > 0∨ b ∈ F). (‡)

The proof proceeds by induction on n. Suppose n = 0, then Ŷ n
m(b) = Ŷ 0

m(b) = A, and
so the implication holds vacuously.

For n= i+1, let a, b be such that a /∈ Ŷ n
m(b). Note that this implies that a /∈ X̂ m(b).

From (†) we can derive the existence of a′ and b′ such that 〈a, b〉  〈a′, b′〉 and

(a′ ∈ Ŷ i
m(b

′)⇒ b ∈ F)∧ (b ∈ F ⇒ a′ /∈ X̂ m(b′)).

In particular, either b ∈ F , in which case G(a, b, 0) is easily seen to hold because
a /∈ X̂ m(b) which is equivalent to a /∈ ¹Xºθδ[q0 7→b], or a′ /∈ Ŷ i

m(b
′). In the latter case,

use the induction hypothesis to find a k such that G(a′, b′, k) in which case G(a, b, k+1)
also holds.

We now strengthen this result a little by proving

∀n,a,b a /∈ Ŷ n
m(b)⇒∃k G(a, b, k)∧ k > 0.

Note that we only have to consider the case that b ∈ F , because for b /∈ F the result
follows directly from (‡). So assume b ∈ F . Again, the proof proceeds by induction on
n, and again the base case n = 0 is trivial. For n = i + 1, assume a /∈ Ŷ n

m(b) and from
(†) obtain a′ and b′ such that 〈a, b〉  〈a′, b′〉 and a′ /∈ X̂ m(b′). Because a′ /∈ X̂ m(b′),
also a′ /∈ Ŷ k

m(b
′) for large enough k. By (‡) then G(a′, b′, k) for some k > 0. By the

definition of G, then G(a, b, k+ 1).
Applying the result we just found to a0, for which we know a0 /∈ X̂ m(b0), and

therefore a0 /∈ Ŷ k
m(b0) for large enough k, we find that ∃k G(a0, b0, k), which concludes

our proof.

Theorem 4.2. For any a0 ∈ A we have that a0 |= tr(B) if and only if there is no accepting
run of B on a0.

Proof. We start by expanding the semantics of FO-Lµ in a0 |= tr(B).

a0 |= ∀q0:B q0 ∈ B0⇒ X

⇔ a0 ∈ ¹∀q0:B q0 ∈ B0⇒ Xºθδ

⇔ a0 ∈
⋂

b0∈B

¹q0 ∈ B0⇒ Xºθδ[q0 7→b0]

⇔∀b0∈B a0 ∈ ¹q0 ∈ B0º
θδ[q0 7→b0]⇒ a0 ∈ ¹Xºθδ[q0 7→b0]

⇔∀b0∈B b0 ∈ B0⇒ a0 ∈ ¹Xºθδ[q0 7→b0]

⇔∀b0∈B b0 ∈ B0⇒ a0 |=θ ,δ[q0 7→b0] X

By Lemmas 4.1 and 4.2, this holds if and only if there is no accepting run of B on a0.
In other words, any word accepted by A is not accepted by B and vice versa, which
proves the theorem.
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The above proofs, together with Theorem 4.1, lead to the conclusion that we can
translate any LTL formula into an equivalent Lµ formula:

Corollary 4.1. For any LTL formula f and Kripke structure state a, a |= f iff a |= tr(B f ).

4.3.1 Data specifications

We have formulated our translation in such a way that it uses a Büchi automaton
directly (B, →, B0 and F occur in our formula). In order to use existing techniques
[Mad97; DPW08] to be able to automatically check the Lµ formula against a Kripke
structure, and also to exploit the structured manner in which we can build a Büchi
automaton from an LTL formula, we encode B into a datatype which consists of only
Booleans and natural numbers.

Let A f be an LTL formula and let Φ = cl( f ). The generalized Büchi automaton
BA f = 〈B,→, L, F, B0〉 can be described using only Booleans (denoted by B) and natural
numbers (denoted by N). Recall that a state in BA f is a tuple consisting of a subset of
Φ and a counter c ∈ {0, . . . , k− 1}, with k the number of until operators in f .

We use the fact that, given some mapping N : Φ→ {1, . . . , |Φ|} that enumerates Φ,
we can represent 2Φ with the isomorphic domain B|Φ|, by representing a subset G ⊆ Φ
by the tuple 〈b1, . . . , b|Φ|〉 such that bN(g) = t iff g ∈ G. The counter can be represented
by a value from N, and so we may represent states by an element from B|Φ| ×N. We
assume that N( f ) = 1.

Define a sort D with ¹Dº= B|Φ|×N. Define a function P: D→ 2AP that yields for an
element ¹Dº the set of atomic propositions in the set G that this element represents:

P(〈b1, . . . , b|Φ|, c〉) = {g ∈ Φ∩ AP | bN(g) = t}.

Note that an application of P is a valid FO-Lµ formula, as its interpretation is a subset
of AP. Introduce function symbols P, inB, inF, inB0 and to:

sort(inB) = D→ B sort(inB0) = D→ B

sort(inF) = D→ B sort(to) = D× D→ B

Intuitively, these mappings represent predicates on states from the Büchi automaton.
For instance, if a term d of sort D represents some state b in a BA f , then inF(d) will
have the same truth value as the predicate b ∈ F . The inB mapping is needed to
identify terms that represent a valid state in the Büchi automaton (there are subsets
of the closure of f that are not in B, see Section 4.1).

Let U,X,N,C be sets of indices, and let L and R be mappings from indices to indices,
such that for all i, j, k:

– i ∈ U, L(i) = j and R(i) = k if and only if gi = g j U gk,
– i ∈ X and R(i) = j if and only if gi = Xg j ,
– i ∈N and R(i) = j if and only if gi = ¬g j ,
– i ∈ C, L(i) = j and R(i) = k if and only if gi = g j ∧ gk.
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Let U : N→ U enumerate U in an arbitrary way. The definitions of the mappings inB,
inF, inB0 and to are given in Figure 4.1, and can easily be seen to correspond with the
definitions in Section 4.1.

Clearly, this specification is linear in the number of subformulas of f . Note that our
definition of size does not take into account the space needed to represent an identifier,
as for all practical intents and purposes it can be seen as a constant.

We use the fact that 〈b0, . . . , bn, c〉 →p q′ implies to(〈b0, . . . , bn, c〉, q′) and p =
P(〈b0, . . . , bn, c〉) = {a ∈ AP | bI(a)}, where I maps a subformula ψi to its index i.
The Lµ formula in definition 4.1 can be rewritten to the following formula using only
quantifiers over D and using the previously defined mappings (i.e., q ∈ F is replaced
by inF(q), q →p q′ by to(〈b0, . . . , bn, c〉, q′) while replacing all occurrences of p by P(q),
etc.).

∀q:D inB0(q)⇒
µX (q : D = q) .

νY (q : D = q) .

∀q′:D (inB(q
′)∧ P(q)∧ to(q, q′))⇒ [·]

�

(X (q′)∧ inF(q))∨ (Y (q′)∧¬inF(q))
�

Due to the expansion of P(q) to
∧

a∈AP(bI(a) ⇔ a), the formula may grow to a size
linear in | f |.

4.3.2 Complexity

We have given a translation from an LTL formula to a first-order Lµ formula over a
data structure. We now show that model checking the resulting formula against a

inB(〈b0, . . . , bn, c〉) =
∧

i∈N
bi ⇔¬bR(i)

∧

i∈C
bi ⇔ (bL(i) ∧ bR(i))∧

∧

i∈U
(bR(i)⇒ bi)∧ (bi ⇒ (bL(i) ∨ bR(i)))∧

inB0(〈b0, . . . , bn, c〉) = inB(〈b0, . . . , bn, c〉)∧¬b0

inF(〈b0, . . . , bn, c〉) = inB(〈b0, . . . , bn, c〉)∧ (¬bU(c) ∨ bR(U(c)))

to(〈b0, . . . , bn, c〉,
〈b′0, . . . , b′n, c′〉)

=
∧

i∈X
(bi ⇔ b′R(i)) ∧

∧

i∈U
(bi ⇔ (bR(i) ∨ (bL(i) ∧ b′i))) ∧

inF(〈b0, . . . , bn, c〉)⇔ (c′ = (c + 1)mod |U|)

Figure 4.1: Encoding of a generalized Büchi automaton in simple data types.
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Kripke structure has the same time complexity as other LTL model checking methods.
In particular, we establish the same worst-case time complexity as Bhat et al. [BC96].

Theorem 4.3. Let ψ be the Lµ formula that is the result of the above translation for an
LTL formula A f . Verifying ψ on a Kripke structure A can be done in O(|A|) · 2O(| f |) time.

Proof. Note that ¹Dº is finite. Let M = |¹Dº| and let N = |A|. The predicate trans-
former T, defined in the semantics of FO-Lµ as a function of type (¹Dº → 2A) →
(¹Dº→ 2A), can also be interpreted as being of type (2A)¹Dº→ (2A)¹Dº. Using the cor-
respondence between power sets and boolean vectors, we transform the type further to
(BA×¹Dº)→ (BA×¹Dº). As such, the fixpoint of T can be computed as the simultaneous
fixpoint of M · N separate functions of type BA×¹Dº→ B (see, e.g., [AN01]).

We can adapt the semantics of FO-Lµ in the obvious way to deal with this change.
For instance, assume that A= {a1, . . . , aN} and ¹Dº= {d1, . . . , dM}, and let index func-
tion i: ¹Dº∪ A→ N be such that i(di) = i and i(ai) = i for all i. If X̄ = 〈X1, . . . , XM ·N 〉 is
a vector of Booleans, let X̄ i denote the vector 〈X(i−1)N+1, . . . , X iN 〉. We can interpret the
vector X̄ i as a subset of A again by defining a ∈ X̄ i(d) = X(i−1)N+i(a). The definitions
for the fixpoint operator and the predicate transformer then become:

¹µX (d : D = e) . ϕºθδ ¬ 〈(lfpT)N ·(i(¹eºδ)−1), . . . , (lfpT)N ·i(¹eºδ)−1〉

T(X̄ : BA×¹Dº)¬ 〈a1 ∈ ¹ϕºθ[X 7→X̄ 1]δ[d 7→d1], . . . , aN ∈ ¹ϕºθ[X 7→X̄ 1]δ[d 7→d1],
...
a1 ∈ ¹ϕºθ[X 7→X̄ M ]δ[d 7→dM ], . . . , aN ∈ ¹ϕºθ[X 7→X̄ M ]δ[d 7→dM ]〉

Using this transformation, and using the techniques (and notation) from [AN01] to
transform a vectorial fixpoint formula into a system of fixpoint equations, the interpre-
tation of tr(B) on A can be computed as the solutions of 〈Ta1

, . . . , TaN
〉 in the following

equation system:

Ta1

µ
=
∧

b∈B0

Xa1,b

...

TaN

µ
=
∧

b∈B0

XaN ,b

Xa1,b1

µ
= Ya1,b1

...

XaN ,bM

µ
= YaN ,bM

Ya1,b1

ν
= a1 ∈ ¹Zºθ[X 7→〈Xa1,b1

,...,Xa1,bM 〉,Y 7→〈Ya1,b1
,...,Ya1,bM 〉]δ[q 7→b1]

...

YaN ,bM

ν
= aN ∈ ¹Zºθ[X 7→〈XaN ,b1

,...,XaN ,bM 〉,Y 7→〈YaN ,b1
,...,YaN ,bM 〉]δ[q 7→bM ]
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If we inspect Z more closely, we see that every disjunction (either true disjunction or
implication) in that formula has one disjunct that does not contain X or Y . In the
expression ¹Zºθ[...]δ[...] above, those disjuncts can therefore be eliminated, as their
truth value is constant.

Take the right hand side of Yai ,b j
, for example. By expanding the definition of

semantics of FO-Lµ, we find that it is equivalent to:

ai ∈ ¹Zºθ[X 7→〈Xai ,b1
,...,Xai ,bM 〉,Y 7→〈Yai ,b1

,...,YaN ,bM 〉]δ[q 7→b j]

⇔∀b′ b j −−→
`(ai) b′⇒∀a′∈A ai → a′⇒ ((Xa′,b′ ∧ b′ ∈ F)∨ (Ya′,b′ ∧ b′ /∈ F))

The latter can easily seen to be equivalent to
∧

〈a′,b′〉∈S Xa′,b′ ∧
∧

〈a′,b′〉∈S′ Ya′,b′ for some

finite sets S and S′ containing those tuples 〈a′, b′〉 such that ai → a′ and b j −−→
`(ai) b′, and

such that S contains tuples for which b′ ∈ F and S′ those for which b′ /∈ F . Moreover,
the number of outgoing edges from ai and b j bounds both the size of these sets and
the time needed to compute them (by using an appropriate data structure, like edge
lists).

The size of this equation system is therefore O(|A| · |B|), and the time needed
to compute the equation system is linear in its size. The time needed to solve the
equation system is also linear, because the system is disjunctive/conjunctive straight,
that is, the right hand sides of two mutually dependent variables are always both
purely disjunctive, or purely conjunctive [KKV01; GK05]. Because O(|B|) = 2O(| f |)

because of the powerset construction, the theorem follows.

4.4 Translation of CTL*

Assume that tr generates data structures with fresh names every time it is used. We
define a translation tr′ that translates a CTL* formula into a modal Lµ formula. The
intuition is that every CTL* formula can be seen as a CTL structure containing linear
time fragments. Nested linear time fragments form a problem, because we cannot use
the LTL translation on them directly. Instead, we take the innermost fragment (which
must be LTL), and translate that using our translation function. We then replace this
fragment in the original by a placeholder and repeat the procedure. In the translated
fragments, the placeholders are again substituted for the translated counterparts of
the linear time fragment they represent.

Definition 4.2. Two formulae (either Lµ or CTL*) ϕ and ψ are equivalent, denoted
ϕ ≈ψ, when for every Kripke structure A we have A, a |= ϕ if and only if A, a |=ψ for
all a ∈ A.

If ϕ and ψ are both Lµ formula, then we define, given a predicate environment θ
and a data environment δ, ϕ ≈θδ ψ if and only if for every Kripke structure A we have
A, a |=θδ ϕ iff A, a |=θδ ψ for all a ∈ A.

We introduce a set AP′ that is disjoint from AP, which contains for every CTL*
formula f an atomic proposition a f . A function R is defined that takes a CTL* path
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formula, and returns a CTL* formula in which all top level Ag subformulae are replaced
by ag :

R(A f ) ¬ a f R(X f ) ¬ XR( f )
R( f U g) ¬ R( f ) U R(g) R( f ∨ g) ¬ R( f )∨ R(g)
R(¬ f ) ¬ ¬R( f ) R(a) ¬ a

The R̄ function takes a Lµ formula and syntactically replaces every ag ∈ AP′ that occurs
in it by tr′(g). What is left is to define tr′, which takes a CTL* formula and yields a Lµ
formula:

tr′(A f ) =

¨

tr(B f ), ¬∃g Ag ∈ f
R̄(tr′(AR( f ))), otherwise

tr′( f ∨ g) = tr′( f )∨ tr′(g)
tr′(¬ f ) = ¬tr′( f )
tr′(a) = a

It is immediately apparent from this definition that the size of the resulting formula is
again linear in the size of the original.

Lemma 4.3. Let ϕ,χ andψ be a first-order modal Lµ formulae, and let ϕ[χ/ψ] denote
ϕ in which all occurrences of ψ are syntactically replaced by χ. If, for some predicate
environment θ and data environment δ, χ ≈θδ ψ, then ϕ ≈θδ ϕ[χ/ψ], provided that
χ nor ψ contain free variable names (either fixpoint or data) that are bound in ϕ.

Proof. Fix formulae ϕ,χ and ψ. The proof goes by structural induction on ϕ. The
induction hypothesis states that if ϕ′ ∈ ϕ and ϕ′ 6= ϕ, and also χ ≈θδ ψ for some θ
and δ, then ϕ′[χ/ψ]≈θδ ϕ′.

The base cases are trivial: eitherψ does not occur inϕ, in which caseϕ[χ/ψ] = ϕ,
or ϕ =ψ.

The other cases are also very straightforward. We demonstrate the case that ϕ =
µX (d : D = e) . ϕ′. Suppose χ ≈θδ ψ for some ρ and ε. Then ¹ϕ[χ/ψ]ºθδ =
(µT)(¹eºδ), where

T(F : X)¬ λv1, . . . , vn : sort(X ).¹ϕ′[χ/ψ]ºθ[X 7→F]δ[d1 7→v1,...,dn 7→vn].

Because X and d1, . . . , dn do not occur freely in χ and ψ,

¹χºθ[X 7→F]δ[d1 7→v1,...,dn 7→vn] = ¹χºθδ = ¹ψºθδ = ¹ψºθ[X 7→F]δ[d1 7→v1,...,dn 7→vn].

We may substitute ¹ϕ′ºθ[X 7→F]δ[d1 7→v1,...,dn 7→vn] for ¹ϕ′[χ/ψ]ºθ[X 7→F]δ[d1 7→v1,...,dn 7→vn] in
the above using the induction hypothesis. Then (µΦd)(¹eºδ) = ¹ϕºθδ, which implies
that ϕ ≈θδ ϕ[χ/ψ].

Lemma 4.4. Let f be a CTL* formula. If g v f , and h ≈ g, then f ≈ f [h/g], where
f [h/g] is f in which all occurrences of g are syntactically replaced by h.

Proof. The proof is again by induction on the structure of the formula.
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Theorem 4.4. If f is a CTL* formula, then f ≈ tr′( f ).

Proof. Fix a Kripke structure A= 〈A, AP,→,`〉. Our goal is to prove that A |= f if and
only if A |= tr′( f ). We introduce a Kripke structure A′ = 〈A,→, AP ∪ AP′,`′〉, where
`′ is such that for all a ∈ A, p ∈ AP and p f ∈ AP′ we have p ∈ `′(a)⇔ p ∈ `(s) and
p f ∈ `′(a)⇔ p |= A f . In words, A′ is the extension of A such that states in which a
CTL* formula A f holds are labelled with p f . Note that this extension is conservative
in the sense that for all a ∈ A and CTL* formulae f over AP we have A, a |= f iff
A′, a |= f .

We prove for all a ∈ A that A′, a |= f if and only if A′, a |= tr′( f ) by induction on
the structure of f . There are two base cases:

Case f ∈ AP. It follows trivially from the semantics of CTL* and the modal Lµ that
f ≈ tr′( f ) in this case.

Case f = Ag and ¬∃h Ahv g. In this case, f is an LTL formula and is translated using
tr, which was proven to satisfy the desired property in the previous section.

The base of our induction is therefore sound. For the inductive step, we distinguish
three cases.

Case f = ¬g. It follows directly from the semantics of CTL* and the semantics of
FO-Lµ that if g ≈ tr′(g), then also ¬g ≈ ¬tr′(g).

Case f = g ∨ h. Again f ≈ tr′( f ) follows directly from the semantics of CTL* and
FO-Lµ.

Case f = Ag and ∃h Ah ∈ g. Note that Ag ≈ AR(g), and AR(g) contains only a single
A operator. Then tr′(AR(g)) = tr(BR(g)), so we know from the previous section
that tr′(AR(g)) ≈ AR(g). But then also tr′(AR(g)) ≈ Ag, by lemma 4.4 and
transitivity of≈. This translation, tr′(AR(g)), may contain some atomic predicate
ah that we introduced for a subformula Ah of g. By the induction hypothesis,
we have that tr′(Ah) ≈ Ah, and because by definition ah ≈ Ah, we also have
ah ≈ tr′(Ah). We can by lemma 4.3 syntactically replace every ah by tr′(Ah) by
applying R̄, and obtain an equivalent formula. It follows that R̄(tr′(AR(g)))≈ f .

We now know that A′, a |= f if and only if A′, a |= tr′( f ). However, f nor tr′( f ) contain
atomic predicates from AP′, and therefore both would be evaluated the same on A.
Therefore also A, a |= f if and only if A, a |= tr′( f ), which concludes our proof.

We note that the above translation may be inefficient in practice, as it does not
take advantage of the fact that for CTL formulae there is a much more straightforward
translation to the modal Lµ. Without any change, tr′ may therefore generate trans-
lations for CTL formulae that require exponential time to solve. However, it is easy
to adapt tr′ to include case distinctions for CTL operators, following the translation
in, e.g., [CGP99]. The adapted translation procedure then yields translations for CTL
formulae that can be solved in linear time, and will provide more efficient translations
for certain types of CTL* formulae.
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Theorem 4.5. The complexity of checking a CTL* formula f through the first-order
modal Lµ on a Kripke structure A is O(|A|) · 2O(| f |).

Proof. This can be seen by looking at the structure of tr′( f ). Because of the way it
was constructed, every innermost subformula ϕ ∈ tr′( f ) that was generated by tr, is
again a closed Lµ formula. We can introduce a fresh fixpoint variable X , and evaluate
¹tr′( f )ºθ[X 7→F]δ for some θ and δ, where F = ¹ϕºθδ. As f is closed, this yields the
same result as evaluating the expression using any other predicate environment. Note
that we can calculate ¹ϕºθδ in O(|M |) · 2O(|g|) time, where g is the subformula of f
to which ϕ corresponds. By lemma 4.3, we may substitute X for ϕ and repeat this
procedure. When no more substitutions can be made, the remainder can be solved
in O(|A|) time, as the formula contains no fixpoints. Since the sum of the lengths of
all g that were substituted is less than or equal to | f |, the entire operation is O(|A|) ·
2O(| f |).

4.5 Conclusion

We presented a translation from CTL* formulae to first-order modal Lµ formulae. By
using this specific variant of the Lµ, we are able to give a translation that is succinct,
but that does not introduce performance penalties when checking the formula against
a Kripke structure. Indeed, the time complexity of CTL* model checking via the first-
order modal Lµ is no worse than that of CTL* model checking using the best existing
direct method.



Chapter 5

Games

Parity games [EJ91; McN93; Zie98] are played by two players (represented by � and
�) on a directed graph in which every vertex is owned by one of the players, and
vertices are assigned a priority. From each vertex, a game can be played by moving a
single token along the edges in the graph; the choice where to move next is dictated by
the player owning the vertex on which the token currently resides. The (infinite) path
through the graph that the token visits while this game is played determines who wins
the game. An important property of parity games is that from any vertex, exactly one
of the players can always win every game started from that vertex by playing according
to a fixed strategy. This player is designated the winner of that vertex. Partitioning the
graph in vertices that are won by player � and those won by player � is referred to
as solving the parity game.

It is well known that the parity game framework is closely related to the notion of
(modal) fixpoint logic [EJ91]. In fact, modalµ-calculus model checking is polynomially
reducible to parity game solving, and vice versa. In practice this means that the parity
game framework can be used to solve practical verification and synthesis problems,
see [Grä02; AVW03]. We examine the relation between fixpoint logic and games in
closer detail in Chapter 7, but for now we will only say that for various fixpoint logics,
the solution to a formula in that logic can be established by looking at the winner of a
single node in a parity game that corresponds to the formula.

Despite the apparent simplicity of the problem of solving parity games, its precise
complexity is still open: the problem is known to be in NP∩coNP, and more specifically
in UP∩ coUP [Jur98], suggesting there just might exist a polynomial time algorithm.
Indeed, non-trivial classes of parity games have been identified that admit polynomial
time solving algorithms, see e.g. [Ber+06; Obd07].

In the past two decades, several advanced algorithms for solving parity games have
been designed. These include algorithms exponential in the number of priorites, such
as Jurdziński’s small progress measures algorithm [Jur00] and Schewe’s bigstep algo-
rithm [Sch07], as well as the sub-exponential algorithm due to Jurdziński et al. [JPZ06]
Such algorithms have been implemented and are used in practice to solve verification
problems [FL09; Cra+13; KP14]. An interesting observation here is that the simplest,
exponential algorithm known as the recursive algorithm, performs best in most practi-
cal scenarios.

Orthogonally to the algorithmic improvements, heuristics have been devised that
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may speed up solving parity games that occur in practice, see, e.g., [PW08; FL09;
GW13; Ver13]. Such heuristics work particularly well for verification problems, which
give rise to games with only few different priorities.

In this chapter, we investigate equivalence relations that approximate the solution
to a parity game, following, e.g., Fritz and Wilke’s study of delayed simulation [Fri05;
FW06]. The idea is to recast the solving problem as the problem of deciding winner
equivalence between vertices: two vertices in a parity game are equivalent whenever
they are won by the same player.

One reason to investigate equivalences on parity games is that they provide a new
heuristic to speed up solving parity games. Finding equivalence relations that refine
winner equivalence and that are decidable in polynomial time yields a preprocessing
step that can be used to reduce the size of a parity game prior to solving.

There are also other important reasons to look at equivalence relations on parity
games. Janin notes that because parity games give semantics to many automata-based
formalisms, proofs on those formalisms often consist of finding a winning strategy in
one game, given a winning strategy in another game [Jan05]. Being able to prove the
existence of such a strategy by relating nodes in those games using a relation that is
known to refine winner equivalence can then simplify the proof. The same observation
is made by Kissig and Venema [KV09], who define a notion of bisimulation on games
to ‘streamline’, as they put it, the proof of the main theorem in that paper. Also in
the analysis of the descriptive complexity of parity games, Dawar and Grädel use the
notion of strong bisimulation on parity games [DG08].

Because parity games give semantics to a number of formalisms, including fixpoint
logic, there is yet another good reason to investigate equivalence relations on parity
games. Model checkers may generate a parity game from a fixpoint formula in order
to calculate its solution. If equivalences on these parity games can be lifted to the
syntactic level (of the fixpoint logic), then perhaps smaller parity games can be gen-
erated from these formulas by not generating more than one vertex per equivalence
class in the parity game. The results in this chapter confirm that on the parity games
themselves, great reductions can be achieved. If therefore these reductions can be
approximated by syntactic manipulations of the fixpoint logic from which the games
are generated, then we arrive at another heuristic that may simplify fixpoint logic for-
mulas. This strategy is similar to that of the techniques described in, e.g., [OWW09;
KRW12; Cra+ed], in which fixpoint formulas are transformed syntactically to reduce
the size of the corresponding parity games.

From a practical viewpoint, we are particularly interested in those simulation and
equivalence relations that strike a favourable balance between their power to compress
the game graph and their computational complexity. Stuttering bisimulation [BCG88]
for Kripke Structures is among a select number of candidates worth considering, with
an O(nm) time complexity (n being the number of vertices and m the number of
edges).

In [CKW11] we showed that stuttering bisimilarity indeed refines winner equiva-
lence, and that—at the time of writing—it could help speeding up solving parity games.
A weak point of stuttering bisimilarity is that it is inept when faced with alternations
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between players along the possible plays: it cannot relate vertices belonging to dif-
ferent players. Turn-based games, controller synthesis problems e.g. [AVW03], and
constructs such as �◊φ and ◊�φ in µ-calculus verification, all give rise to such parity
games.

In this chapter we define a relation that weakens stuttering bisimulation, so that it
is able to relate vertices that belong to different players. We dub this relation governed
stuttering bisimulation, because it takes into account the governing power of the players
during the play; rather than relating nodes based on graph reachability criterions, as
is done in stuttering bisimulation, we relate nodes based on which parts of the graph
each player can reach, regardless of the opponent’s moves.

We present a small lattice of equivalence relations on parity games which all enjoy
the property of refining winner equivalence. Governed stuttering bisimilarity is shown
to be the coarsest of these relations, and for governed bisimilarity itself we give the
proof that it is an equivalence relation, and that it refines winner equivalence. The
chapter is concluded with a brief discussion of the experiments that have been done
with stuttering bisimilarity and governed stuttering bisimilarity on parity games.

5.1 Parity games

A parity game is a two-player graph game, played by two players on a directed graph.
The game is formally defined as follows.

Definition 5.1. A parity game is a directed graph (V,→,Π,Ω), where

– V is a finite set of vertices,
– →⊆ V ×V is a total edge relation (i.e., for each v ∈ V there is at least one w ∈ V such

that (v, w) ∈→),
– Π: V → { �,�} is a function assigning vertices to players.
– Ω: V → N is a priority function that assigns priorities to vertices,

We note that in parity game literature, it is more common to find definitions that
have two disjunct sets of vertices—one for each player—instead of a single set of ver-
tices and the functionΠ that partitions it. The two definitions are obviously equivalent,
however, and for the purpose of this chapter it is more convenient to be able to treat
a parity game like a regular Kripke structure, in which states are labelled with players
and priorities.

If i is a player, then ¬i denotes the opponent of i, i.e., ¬ � = � and ¬� = �. We
will use the same notation for paths in parity games as for paths in Kripke structures.

Winning A game starting in a vertex v ∈ V is played by placing a token on v, and
then moving the token along the edges in the graph. Moves are taken indefinitely
according to the following simple rule: if the token is on some vertex v, player Π(v)
moves the token to some vertex w such that v→ w. The result is an infinite path p in
the game graph, sometimes called a play. The parity of the lowest priority that occurs
infinitely often on p defines the winner of the path. If this priority is even, then player
� wins, otherwise player � wins.
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Strategies A strategy for player i is a partial function s : V ∗→ V , that is defined ex-
actly for those paths ending in a vertex owned by player i and determines the next
vertex to be played onto. The set of strategies for player i in a game G is denoted S∗G,i ,
or simply S∗i if G is clear from the context. If a strategy yields the same vertex for all
paths that end in the same vertex, then the strategy is said to be memoryless. The set
of memoryless strategies for player i in a game G is denoted SG,i , abbreviated to Si
when G is clear from the context. A memoryless strategy is usually given as a partial
function s : V → V .

A path p of length n is consistent with a strategy s ∈ S∗i , denoted s � p, if and only
if for all 1≤ j < n it is the case that if s is defined for p1 . . . p j , then p j+1 = s(p1 . . . p j).
The definition of consistency is extended to infinite paths (which we will often call
plays) in the obvious manner. A strategy s ∈ S∗i is said to be a winning strategy from
a vertex v if and only if i is the winner of every play from v that is consistent with
s. A vertex is won by i if i has a winning strategy from that vertex. Parity games are
memoryless determined [EJ91], i.e., each vertex in the game is won by exactly one
player, and it suffices to play a memoryless strategy.

Relations Let R be a binary relation over a set V . For v, w ∈ V we write v R w
for (v, w) ∈ R. For an equivalence relation R, and vertex v ∈ V we define [v]R, the
equivalence class of v under R, as {v′ ∈ V | v R v′}. The set of equivalence classes of
V under R is denoted V/R.

Arrow notation Throughout this chapter we will be using notation that will simplify
reasoning about parity games. Let 〈V,→,Ω,Π〉 be a parity game, let U , T ⊆ V,U ⊆ 2V

and let s be a strategy (for either player).
Given a memoryless strategy s, we introduce a single-step relation →s ⊆→ that

contains only those edges allowed by s:

v →s u¬

¨

v→ u∧ s(v) = u, s(v) is defined

v→ u, otherwise

We introduce special notation to express which parts of the graph can be reached from
a certain node. We use v 7−→U T to denote that there is a finite path v → . . . → t
such that t ∈ T , and u ∈ U for every u on the path unequal to v or t. Conversely,
v 7−→U denotes the existence of an infinite path starting in v on which u ∈ U for every
u unequal to v.

We extend this notation to restrict this reachability analysis to plays that can be
enforced by a specific player. We say that strategy s forces the play from v to T via U ,
denoted v 7−→s,U T , if and only if for all plays p starting in v such that s � p, there exists
n > 0 such that pn ∈ T and pi ∈ U for all 0 < i < n. Similarly, strategy s forces the
play to diverge in U from v, denoted v 7−→s,U , if and only if for all such plays p, pi ∈ U
for all i > 0.

Finally, if we are not interested in a particular strategy, but only in the existence
of a strategy for a player i via which certain parts of the graph are reachable from v,
we replace s by i in our notation to denote an existential quantification over memo-
ryless strategies (the requirement that the strategy be memoryless will simplify our
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proofs, but it is not difficult to prove that quantifying over all strategies would yield
an equivalent definition):

v 7−→i,U T ¬ ∃s∈Si v 7−→s,U T v 7−→i,U ¬ ∃s∈Si v 7−→s,U

If in the above, U = V , then U is omitted. If U = [v]R for some equivalence relation R,
then we sometimes write R instead of U .

The complement of these relations is denoted by a slashed version of the corre-
sponding arrow, e.g., ¬v 7−→i,R u can be written v 7−→i,RX u. We extend the transition
relation of the parity game to sets and to sets of sets in the usual way, i.e., if T is a set
of vertices, and U is a set of vertex sets, then

v→ T ¬ ∃u∈T v→ u v→ U ¬ v→
⋃

U

All other arrow notation is extended in the same way; if a set of sets U is given as a
parameter, it is interpreted as the union of U .

5.2 Properties of parity games

In this section, we present some general lemmas about parity games that will be used
in subsequent proofs. In what follows, fix a parity game 〈V,→,Π,Ω〉, and let v ∈ V , i
a player, and U , T, T ′ ⊆ V .

One of the most basic properties we expect to hold is that a player can force the
play towards some given set of vertices, or otherwise her opponent can force the play
to the complement of that set.

Lemma 5.1. v 7−→i,U T ∨ v 7−−→¬i,U V \ T.

Proof. We prove the equivalent v 7−→i,UX T ⇒ v 7−−→¬i,U V \ T. Assume that v 7−→i,UX T . We
show that v 7−−→¬i,U V \ T . We distinguish on the player of v.

– Π(v) = i. As v 7−→i,UX T , we know ∀u v→ u⇒ u /∈ T , hence also ∀u v→ u⇒ u ∈ V \ T ,
so v 7−−→¬i,U V \ T .

– Π(v) 6= i. As v 7−→i,UX T , and the parity game is total, we know ∃u v→ u∧ u /∈ T . Let u
be such, and define s : S¬i such that s(v) = u. Then s is a witness for v 7−−→¬i,U V \T .

In a similar train of thought, we expect that if from a single vertex, each player can
force play towards some target set, then the players’ target sets must contain related
vertices.

Lemma 5.2. v 7−→i,U T ∧ v 7−−→¬i,U T ′⇒∃u∈T,u′∈T ′ u= u′ ∨ u ∈ U ∨ u′ ∈ U .

Proof. Assume v 7−→i,U T ∧ v 7−−→¬i,U T ′. Then there must be strategies s ∈ Si and s′ ∈ S¬i
such that v 7−→s,U T and v 7−−→s′,U T ′. Let s and s′ be such, and consider the unique
play p starting in v such that s � p and s′ � p. For this play, there must be m and
n such that pm ∈ T ∧ ∀i<m pi ∈ U , and pn ∈ T ′ ∧ ∀i<n pi ∈ U . If m = n, then this
witnesses ∃u∈T,u′∈T ′ u = u′. If m < n, then pm ∈ T ∧ pm ∈ U , and if n < m, then
pn ∈ T ′ ∧ pn ∈ U .
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The lemmas above reason about players being able to reach vertices. The following
lemma is essentially about avoiding vertices: it states that if one player can force
divergence, then this is the same as saying that the opponent cannot force the play
outside the class of the current vertex.

Lemma 5.3. v 7−→i,U ⇔ v 7−−→¬i,UX V \ U .

Proof. Note that the truth values of v 7−→i,U and v 7−−→¬i,UX V \ U only depend on edges
that originate in U , and that these truth values do not depend on priorities at all.
Therefore, the truth value of these predicates will not change if we apply the following
transformations to our graph:

– For all u ∈ V \ U , replace all outgoing edges by a single edge u→ u.
– Make the priorities of all vertices in U such that they are even iff i = �, and the

priorities of all other vertices odd iff i = �.

In the resulting graph, player i wins if and only if v 7−→i,U , and player ¬i wins if and only
if v 7−−→¬i,U V \U . Since v can only be won by one player, the desired result follows.

Lastly, we want to formalise the idea that if a player can force the play to a first set
of vertices, and from there he can force the play to a second set of vertices, then he
must be able to force the play to that second set.

Lemma 5.4. (v 7−→i,U T ∧ (∀u∈T\T ′ u ∈ U ∧ u 7−→i,U T ′))⇒ v 7−→i,U T ′.

Proof. Assume v 7−→i,U T ∧ (∀u∈T\T ′ u ∈ U∧ 7−→i,U T ′). There must be a strategy s ∈ Si
such that v 7−→s,U T and for each u ∈ T \ T ′ a strategy su ∈ Si such that u 7−−→su,U T ′. We
define strategy s′ ∈ S∗i as follows for a path pw consisting of a prefix p and ending in
vertex w:

s′(pw) =

¨

s(w) if ∀u∈T\T ′ u /∈ pw
su(w) if pw= p′up′′w∧ u ∈ T \ T ′ ∧∀u′∈T\T ′ u′ /∈ p′

Observe that a memoryless strategy s′′ ∈ Si can be found that has the same behaviour
as s′. Furthermore v 7−−→s′′,U T ′, and hence v 7−→i,U T ′.

These lemmas also appeared in almost the same form in [Kei13]. The formulation
in this section is a bit different, because we have defined our arrow notation (v 7−→i,U T
etc.) in terms of sets, rather than in terms of equivalence relations.

5.3 A lattice of equivalences

We already mentioned that parity games are determined, meaning that every node in
the game is won by exactly one of the players [McN93; Zie98]. Determinacy of parity
games effectively induces a partition on the set of vertices V in those vertices won by
player � and those vertices won by player �. This partition is the natural equivalence
relation on V .
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Definition 5.2. Let (V,→,Π,Ω) be a parity game. Vertices v, w ∈ V are winner equiva-
lent, denoted v ∼ w iff v and w are won by the same player.

As explained in the introduction of this chapter, we are in search of equivalence
relations that are relatively cheap to compute, and that are as coarse as possible while
still refining winner equivalence.

We can use an equivalence relation to ‘compress’ par- ∼

∼

' ��

-

≡

Figure 5.1: A lattice of rela-
tions on parity games.

ity games as follows. Given two parity games with ver-
tices V1 and V2, respectively, and an equivalence relation
R ⊆ V1×V2 such that every node in V1 is related to exactly
one node in V2, we will first prove that R refines ∼. We
now know that if we solve the second game, then we have
also solved the first game, because within an equivalence
class the solution for every vertex is the same. If this sec-
ond game is significantly smaller than the first, which can
be achieved by choosing R as coarse as possible, then the
time gained by only having to solve the smaller game may
be more than the time needed to find such a relation R,
resulting in an overall faster solving time.

The finest equivalence on parity games we can imag-
ine in this setting is graph isomorphism, denoted≡. It has no reductive power, because
in this case the ‘smaller’ game must have the same number of nodes and edges as the
larger game.

The coarsest possible equivalence in this setting is winner equivalence itself. While
this equivalence has the greatest reductive power, it is of course as difficult to compute
as the solution to the larger game itself.

We will be considering four relations in this chapter that form a lattice that has
winner equivalence as its greatest element, and graph isomorphism as its least element:

– strong bisimulation, denoted -,
– stuttering bisimulation, denoted ',
– governed bisimulation, denoted ��, and
– governed stuttering bisimulation, denoted ∼.

The lattice formed by these relations is shown as a Hasse diagram in Figure 5.1. In the
remainder of the chapter, we will give the definitions of these remaining four relations,
and give proofs for the refinement relation between these parity game relations that
is depicted by the Hasse diagram.

After isomorphism, strong bisimilarity is the finest relation on parity games that we
consider. Its definition is essentially the same as the definition of strong bisimilarity
for Kripke structures.

Definition 5.3. Let 〈V,→,Ω,Π〉 be a parity game. Let R ⊆ V ×V be a symmetric relation
on vertices; R is a strong bisimulation if v R v′ implies

– Ω(v) = Ω(v′) and Π(v) = Π(v′);
– if v→ u for some u, then v′→ u′ for some u′ such that u R u′.
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0 1 0 1

Figure 5.2: Nodes with equal priorities are related by ��, but not by -.

Two states v and v′ are said to be strongly bisimilar, denoted v - v′, if and only if there
is a strong bisimulation R such that v R v′.

It is straightforward to prove that strong bisimulation refines winner equivalence,
and moreover, it is efficiently computable in O(|→| log |V |) time [PT87]. Its ability
to compress parity games is very limited however. One reason is that it will never
relate two vertices if they are owned by different players. Not even when vertices have
only one outgoing edge, in which case it really does not matter which player owns
the vertex. Evidently, the nodes with equal priorities are won by the same player in
Figure 5.2, but these nodes are not related by -. This problem is solved by governed
bisimilarity, a relation that is weaker than bisimilarity, but which still preserves winner
equivalence.

Definition 5.4. Let 〈V,→,Ω,Π〉 be a parity game. A symmetric relation R ⊆ V × V is a
governed bisimulation if v R v′ implies

– Ω(v) = Ω(v′);
– Π(v) 6= Π(v′) implies that u R u′ for all u, u′ such that v→ u and v′→ u′;
– if v→ u for some u, then v′→ u′ for some u′ such that u R u′.

Vertices v and v′ are said to be governed bisimilar, denoted v �� v′, if and only if there is
a governed bisimulation R such that v R v′.

The notion of governed bisimilarity corresponds to that of idempotence identifying
bisimulation in Boolean equation systems [GW12]. Governed bisimilarity is again
an equivalence relation, and is a governed bisimulation. It is easy to see from the
definitions that bisimilarity refines governed bisimilarity; that the refinement is strict
follows from the example in Figure 5.2.

Another reason that strong bisimulation does not compress games very well is that
it is sensitive to repetition of priorities on paths. By the definition of a winning play, two
plays are won by the same player if (but not only if) it traverses the same priorities in
the same order. It does not matter how often a priority is seen before the next priority
is encountered. This is illustrated by the two parity games in Figure 5.3.

We again try to relate these systems by finding a weaker relation that still refines
winner equivalence. In this case, stuttering bisimilarity is our relation of choice. The
traditional definition of stuttering bisimilarity (also known as stutter bisimilarity) is

0 0 1 0 1

Figure 5.3: Nodes with equal priorities are related by ', but not by -.
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0 1 0 1

Figure 5.4: The nodes with priority 0 are won by different players.

given by defining a stuttering bisimulation relation and defining stuttering bisimilarity
to be the largest such relation, as is done in the following definition. The resulting
relation relates nodes from which the players can visit the same priorities in the same
order.

Definition 5.5. Let 〈V,→,Ω,Π〉 be a parity game. Let R ⊆ V ×V be a symmetric relation
on vertices; R is a stuttering bisimulation if v R v′ implies

– Ω(v) = Ω(v′) and Π(v) = Π(v′);
– if v→ u, then either v R u, or there is a path v′→ u0→ . . .→ un such that u R un and

v R ui for all i < n;
– if there is an infinite path v → u0 → u1 → . . . such that vRu0 and uiRui+1 for all i,

then there is an infinite path v′→ w0→ w1→ . . . such that v′Rw0 and wiRwi+1 for
all i.

Two states v and v′ are said to be stuttering bisimilar, denoted v ' v′, if and only if there
is a stuttering bisimulation relation R such that v R v′.

The third clause in this definition makes the relation divergence sensitive [DV95].
It makes sure that we cannot relate the vertices with priority 0 in Figure 5.4.

It is a well-known result that ' is an equivalence relation, and that it is again a
stuttering bisimulation (see, e.g., [BK08]). It was shown to refine winner equivalence
in [CKW11], although this will also follow from the results in this chapter. We will
be using a slightly different formulation of stuttering bisimilarity, which will make
it easier to relate stuttering bisimulation to governed stuttering bisimulation. The
following theorem gives our alternative definition of stuttering bisimulation.

Theorem 5.1. Let 〈V,→,Ω,Π〉 be a parity game. Let R ⊆ V × V be an equivalence
relation on vertices; R is an eq-stuttering bisimulation if v R v′ implies

– Ω(v) = Ω(v′) and Π(v) = Π(v′);
– v→ C implies v′ 7→R C for all C ∈ V/R \ {[v]R};
– v 7→R implies v′ 7→R .

There is an eq-stuttering bisimulation relation R such that v R v′ if and only if v ' v′.

Proof. Suppose v ' v′, then there is an equivalence relation R that is a stuttering
bisimulation such that v R v′: take R='. The theorem then follows from the fact
that a stuttering bisimulation which is also an equivalence relation is an eq-stuttering
bisimulation. This can be seen as follows.

Suppose R is an eq-stuttering bisimulation. Then it is an equivalence, and to prove
that it is also a stuttering bisimulation, we need to show that the second condition
from Definition 5.5 holds for R. So suppose v→ u such that ¬(v R u). Then v→ C for
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some C ∈ V/R \ {[v]R}, and therefore v′ 7→R C. In particular this means that there is a
path v′ → u0 → . . .→ un for some un ∈ C (and n ≥ 0), in which v′ R ui for all i < n
and u R un. Because R is an equivalence relation, also v R ui for all i < n.

Conversely, suppose that R is a stuttering bisimulation, and that it is also an equiv-
alence relation. We prove that the second condition from Definition 5.1 holds for R.
Suppose therefore that v→ C for some C ∈ V/R \{[v]R}, then v→ u for some u ∈ C, for
which we know ¬(v R u). By Definition 5.5 there must be a path v′ → u0 → . . .→ un
such that v R ui for all i < n and u R un. Because R is an equivalence relation, ui ∈ [v′]R
for all i < n, so v′ 7→R un. As u ∈ C and u R u′, also un ∈ C and therefore v′ 7→R C.

So far, we have seen that there are winner-preserving relations that relate vertices
owned by different players, and that there are winner-preserving relations that remove
stuttering behaviour from games. The obvious question is whether we can combine
the two.

Figure 5.5 shows an example of what we are trying to achieve. Vertices with equal
priorities again are won by the same player, so we would like to design an equivalence
relation that relates these vertices. To do so, we need to be able to relate vertices owned
by different players, like governed bisimulation does, to relate vertices with priority 1.
We must also be able to relate vertices that show the same behaviour modulo stuttering,
to relate vertices with priority 2.

Our approach is to weaken stuttering bisimulation (while maintaining that it is a
finer equivalence than winner equivalence) so that it will be able to relate vertices
of different players. Note that we cannot simply weaken the definition of stuttering
bisimulation by removing the requirement that Π(v) = Π(v′) without modifying the
remaining clauses, as this would enable us to relate vertices won by different players,
as the below parity game demonstrates:

2 2 1 2 2

The suggested weakening would allow us to relate all vertices with priority 2; the two
left vertices, however are won by player �, whereas the other vertices are won by �.

The problem we see here is that it is no longer the case, as it was in stuttering
bisimulation, that one player has total control over where the play goes from a certain
equivalence class. In particular, in the two nodes on the right, it is player � who
controls whether the play stays in nodes with priority 2. Dually, in the two leftmost
nodes it is player � who decides.

If we drop the Π(v) = Π(v′) requirement from our definition, then apparently we
need to strengthen the other requirements with information about who is in control

0 1 2

21

0 1 2

Figure 5.5: Governed stuttering bisimulation is weaker than stuttering bisimulation.
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of the node. We change the v 7→R C in Definition 5.1 to v 7−−−→Π(v),R C; for stuttering
bisimilarity, the fact that all nodes in [v]R were owned by the same player, meant
that the owner of v always had a strategy to reach C from v. Now multiple players
are allowed in the same equivalence class, we have to exclude the possibility that
somewhere along the way, the owner of v loses control to the opponent. This is exactly
what v 7−−−→Π(v),R C expresses: v can always force the play to reach C, no matter which
vertices in the equivalence class of v are visited first.

Something similar has to be done for the divergence criterion in the definition of
stuttering bisimilarity. For stuttering bisimilarity, the existence of an infinite path of
related vertices implies the existence of such a path in which the owner of v owned
all the vertices along the path, which in turn implies the existence of a strategy for
the owner of v to stay within the same equivalence class. If we drop the requirement
that related vertices are owned by the same player, such a strategy is not guaranteed
to exist anymore. If neither player has a strategy to stay in the current equivalence
class, i.e., staying in the current class requires cooperation from both players, then the
infinite paths in this equivalence class have become irrelevant: if the priority of the
current class is even, then player odd will always try to leave the current class, and
vice versa. This is illustrated in Figure 5.6. The divergence requirement can therefore
also be weakened: only if a player can force the play to stay in the current class, that
player must be able to do so from any other vertex in the class.

0

0

1 0 1

Figure 5.6: Equal priorities are related by ∼. Neither player can force the play to visit only
vertices with priority 0.

We arrive at the following definition of a relation on parity games, which we have
dubbed governed stuttering bisimilarity.

Definition 5.6. Let (V,→,Ω,Π) be a parity game. Let R ⊆ V × V be an equivalence
relation. Then R is a governed stuttering bisimulation if v R v′ implies

– Ω(v) = Ω(v′);
– v→ C implies v′ 7−−−→Π(v),R C, for all C ∈ V/R \ {[v]R}.
– v 7−→i,R implies v′ 7−→i,R for i ∈ { �,�}.

Vertices v and v′ are governed stuttering bisimilar, denoted v ∼ v′, iff a governed stut-
tering bisimulation R exists such that v R v′.

To complete our lattice of equivalence relations, we need to show that governed
stuttering bisimilarity is weaker than both governed bisimilarity and stuttering bisim-
ilarity, that it is indeed an equivalence relation, and finally, that governed stuttering
bisimilarity refines winner equivalence. We treat these three issues separately in the
following sections. After proving governed stuttering bisimilarity to be an equivalence
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relation, we also define a quotienting operation that, given a parity game, yields a
governed stuttering bisimilar parity game that is as small as possible. This quotienting
operation is subsequently used in the proof for refinement of winner equivalence.

5.3.1 Governed stuttering bisimilarity is weaker

In this section we show that governed stuttering bisimilarity is a strictly coarser rela-
tion than both governed bisimilarity and stuttering bisimilarity. This is done in the
following two theorems. In both cases, the proof of refinement is straightforward, and
strictness can be shown with a small example.

Theorem 5.2. Governed bisimilarity strictly refines governed stuttering bisimilarity.

Proof. We show that �� is a governed stuttering bisimulation. Let (1), (2) and (3) refer
to the three requirements from Definition 5.4. The strictness of the refinement follows
from the example in Figure 5.5. Let v and v′ be such that v �� v′. We need to show
three things.

– Ω(v) = Ω(v′). This follows immediately from (1).
– v → C implies v′ 7−−−−→Π(v),�� C for all C ∈ V/�� \ {[v]��}. Assume v → C for such C, i.e.,

v → u for such u that ¬v �� u. Note that there exists some u′ such that v′ → u′

and u �� u′. If Π(v) = Π(v′), then this suffices, because obviously the strategy for
Π(v) that sends the play to u′ from v′ is a witness for v′ 7−−−−→Π(v),�� C. If Π(v) 6= Π(v′),
then u �� u′ for all u, u′ such that v′→ u and v′→ u′. Any strategy chosen for Π(v)
therefore witnesses v′ 7−−−−→Π(v),�� C.

– v 7−−→i,�� implies v′ 7−−→i,�� for i ∈ { �,�}. Assume v 7−−→i,�� . Suppose u is a vertex such
that v �� u and Π(u) = i. We first argue that there is some u′ such that u→ u′ and
v �� u′. Because v 7−−→i,�� , there must be v′ such that v→ v′ and v �� v′. By the third
requirement in Definition 5.4 there is then some u′ such that u→ u′ and v′ �� u′. By
transitivity of ��, then v �� u′.
This means we can define a strategy s ∈ Si such that v �� s(u) if v �� u. Let s
be such, and let u be such that v �� u. We show that if u →s u′, then u �� u′. If
Π(u) = i, then it follows directly from our definition of s. If Π(u) 6= i, then we
must show that all successors of u are related to u again. If Π(u) = Π(v), then all
successors of v are related to v, otherwise v 7−−→i,��X . But then by the third requirement
in Definition 5.4, all successors of u must also be related to u. If Π(u) 6= Π(v), then
there must be v′ such that v → v′ and v �� v′, and then by the third requirement
in Definition 5.4 also some u” such that u → u′ and v′ �� u′. Due to the second
requirement in Definition 5.4, all successors of u are related to one another, and by
transitivity, are in particular all related to u. Therefore, any play allowed by s stays
in [v]�� indefinitely.

Theorem 5.3. Stuttering bisimilarity strictly refines governed stuttering bisimilarity.

Proof. We show that any eq-stuttering bisimulation (as defined in Definition 5.1) is
a governed stuttering bisimulation; the strictness of the refinement follows from the
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example in Figure 5.5. Let R be an eq-stuttering bisimulation, and let v R v′ for some
vertices v and v′. We need to show three things.

– Ω(v) = Ω(v′). This follows immediately from Definition 5.1.
– v→ C implies v′ 7−−−→Π(v),R C for all C ∈ V/R \ {[v]R}. So assume v→ C for some C ∈ V/R

such that C 6= [v]R. By Definition 5.1, v′ 7→R C, so there is a path p = v′→ . . .→ u→ t
such that v′, . . . , u ∈ [v′]R and t ∈ C. Because all those vertices are related by R, they
must all be owned by the same player: Π(v). Now consider a strategy s for player
Π(v) that chooses for each of these vertices the successor in p. Obviously, v′ 7−→s,R t,
and therefore v′ 7−−−→Π(v),R C.

– v 7−→i,R implies v′ 7−→i,R for i ∈ { �,�}. The proof for this is similar to that of the second
requirement.

5.3.2 Governed stuttering bisimilarity is an equivalence

Proving that ∼ is an equivalence relation on parity games is far from straightforward:
transitivity no longer bows to the standard proof strategies that work for stuttering
bisimilarity and branching bisimilarity [GW96; Bas96]. As a result of the asymmetry
in the use of two different transition relations in the second requirement of Defini-
tion 5.6, proving that the equivalence closure of the union of two governed stuttering
bisimulation relations is again a governed stuttering bisimulation relation is equally
problematic.

Instead we pursue the following strategy. We characterise governed stuttering
bisimulation, in three steps, by a set of symmetric requirements. The obtained alterna-
tive characterisation is then used in our equivalence proof. These alternative charac-
terisations do not facilitate the reuse of standard proof strategies, but they are instru-
mental in the technically involved proof that the equivalence closure of two governed
stuttering bisimulation relations is again a governed stuttering bisimulation relation.
Apart from being convenient technically, the characterisations offer more insight into
the nature of governed stuttering equivalence.

Our result below states that we can rephrase the second condition of governed
stuttering bisimulation by requiring that either player must have the same power to
force the play from any pair of related vertices to reach an arbitrary class. Thus, we
abstract from the player that takes the initiative to leave its class in one step.

Theorem 5.4. Let R ⊆ V ×V and v, v′ ∈ V . Then R is a governed stuttering bisimulation
iff R is an equivalence relation and v R v′ implies:

– Ω(v) = Ω(v′);
– v 7−→i,R C iff v′ 7−→i,R C for all i ∈ { �,�},C ∈ V/R \ {[v]R};
– v 7−→i,R iff v′ 7−→i,R for all i ∈ { �,�}.

Proof. The proof for the implication from right to left is immediate. For the other
direction, assume that R is a governed stuttering bisimulation. Observe that it suffices
to prove the second condition; the other two are in full agreement with Definition 5.6.
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Let i be an arbitrary player, and suppose that v 7−→i,R C for some v ∈ V and C ∈
V/R \ {[v]R}. Obviously, there must be some u ∈ [v]R such that u→ C. Let u be such,
and distinguish the following two cases:

– Case Π(u) = i. It follows directly from Definition 5.6 that v′ 7−→i,R C.
– Case Π(u) 6= i. By Definition 5.6, because v R u, v 7−−→¬i,R C. From Lemma 5.3 it then

follows that v 7−−→¬i,RX and v 7−→i,RX , because v 7−→i,R C and v 7−−→¬i,R C. By Definition 5.6, it
then also holds that v′ 7−→i,RX and v′ 7−−→¬i,RX .
Towards a contradiction, suppose that v′ 7−→i,RX C. By Lemma 5.1 it must then be the
case that v′ 7−−→¬i,R V \ C. Because of this, and v 7−−→¬i,RX and v 7−→i,RX it follows that there
must be some u′ ∈ [v]R such that u′→ V \ C \ [v]R. We again distinguish two cases:

– Case Π(u′) = i. Then u′ →i V \ C \ [v]R, and by Definition 5.6, u 7−→i,R V \ C \ [v]R,
which contradicts u 7−−→¬i,R C according to Lemma 5.3.

– Case Π(u′) 6= i. Then u′ −→¬i V \C \[v]R, and by Definition 5.6, v 7−−→¬i,R V \C \[v]R,
which contradicts v 7−→i,R C according to Lemma 5.3.

While the above alternative characterisation of governed stuttering bisimulation
is now fully symmetric, the restriction on the class C that is considered in the second
condition turns out to be too strong to facilitate our proof that ∼ is an equivalence
relation. We generalise this condition once more to reason about sets of classes. A
perhaps surprising side effect of this generalisation is that the third condition about
divergence becomes superfluous. Note that this last generalisation is not trivial, as
v 7−→i,R {C1,C2} is in general neither equivalent to saying that v 7−→i,R C1 and v 7−→i,R C2,
nor to v 7−→i,R C1 or v 7−→i,R C2.

Theorem 5.5. Let R ⊆ V ×V and v, v′ ∈ V . Then R is a governed stuttering bisimulation
iff R is an equivalence relation and v R v′ implies:

– Ω(v) = Ω(v′);
– v 7−→i,R U iff v′ 7−→i,R U for all i ∈ { �,�},U ⊆ V/R \ {[v]R}.

Proof. We show that the second condition is equivalent to the conjunction of the last
two conditions in Theorem 5.4. We split the proof into an if -part and an only-if -part.

⇐ The second condition from Theorem 5.4 is equivalent to the second condition
above, if we let U range only over singleton sets (if v 7−→i,R C, take U = {C}). The
third condition is equivalent to the second condition above, where U = V/R\{[v]R}.
This can be seen by appealing to Lemma 5.3.

⇒ Let R be a governed stuttering bisimulation relation and let v, v′ ∈ V such that
v R v′. Assume that v 7−→i,R U for some U ⊆ V/R \ {[v]R}. Let S = {u ∈ [v]R | u→ U}.
We distinguish the following two cases:

Case ∃u∈S Π(u) = i. Let u be such. There is a class C ∈ U such that u → C (in
particular, u 7−→i,R C). By Theorem 5.4 then also v′ 7−→i,R C, from which v′ 7−→i,R U
follows immediately.
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Case ∀u∈S Π(u) 6= i. Towards a contradiction, suppose that ∃w∈V\U u→ w for all
u ∈ S. Let s ∈ Si be such that v 7−→s,R U , and define a strategy s′ ∈ S¬i such that
s′(u) /∈

⋃

U for all u ∈ S. Now consider the unique path p such that s � p
and s′ � p. Because v 7−→s,R U , there must be some i ∈ N such that pi ∈ [v]R
and pi+1 ∈

⋃

U . Moreover, pi ∈ S, so Π(pi) 6= i, and therefore pi+1 = s′(pi).
However, this contradicts the fact that s′(pi) /∈

⋃

U by the definition of s′.
From the above it follows that there must be some vertex u ∈ S such that
∀w∈V u→ w⇒ u ∈

⋃

U . In particular, u 7−−→¬i,RX C for all C ∈ V/R \ U .
From v 7−→i,R U we derive, using Lemma 5.3, that v 7−−→¬i,RX . By Theorem 5.4 it
follows that v′ 7−−→¬i,RX , and by Lemma 5.3 again v′ 7−→i,R V \ [v]R. Let s ∈ Si be
such that v′ 7−→s,R V \ [v]R, and consider any play p starting in v′ such that
s � p. There must be some n ∈ N such that ∀i≤n pi ∈ [v]R and pn+1 /∈ [v]R.
Note that Π(pn) 6= i; if Π(pn) = i, then pn → C for some C such that C /∈ U
(because pn /∈ S by our assumption that Π(u) 6= i for all u ∈ S) and C 6= [v]R.
This C witnesses pn 7−→

i,R V/R \ U \ {[v]R}. But because pn R u, and u 7−−→¬i,R C
for some C ∈ U , also pn 7−−→

¬i,R U by Theorem 5.4, which contradicts pn 7−→
i,R

V/R \ U \ {[v]R} by Lemma 5.2.
Towards a contradiction, suppose that pn+1 /∈

⋃

U , then pn 7−−→
¬i,R C for some

C ∈ V/R \ U . But then by Theorem 5.4, u 7−−→¬i,R C, which we had already
established was not the case. So pn+1 ∈

⋃

U .
Apparently, for all plays p starting in v′ allowed by s there is some n such that
∀i<n pi ∈ [v]R and pn+1 ∈

⋃

U . Therefore, s witnesses v′ 7−→i,R U .

Note that the divergence requirement v 7−→i,R iff v′ 7−→i,R can be recovered by instan-
tiating set U by V/R \ {[v]R} for player ¬i in the above theorem. We give one more
alternative definition. In the previous definition, we lifted the notion of forcing play
via the current equivalence class towards a target class, to the notion of forcing play
via the current equivalence class towards a set of target classes. In the next definition,
we perform a similar lifting; rather than forcing play towards a set of target classes via
the current equivalence class, we now allow the play to be forced to that set via a set
of equivalence classes.

Theorem 5.6. Let R ⊆ V ×V and v, v′ ∈ V . Then R is a governed stuttering bisimulation
iff R is an equivalence relation and v R v′ implies:

– Ω(v) = Ω(v′)
– v 7−→i,U T iff v′ 7−→i,U T for all i ∈ { �,�},U ,T ⊆ V/R such that [v]R ∈ U and [v]R /∈ T .

Proof. We show that the second condition is equivalent to second condition in Theo-
rem 5.5. We split the proof into an if -part and an only-if -part.

⇐ The second condition from Theorem 5.5 is equivalent to the second condition above
if we fix U = {[v]R}.

⇒ Let R be a governed stuttering bisimulation and let i, v, v′,U and T be as described.
Assume that v 7−→i,U T ; under this assumption we will prove that v′ 7−→i,U T . The
proof for the implication in the other direction is completely symmetric.
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Let s be such that v 7−→s,U T and consider the set of paths originating in v that are
allowed by s. All these paths must have a prefix v . . . w, u such that v, . . . , w /∈

⋃

T
but u ∈

⋃

T . Call these prefixes the s-prefixes of v.

We proceed by induction on the length of the longest such prefix. If the longest
prefix has length 2, then all prefixes have length 2, implying that v →i T . In
particular then v 7−→i,R T and by Theorem 5.5 also v′ 7−→i,R T , which proves v′ 7−→i,U T .

As the induction hypothesis, assume that if u R u′, u 7−→s,U T and the longest s-prefix
of u is shorter than the longest s-prefix of v, then u′ 7−→i,U T . Note that every s-prefix
p of v must have a first position n such that pn /∈ [v]R. Collect all these pn in a set
U , and notice that for all u ∈ U , u ∈

⋃

T , or u 7−→s,U T . Furthermore, v 7−→s,R U .

Let [U]R denote {[u]R | u ∈ U}. By Theorem 5.5, v′ 7−→i,R [U]R. Now consider an
arbitrary u′ ∈

⋃

([U]R \ T ). Because there is some u ∈ U such that u R u′, and
because u 7−→s,U T for such u, we can use the induction hypothesis to derive that
u′ 7−→i,U T .

The above in particular implies two facts:

– v′ 7−→i,U [U]R
– u′ 7−→i,U T for all u′ ∈

⋃

([U]R \ T )

Using these, we can now apply Lemma 5.4 to conclude that v′ 7−→i,U T .

With this last characterization, it is now straightforward to prove that governed
stuttering bisimilarity is an equivalence relation. We do so by showing that the tran-
sitive closure of the union of two governed stuttering bisimulations R and S is again
a governed stuttering bisimulation. The generalizations from classes to sets of classes
allows us to view equivalence classes in (R ∪ S)∗ as the union of sets of equivalence
classes from R (or S), giving us an easy way to compare the effect of the second re-
quirement of Theorem 5.6 on (R ∪ S)∗ with its effect on R and S.

Theorem 5.7. Governed stuttering bisimilarity is an equivalence relation.

Proof. We show that (R ∪ S)∗ is a governed stuttering bisimulation if R and S are,
by showing that (R ∪ S)∗ satisfies the conditions of Theorem 5.6 if R and S do. If
v, v′ ∈ V are related under (R ∪ S)∗, then there exists a sequence of vertices u0, . . .un
such that v R u0 S . . . R un S v′ (the strict alternation between the two relations can
always be achieved because R and S are reflexive). By transitivity of = we then have
Ω(v) = Ω(v′), so the first property is satisfied.

For the second property, assume that v 7−→i,U T for some i ∈ { �,�} and some
U ,T ⊆ V/(R∪S)∗ such that [v](R∪S)∗ ∈ U and [v](R∪S)∗ /∈ T . We need to prove that
v′ 7−→i,U T . Note that R and S both refine (R ∪ S)∗, so we can find sets UR ⊆ V/R and
US ⊆ V/S such that

⋃

UR =
⋃

US =
⋃

U . Because v 7−→i,U T , also v 7−−→i,UR T , and by
Theorem 5.6 then u0 7−−→

i,UR T , which is equivalent to u0 7−−→
i,US T . By a simple inductive

argument we now arrive at v′ 7−−→i,US T , which is equivalent to v′ 7−→i,U T .
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Figure 5.7: Both (b) and (c) are minimal representations of (a).

Quotienting

One reason for studying equivalence relations for parity games is that they may offer
the prospect of minimising the parity game by merging vertices that are considered
equivalent. The resulting minimised structure is referred to as the quotient. However,
not all equivalence relations admit such a quotienting operation; in particular, the
delayed simulation relation [FW06] for parity games does not seem to have a natural
quotienting operation.

Quotienting for governed stuttering bisimulation can be done efficiently. Due to
the nature of governed stuttering bisimulation, we have some freedom in the definition
of the quotient, in particular when assigning players to the vertices in the quotient. We
therefore first define a notion of minimality, and we subsequently define the quotient
in terms of that notion.

Definition 5.7. A ∼ -minimal representation of a parity game (V,→,Ω,Π) is defined as
a game (Vm,→m,Ωm,Πm), that satisfies the following conditions (where c, c′, c′′ ∈ Vm):

Vm = {[v]∼ | v ∈ V}
Ωm(c) = Ω(v) for all v ∈ c

Πm(c) = i, if for all v ∈ c, and some c′ 6= c we have v 7−−→i,∼ c′ and v 7−−−→¬i,∼X V \ c′

c→m c iff v 7−−→i,∼ for all v ∈ c for some player i

c→m c′ iff v 7−−→i,∼ c′ for all v ∈ c for some player i and c′ 6= c

Observe that for the third clause above, if from some vertex v the play could be
forced to c′ by i without ¬i having the opportunity to diverge, player i is in charge of
the game when the play arrives in c. This requires the representative in the quotient
to be owned by player i.

Note that a parity game may have multiple ∼ -minimal representations. It is not
hard to verify that every parity game contains at least as many vertices and edges
as its ∼ -minimal representations. Moreover, any parity game is governed stuttering
bisimulation equivalent to all its ∼ -minimal representations, in the sense that every
vertex in the original game has a governed stuttering bisimilar vertex in the ∼ -minimal
representation. As a result, the governed stuttering bisimulation quotient of a graph
can be defined as its least ∼ -minimal representation, given some arbitrary ordering
on parity games. A natural ordering would be one that is induced by an ordering on
players, e.g., �< �.
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Example. Consider the parity game in Figure 5.7a. Two of its four minimal represen-
tations are in Figure 5.7b and 5.7c. Observe that the particular player chosen for the
0 and 1 vertices is arbitrary and does not impact the solution to the games. The cycle
formed by the 0 vertices does not give rise to a self-loop in the minimal representations,
because neither player can force to stay on that cycle. This is not the case for the cycle
of 1 vertices, hence we see a self-loop in the minimal representation. �

5.3.3 Governed stuttering bisimilarity refines winner equivalence

In this section, we prove that governed stuttering bisimilarity is strictly finer than
winner equivalence. That is, vertices that are won by different players are never related
by governed stuttering bisimilarity. In order to prove this result, we must first lift the
concept of governed stuttering bisimilarity to paths.

Paths of length 1 are equivalent if the vertices they consist of are equivalent. If
paths p and q are equivalent, then pv ∼ q iff v is equivalent to the last vertex in q, and
pv ∼ qw iff v ∼ w. An infinite path p is equivalent to a path q if for all finite prefixes
of p there is an equivalent prefix of q and vice versa.

We define Pn
s (v) to be the set of paths of length n that start in v and that are allowed

by some strategy s. Pωs (v) is then the set of all infinite paths allowed by s, starting in v.
By Ps(v) we denote

⋃

n∈N P
n
s (v), i.e., the set of all finite paths starting in v and allowed

by s.

Lemma 5.5. Let (V,→,Π,Ω) be a parity game, and let (Q,→,Π,Ω) be its quotient. Let
v ∈ V , and w ∈ Q. For all s ∈ Si there is some s′ ∈ S∗i such that for all q ∈ Pωs′ (w) there
is a p ∈ Pωs (v) such that p ∼ q.

Proof. For finite paths p, let p̄ denote p without its last vertex. Define an arbitrary
complete ordering ≺ on vertices, and define the following for finite paths q, where
min≺ ; is defined to be ⊥:

next(q) =min
≺
{v′ ∈ V | ∃p∈Ps(v)

p ∼ q ∧ p →s v′ ∧ pv′ 6∼ q}

div(q) = ∃p∈Pωs (v) p ∼ q

Define a strategy s′ ∈ S∗i for finite paths q = w . . . w′ such that if q ∼ p for some
p ∈ Ps(v), then:

¨

s′(q) = w′ if div(w′) and w′→ w′

s′(q) ∼ next(q) otherwise.

We first establish that it is always possible to find such s′. Let w′ ∈ V such thatΠ(w′) = i.
If div(q) and w → w′, then obviously s′(w′) can be defined to be w′. If ¬div(q) or
w X→ w′, then first show that next(q) 6=⊥, by distinguishing two cases:

Case div(q), then w′ X→ w′. Because w′ is a vertex in a quotient graph, w′ 7−−→i,∼X . Be-
cause q ∼ p for some p ∈ Ps(v), there must also be v′ such that p →s v′, so if
next(q) =⊥, this must be because for such p and v′, pv′ ∼ q. This can however
not be the case, because this would imply that if p ∼ q and p →s v′, then pv′ ∼ p;
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in other words, all paths allowed by s are governed stuttering equivalent to p.
This would however mean that p 7−−→s,∼ , which contradicts p 7−−→i,∼X .

Case ¬div(q), then it follows straightforwardly that next(q) 6=⊥.

We now know that if ¬div(q) or w′ 6→ w′, then next(q) 6=⊥. Therefore, there must be
some p = v . . . v′v′′ ∈ Ps(v) such that v′′ = next(q), v . . . v′ ∼ q and v′ 6∼ v′′. We now
show that we can define s′(q) such that s′(q) ∼ next(q). Distinguish cases on Π(v′):

Case Π(v′) = i, then v′ 7−−→i,∼ [v′′]∼, and because v′ ∼ w′, also w′ 7−−→i,∼ [v′′]∼. Be-
cause w′ is a vertex in a quotient graph, this must mean that w′→ [v′′]∼, so we
can choose s′(q) ∈ [v′′]∼.

Case Π(v′) 6= i, then v′ 7−−−→¬i,∼ [v′′]∼, and therefore w′ 7−−−→¬i,∼ [v′′]∼. But then w′→
w′′ implies w′′ ∼ v′′ for all w′′, which can be seen as follows. If w′ → w′′ such
that w′ ∼ w′′ then w′ = w′′ because w′ is a vertex in a quotient graph, and hence
w′ 7−−−−→Π(,)∼ , which would contradict w′ 7−−−→¬i,∼ [v′′]∼ by Lemma 5.3. If on the
other hand w′ → w′′ such that w′ 6∼ w′′ and w′′ 6∼ v′′, then w′ 7−−−−→Π(,)∼ [w′′]∼,
which contradicts w′ 7−−−→¬i,∼ [v′′]∼ by Lemma 5.2. So there must be at least one
successor (because the transition relation is total) w′′ such that w′ → w′′ and
w′′ ∼ v′′. We can therefore choose s′(q) ∈ [v′′]∼.

Now we have shown that it is always possible to define a strategy adhering to the
restrictions above, let s′ be such a strategy. We show with induction on n that for all
n,

∀q∈Pn
s′ (w)
∃p∈Ps(v)

p ∼ q.

For n = 0, this is trivial, because v ∼ w. For n = m + 1, assume as the induction
hypothesis that ∀̄q∈Pm

s′ (w)
∃p̄∈Ps(v)

p̄ ∼ q̄. Let q ∈ Pn
s′(w) and let w′, w′′ ∈ V and q̄ ∈ Pm

s′ (w)
such that q̄ = w . . . w′ and q = q̄w′′. Distinguish cases on the player who owns w′.

Case Π(w′) = i. Then v′ = s′(q̄). The induction hypothesis yields some p̄ ∈ Ps(v) such
that p̄ ∼ q̄, therefore the restrictions on s′(q̄) formulated above apply.

If w′ = w′′, then div(q̄), so there must be some p ∈ Pωs (v) such that p ∼ q.

If w′ 6= w′′, then w′′ ∼ next(q), so there is some p ∈ Ps(v) such that p = p′v′ and
p′ ∼ q̄ and v′ ∼ s′(q̄). By definition, p ∼ q for such p.

Case Π(w′) 6= i. From the induction hypothesis, obtain a p̄ ∈ Ps(v) such that p̄ ∼ q̄.
Let v′ be the last vertex in p̄. Note that w′ 7−−−→¬i,∼ [w′′]∼, and because p̄ ∼ q̄,
also v′ 7−−−→¬i,∼ [w′′]∼. So let s′ ∈ S¬i be such that v′ 7−−→s′,∼ [w′′]∼. Now consider
an infinite path p̄p such that s � p̄p and s′ � p̄p. For some index k ≥ 0, it must
be the case that pk ∼ w′′ and pl ∼ w′ for all l < k. So p̄p0 . . . pk ∼ q.

Theorem 5.8. Governed stuttering bisimilarity strictly refines winner equivalence.

Proof. Let G = (V,→,Π,Ω) be a parity game, and let v, w ∈ V such that v ∼ w. Let
(Q,→,Π,Ω) be the quotient of G, and let c ∈ Q be such that w ∼ c. By transitivity of
∼, also v ∼ c. Now suppose that player i has a winning strategy s from v. Then by
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Lemma 5.5, i has a strategy s′ from c such that for every play q ∈ Pωs′ (c) there is a play
p ∈ Pωs (v) such that p ∼ q. Because the priorities occurring infinitely often on such
p and q are the same, s′ is also winning for i. If ¬i had a winning strategy s′ from
w, then we could repeat this argument to construct a winning strategy for ¬i from c,
but this would be contrary to the fact that parity games are determined. Therefore, w
must also be won by player i.

5.4 Performance

In [CKW12b] we presented an algorithm that calculates the governed stuttering bisim-
ulation quotient of a parity game in O(n2m) time, where n is the number of nodes
and m the number of edges in the parity game. This complexity is a factor n worse
than the O(nm) worst case time complexity for calculating the stuttering bisimulation
quotient.

While the extra complexity may seem demotivating at first, because we were explic-
itly looking for relations that were efficiently computable, there are reasons to believe
that in practice, governed stuttering equivalence may perform better than stuttering
equivalence. The extra complexity is caused by a rather intriguing special case, de-
scribed as Problem 4.59 in [Kei13]. Because this case is so specific, it may be expected
that the extra complexity does not manifest itself in the average case. Another reason
why the extra complexity may not be as severe an impediment as it seems, is that one of
the factors n is in fact an upper bound on the number of partitions that are generated.
If in practice, governed stuttering equivalence yields a smaller number of equivalence
classes than stuttering equivalence, then the partition refinement algorithm will termi-
nate after fewer refinement steps. Indeed, the experiments carried out in [CKW12b]
show that calculating the governed stuttering equivalence quotient of a game is not
significantly slower than calculating the stuttering equivalence quotient.

A very elaborate discussion of the reductive power of the presented equivalences,
and of the speedup that can be achieved by solving the quotient of a game rather than
the original, can be found in [Kei13]. We give a brief summary here. The results
pertain to a set of parity games that is categorized as follows.

– The ‘modelchecking’ category contains parity games that encode a model checking
problem. In particular, reachability, liveness and fairness properties are checked on
communication protocols, a cache coherence protocol, two-player board games and
models of industrial systems. Characteristic is that the number of priorities in these
games is low (usually 3 or less).

– The ‘equivalence’ category contains parity games that encode an equivalence check-
ing problem. A number of communication protocols that make use of a buffer is
instantiated for different buffer sizes. It is then checked whether these buffers are
bisimilar, weakly bisimilar, branching bisimilar and branching simulation equivalent.
Again the number of priorities in these games is low (1 or 2).

– The ‘mlsolver’ category consists of parity games that encode the problem of deciding
whether a modal formula is satisfiable (i.e., if there is a model in which it holds),
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and games that encode the problem of deciding whether a modal formula is valid
(i.e., if it holds in all models). The games are generated by the MLSolver tool [FL10],
and contain a larger number of priorities than those in the previous categories.

– The ‘specialcases’ category is a collection of parity games that were designed to
be difficult to solve with a specific parity game solver. In particular, it includes
games that demonstrate the lower bound for the small progress measures algorithm
[Jur00], strategy improvement algorithms [VJ00; Sch07] and the local algorithm
from [SS98]. These games typically have a larger number of priorities, but have a
regular structure because they are composed of gimmicks that are difficult to deal
with for the particular algorithm they were designed for.

– Finally, a ‘random’ category of randomly generated parity games is included. As
the name suggests, these games contain arbitrary amounts of priorities and have an
irregular structure.

Figure 5.8a shows the size reduction that is achieved by reducing the parity games
modulo governed stuttering bisimulation. We see that for the real-world problems
(model checking, equivalence checking and satisfiability / validity checking), the re-
ductions are quite promising at over 80%. The special cases either reduce to two
nodes, or can practically not be reduced at all. Given that these graphs have a very
regular structure, this is to be expected. The random games can hardly be reduced at
all, which is unsurprising, given that governed stuttering relates nodes with identical
potential, and the potential of every node is randomized.

The size reductions for the other relations are very similar in their distribution, but
worse on average; strong bisimulation reduces the least, followed by governed bisimu-
lation, then stuttering bisimulation, and governed stuttering bisimulation reducing the
most. Apart from a few outliers, there is no difference between the size reductions for
stuttering bisimulation and governed stuttering bisimulation in categories other than
‘mlsolver’. In that category, governed stuttering bisimulation reduces on average 40%
better than stuttering bisimulation.

In Figure 5.8b we can see that in general, it does not pay off to reduce modulo
governed stuttering bisimulation before solving, although there is a small number of
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Figure 5.8: Box plot of the effects of governed stuttering bisimulation reduction (the diamonds
indicate averages, dotted lines are medians). Illustration from [Kei13].
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cases in which a dramatic speedup is achieved. The image is slightly distorted because
in many cases, the solving times are very small, in which case overhead caused by
serialization and disk access may play a significant role, and the inaccuracy of the
time measurements may be also influence the results. The analysis in [Kei13] shows
that in cases where solving a parity game takes over 5 seconds (either with or without
the reduction), the model checking problems are in general solved more quickly by
applying governed stuttering bisimulation reduction first, with the median and average
both above the 100 mark. For the other categories, however, directly solving the parity
game is still faster.

5.5 Conclusion

In this chapter, we presented a lattice of equivalence relations on parity games, with
winner equivalence, the coarsest relation, as the top element. In theory, such relations
can speed up solving parity games by minimizing the games first using a polynomial
quotienting algorithm for one of these relations, and then solving the minimized game.
Because current solving algorithms have exponential worst-case complexity, this ap-
proach could speed up the solving process.

In practice, solving the original game using the fastest solving algorithms tends to
be quicker than performing the reduction first and then solving the result. Only in
a few cases a significant speedup can be achieved. The reduction in size however is
rather good for most practical cases, with reductions of over 80% for the parity games
in categories that represent real-world problems.

For model checking via fixpoint logic, this suggests that it can be interesting to re-
search syntactic transformations on fixpoint logic formulas that approximate the effect
of governed stuttering bisimilarity. Currently, fast solvers for fixpoint formulas first
generate a parity game, and then solve this game. If an inexpensive syntactic trans-
formation can be found for the fixpoint formula that yields a smaller, but equivalent,
parity game, then not only the solving time can be shortened, but also the time needed
for generation. As the generation of large parity games is costly both in terms of time
and in terms of memory usage, it is interesting to find out whether a syntactic transfor-
mation can be found that comes close to the 80% reduction that governed stuttering
bisimilarity achieves on parity games.



Chapter 6

Equational Fixpoint Logic

Modal logics such as the first-order modal μ-calculus presented in Chapter 4 reason
about very specific models; in this case about Kripke structures. A similar logic that
reasons about labelled transition systems was used in Chapter 3 to describe properties
about the FlexRay protocol. Both logics closely resemble first-order logic, but with a
domain of discourse that is partitioned into two parts; the model under scrutiny (the
Kripke structure or labelled transition system) forms one part, for which we only have
a restricted form of quantification (the box operator), and the ‘data domain’ forms the
other part (and has no such restriction). The only other difference with first-order
logic is the presence of a fixpoint operator.

To evaluate a formula in such a modal logic, a translation can be made to a fixpoint
logic that is no longer modal: it does not have the strict separation between model and
data, and the restriction on quantification is lifted. Most commonly used as a trans-
lation target are the equational fixpoint logic called Boolean equation systems (BES)
[And92; Mad97] and its first-order extensions, parameterised Boolean equation systems
(PBES) [GW04] and predicate equation systems (PES) [ZC05]. Formulas of these logics
consist of sequences of equations that equate propositional (resp. predicate) variables
with propositional (predicate) formulas, in which every equation is annotated with a
least or greatest fixpoint symbol. The equational syntax allows for compact notation,
because identical subformulas can be represented by a single equation.

In fixpoint logic literature not related to model checking, it is more common to
find a non-equational fixpoint logic called least fixpoint logic (LFP) [Lib04], which is a
straightforward extension of first-order logic with a single fixpoint operator. By adding
the notion of fixpoint to first-order logic, LFP essentially extends first-order logic in the
same way PBES does.

Despite the apparent similarities between the PBES and LFP formalisms, there are
two notable differences that make it difficult to relate results about LFP to results about
PBES and vice versa. Firstly, the PBES formalism explicitly introduces notions of least
and greatest fixpoints, and the semantics of PBES is given in terms of these notions.
LFP only employs a least fixpoint operator. Secondly, the PBES formalism is equational,
LFP is not.

In this chapter we make an effort to overcome these differences in presentation,
by defining a logic that is a generalisation of both PBES and LFP. We will look at a
logic that we shall call equational fixpoint logic (EFL), which has the PBES and LFP
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logics as normal forms. EFL can then serve as a unified framework in which results
about both sublogics can be compared more easily. Moreover, developing new theories
in the setting of EFL will yield results that are applicable in both domains. We will
use this in the next chapter, where we will investigate the problem of diagnostics
generation for model checking via fixpoint logic. Lastly, the fact that PBES and LFP
are equally expressive follows directly from the fact that both are normal forms of
EFL. This result could have been obtained from the results in Section 1.4.4 of [AN01],
which are presented in the more general setting of vectorial fixpoints on arbitrary
lattices. Translating back and forth to this general setting can however be cumbersome
(we have done this in a very coarse manner in the complexity proof in Chapter 4),
so restating it in our more specific setting may prove to be more insightful to some.
Moreover, our proofs are constructive, and therefore suggest ways to translate between
the formalisms by syntactic manipulations.

The chapter is structured as follows. In Section 6.1, we present the syntax and
semantics of EFL. We then dedicate a section to a number of general lemmas about
the semantics of the fixpoint operator in EFL in Section 6.2. We then present a notion
of syntactic monotonicity for EFL in Section 6.3, similar to the syntactic restrictions
that are usually imposed on LFP and PBES formulas. In Section 6.4, we show that
PBES and LFP are indeed fragments of EFL, and that translation from any EFL formula
to either of these fragments is always possible, so that PBES and LFP may be seen as
normal forms of EFL. We conclude with some closing remarks in Section 6.5.

6.1 Syntax and semantics

Equational fixpoint logic (EFL) is defined as first-order logic extended with a fixpoint
equation system operator. This operator works as a binder for second-order variable
names taken from some set X . Second-order variable names are usually denoted
X , Y, Z , and every second-order variable X has an associated arity. Slightly abusing
our own notational conventions, we denote this arity by ar(X ), overloading the arity
functions from signatures that we usually also call ar.

Syntax The formulas of EFL over signature Σ= 〈R,F ,ar〉 are generated by ϕ in the
grammar below. Let non-terminals X and x i (for i ∈ N) generate elements from X and
V, respectively, and let R and f generate elements from R and F , respectively.

ϕ,ψ ::= Rt0 . . . tar(R)−1 | [X t0 . . . tar(X )−1 :E] | ¬ϕ | ϕ ∨ψ | ∃x ϕ

t0, t1, . . . ::= x | f t0 . . . tar( f )−1

E ::= ε | (σX x0 . . . xar(X ) = ϕ)E
σ ::= lfp | gfp

We also allow the use of some commonly used derived operators:

ϕ ∧ψ¬ ¬(¬ϕ ∨¬ψ) ϕ⇒ψ¬ ¬ϕ ∨ψ
ϕ⇔ψ¬ (ϕ⇒ψ)∧ (ψ⇒ ϕ) ∀x ϕ ¬ ¬∃x ¬ϕ
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We will call the syntactic structures generated by non-terminal E equation systems.
Before we proceed to the semantics of EFL formulas, we will introduce some notational
conventions. To increase readability, we will usually omit the trailing ε in equation
systems. Sometimes, we will write an equation system in a tabular form, in which
every equation is set on a new line, and in which we omit the surrounding parentheses.
Parameter lists for relations and second-order variables are often written in vectorial
notation: t̄ is used rather than t0 . . . tn, | t̄| denotes the number of elements of such a
vector, and if t̄ = t0, . . . , tn, then t̄ i denotes the element t i .

For i ∈ N we denote by E i the equation system E without its first i equations (so in
particular, E0 = E , and if E has i equations or less, then E i = ε). The formula [X t̄ :ε]
may be abbreviated to X t̄. The subformula relation v is extended to EFL in the usual
way.

We define the subsystem ordering as a partial ordering on equation systems, denoted
byv, as it is very similar to the notion of subformula. We recursively define that E ′ v E
holds if and only if there is some i such that:

– E ′ = E i , or
– E i = (σ X x̄ = ϕ)E i+1 and [Y t̄ :E ′′]v ϕ such that E ′ v E ′′, for some X , Y, x̄ ,ϕ and t̄.

A strict variant is defined as E À E ′ if and only if E v E ′ and E 6= E ′.
The set bnd(E) of locally bound variables of an equation system E is defined by:

bnd(ε) = ;
bnd((σ X x̄ = ϕ)E) = {X } ∪ bnd(E).

For EFL formulas and equation systems we also define sets bnd∗(ϕ) and bnd∗(E) that
contain their bound variables: X ∈ bnd∗(ϕ) if and only if there is some [Y t̄ :E] v ϕ
such that X ∈ bnd(E), and X ∈ bnd∗(E) if and only if there is some E ′ v E such that
X ∈ bnd(E ′).

In a formula ∀x ϕ or ∃x ϕ we say that x is bound in ϕ. An equation system E
is also a binder: the variables in bnd(E) are bound in the right-hand sides of E . If a
variable is bound in a formula ϕ, then it is also bound in all subformulas of ϕ. The
variables occurring in a formula ϕ that are not bound in ϕ are called free. The set
of free variables in a formula ϕ is denoted fv(ϕ). The set of free variables fv(E) in a
system E is defined as the union of the sets of free variables in the right-hand sides in
E (this excludes the variables from bnd(E)).

The size |E | of an equation system is defined as the number of E ′ such that E ′ À E .
An equation system E induces a strict ordering <E on bnd∗(E): if X , Y ∈ bnd∗(E),

then X <E Y if and only if there is some E ′ À E such that X /∈ bnd∗(E ′)∧ Y ∈ bnd∗(E ′).
The reflexive closure of <E is denoted ≤E and is used as a partial order on X .

To increase readability in the rest of the section1, we impose two syntactic restric-
tions on EFL formulas. First, we require that for every equation (σ X x̄ = ϕ) in an
equation system, fv(ϕ) ⊆ X ∪ {x | x ∈ x̄}. Any formula can be altered to meet this
restriction by increasing the arity of the bound second-order variables in the formula,

1As best we can; the notation will get rather hairy even with these restrictions.
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without changing the semantics of the formula (the semantics of EFL is described be-
low, and the proof for this claim is left as an exercise to the reader).

The second restriction is that we require bound variables to be uniquely named.
That is, in an EFL formula ϕ,

– bnd∗(ϕ)∩ fv(ϕ) = ;,
– for every equation (σ X x̄ =ψ) in ϕ, X /∈ bnd∗(ψ), and
– for every subformula of the form χ ∨ψ, bnd∗(χ)∩ bnd∗(ψ) = ; (and similarly for

the derived binary operators).

This restriction can always be satisfied by renaming bound variables in a formula. With
this restriction in place, we do not have to worry about name clashes in our proofs. In
particular, we use this restriction so that we may write σX , x̄X and ϕX to denote the
fixpoint operator, variable vector and right-hand side of the equation that binds X in
E , if E is clear from the context.

Semantics A formula is evaluated on a structure A = 〈Σ, A,I〉 and an environment
θ which maps every x ∈ V to an element of A, and which maps every X ∈ X to a
subset of Aar(X ). The semantics of EFL formulas is now very similar to that of formulas
of first-order logic; the only differences are that θ also includes second-order variables
in its domain, and that there is an additional way to construct an ‘atomic’ formula by
means of the fixpoint equation system operator.

A,θ |= Rt̄ iff t̄A,θ ∈ I(R)
A,θ |= [X t̄ :E] iff t̄A,θ ∈ SA(θ ,E)(X ), with SA as defined below

A,θ |= ¬ϕ iff A,θ |= ϕ does not hold

A,θ |= ϕ ∨ψ iff A,θ |= ϕ or A,θ |=ψ
A,θ |= ∃x ϕ iff A,θ[x 7→ a] |= ϕ for some a ∈ A

The function SA calculates the semantic relation associated with the second-order
variable X in a system E , in the context of a structure A and an environment θ .

Definition 6.1. The solution of an equation system E under environment θ in structure
A, denoted SA(θ ,E) is defined inductively on the structure of E as follows:

SA(θ ,E) =

¨

θ , E = ε,
SA(θ[X 7→ σTA,θ

E ],E1), E = (σ X x̄ = ϕ)E1,

in which the mapping TA,θ
E is called a predicate transformer and is defined as follows:

TA,θ
(σX x̄=ϕ)E1(R) = {ā | A,SA(θ[X 7→R],E1)[ x̄ 7→ ā] |= ϕ}.

For E 6= ε, SA(θ ,E) is not defined if TA,θ
E is not monotone, or if SA(θ[X 7→ σTA,θ

E ],E1)
is not defined.

If it is clear from the context which structure is used, then the A superscripts may
be left out to increase readability.
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We introduce shorthand notation to say that two environments are identical for all
variables in some set S: by θ ≡S θ

′ we denote that ∀x∈S θ (x) = θ ′(x).
Our definition of semantics is only defined if all predicate transformers used in

the definition are monotone, because for non-monotone functions it is not guaranteed
that the required fixpoint exists. As monotonicity of this predicate transformer is un-
decidable in general, we would like a syntactic restriction of EFL so that the resulting
predicate transformers are always monotone (this is a common practice that we also
find in the setting of the LFP and PBES fixpoint logics). Because our notion of syntactic
monotonicity for EFL is easier to prove correct after establishing some basic facts about
the solutions of equation systems, we postpone its treatment until Section 6.3.

Example. In Chapter 5 we introduced the notation v 7−→U T to denote that there is a
path from v to a node in T , such that only nodes from U are visited before T is reached.
We gave a textual, inductive definition of this predicate. Using EFL, this definition can
be expressed as:

v 7−→U T ¬ [X v : (lfp Xu= ∃u′ u→ u′ ∧ (u′ ∈ T ∨ (u′ ∈ U ∧ Xu′)))].

Likewise, divergence can be expressed using a single greatest fixpoint, corresponding
to the coinductive definition of v 7−→U :

v 7−→U ¬ [X v : (gfp Xu= ∃u′ u→ u′ ∧ u′ ∈ U ∧ Xu′)].

�

6.2 Solution

The solution of an equation system is by far the most interesting part of the EFL se-
mantics. Although the mutual recursion of S(θ ,E) and TθE makes it difficult to read
and understand the definition, we need a good understanding of the notion of solution
to establish the results in the sections to come. This section is therefore devoted to a
number of lemmas that describe some interesting properties of the S function that can
be used in subsequent proofs.

The following lemmas all quantify universally over models A, environments θ and
equation systems E . The first lemma is almost trivial, but is used quite often in the
proofs that follow. It shows why the validity of [X t̄ :E] in A and θ does not depend
on E (but only on θ) if E does not bind X locally. This is also the reason to allow
abbreviating [X t̄ :ε] to X t̄: the empty equation system has no effect on the truth
value of this formula.

Lemma 6.1. S(θ ,E)(X ) = θ (X ) for all X /∈ bnd(E).

Proof. The lemma follows directly from the fact that S only updates θ for second-order
variables that are bound by E .

The second lemma says that only the values in θ for variables that are free in E
can affect the solution of E under θ .
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Lemma 6.2. For all θ ′, if θ ≡fv(E) θ
′, then S(θ ,E)≡bnd(E) S(θ ′,E).

Proof. We proceed by induction on the structure of E . For E = ε, the lemma holds
trivially, because η ≡; η′ for any η and η′. So let E = (σX x̄ = ϕ)E ′ and assume
now as the induction hypothesis that for all Y ∈ bnd(E ′), η and η′ such that η ≡fv(E ′)
η′, we have that S(η,E ′)(Y ) = S(η′,E ′)(Y ). We need to prove for all Y ∈ bnd(E)
that S(θ ,E)(Y ) = S(θ ′,E)(Y ), which, expanding the definition of S, is equivalent to
showing that

S(θ[X 7→ σ(TθE)],E
′)(Y ) = S(θ ′[X 7→ σ(Tθ

′

E )],E
′)(Y ). (∗)

So fix Y ∈ bnd(E) and distinguish two cases.

Case Y = X . Fix some θ and θ ′ such that θ ≡fv(E) θ
′. Filling in X for Y in (∗), and

using Lemma 6.1 to simplify, our proof obligation becomes:

θ[X 7→ σ(TθE)](X ) = θ
′[X 7→ σ(Tθ

′

E )](X ).

We therefore need to prove that σ(TθE) = σ(T
θ ′

E ). We set out to prove that
TθE = Tθ

′

E , by showing that, given some R and ā matching the arity of X ,

A,S(θ[X 7→R],E ′)[ x̄ 7→ ā] |= ϕ iff A,S(θ ′[X 7→R],E ′)[ x̄ 7→ ā] |= ϕ.

This must be the case because S(θ[X 7→R],E ′) = S(θ ′[X 7→R],E ′), which follows
directly from the induction hypothesis because θ ′[X 7→ R]≡fv(E ′) θ[X 7→ R].

Case Y 6= X . We have just shown that TθE = Tθ
′

E , and so it follows trivially that θ ′[X 7→
σ(Tθ

′

E )] ≡fv(E ′) θ[X 7→ σ(TθE)]. The induction hypothesis therefore gives us the
desired result.

We often apply the lemma above when we know that θ and θ ′ are equal on more
than just fv(E), and in situations where we would like to prove that S(θ ,E) and S(θ ′,E)
are identical for every variable, not just for bnd(E). For these situations we state a
slightly more specific lemma.

Lemma 6.3. S(θ ,E) = S(θ ′,E) if θ ≡V∪X\bnd(E) θ
′.

Proof. This follows immediately from Lemmas 6.1 and 6.2.

Using these results, we can prove the next lemma, which says that evaluating a
subsystem of E in the environment S(θ ,E) (the solution of E under θ) yields that same
environment. This was already shown by Mader in the setting of fixpoint equation
systems as Corollary 3.7 in [Mad97].

Lemma 6.4. S(S(θ ,E),E i) = S(θ ,E) for all i.

Proof. The proof is by induction on i. First consider the base case i = 0. Note that by
Lemma 6.1, S(θ ,E) and θ agree on all X /∈ bnd(E0). By Lemma 6.3, we then have that
S(S(θ ,E),E0) = S(θ ,E).
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Now let i > 0, let E i−1 = (σX x̄ = ϕ)E i and as our induction hypothesis, assume
that we have S(S(θ ,E),E i−1) = S(θ ,E). Filling in the definition of S, we get (for
F = σTS(θ ,E)

E i−1 ):

S(θ ,E) = S(S(θ ,E),E i−1) = S(S(θ ,E)[X 7→ F],E i), and by Lemma 6.1,

S(S(θ ,E)[X 7→ F],E i)(X ) = S(θ ,E)[X 7→ F](X ) = F.

Therefore also S(θ ,E)(X ) = F , so S(θ ,E)[X 7→ F] = S(θ ,E). In the above we saw that
S(S(θ ,E)[X 7→ F],E i) = S(θ ,E), so it follows that S(S(θ ,E),E i) = S(θ ,E).

The following two lemmas say something about the solution of a particular variable
in an equation system. The first lemma shows that it is indeed still a fixpoint of the
associated predicate transformer when evaluated under the environment S(θ ,E). This
should come as no surprise, as the solution, say R, for a variable X is computed as a
fixpoint of the associated predicate transformer, under an environment θ for which
θ (X ) approaches R during the fixpoint approximation.

Lemma 6.5. Let E i = (σ X x̄ = ϕ)E ′ for some i, then S(θ ,E)(X ) = σTS(θ ,E)
E i .

Proof. By Lemma 6.4, S(θ ,E)(X ) = S(S(θ ,E),E i)(X ). Expanding the definition of S,
S(θ ,E)(X ) = S(S(θ ,E)[X 7→ σTS(θ ,E)

E i ],E ′)(X ). By Lemma 6.1, we have S(θ ,E)(X ) =
S(θ ,E)[X 7→ σTS(θ ,E)

E i ](X ), and therefore S(θ ,E)(X ) = σTS(θ ,E)
E i .

The second lemma says that checking whether ā is an element of R is equivalent
to checking that the right-hand side of the equation for X holds under the solution
of the system, if x̄ is mapped to ā. One would expect this to be true, because R is
computed in every step of the fixpoint approximation as the set of vectors b̄ such that
the right-hand side holds under the current approximation

Lemma 6.6. Let E i = (σ X x̄ = ϕ)E ′ for some i, then

ā ∈ SA(θ ,E)(X ) if and only if A,S(θ ,E)[ x̄ 7→ ā] |= ϕ.

Proof. By Lemma 6.5, S(θ ,E)(X ) = σTθE , which, because it is a fixpoint, is equal to
TθE(σTθE), which by Definition 6.1 equals {c̄ | A,S(S(θ ,E),E ′)[ x̄ 7→ c̄] |= ϕ}. Therefore
ā ∈ SA(θ ,E)(X ) is equivalent to A,S(S(θ ,E),E ′)[ x̄ 7→ ā] |= ϕ, which by Lemma 6.4 is
equivalent to A,S(θ ,E)[ x̄ 7→ ā] |= ϕ.

The following lemma shows that if a system E can be split into two, i.e., E = E1E2,
such that E1 is in some sense independent of the other, then the solution of E1 can be
calculated independently of E2, after which it suffices to calculate the solution of E2 in
the environment that is the solution of E1 to obtain the solution of E . Note that this
modularity gives rise to a polynomial solving algorithm if E1 and E2 are solvable in poly-
nomial time. Given that systems in which all equations have the same fixpoint symbol
are computable in polynomial time, this lemma therefore also suggests a straightfor-
ward proof for the fact that model checking Lµ formulas of alternation depth 1 (using
Niwińsky’s definition, see e.g., [BS06] for a comprehensive treatment) can be done in
polynomial time.
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Lemma 6.7. If E = E1E2 and fv(E1)∩ bnd(E2) = ;, then S(θ ,E) = S(S(θ ,E1),E2).

Proof. The proof goes by induction on the size of E1. If E1 = ε, the lemma follows
trivially. So assume as the induction hypothesis that the lemma holds for all E ′ = E ′1E

′
2

with E ′1 smaller than E1.

Let E1 = (σ X x̄ = ϕ)E ′1. We first show that TA,θ
E1
= TA,θ

E1E2
:

TA,θ
E1
(R) = {ā | A,S(θ[X 7→R],E ′1)[ x̄ 7→ ā] |= ϕ} (Definition 6.1)

= {ā | A,S(S(θ[X 7→R],E ′1),E2)[ x̄ 7→ ā] |= ϕ} (∗)
= {ā | A,S(θ[X 7→R],E ′1E2)[ x̄ 7→ ā] |= ϕ} (IH)

= TA,θ
E1E2
(R) (Definition 6.1)

The step at (∗) is valid because fv(ϕ) ∩ bnd(E2) = ;, and Lemma 6.1. We can now
finish our proof.

S(S(θ ,E1),E2) = S(S(θ[X 7→ σTA,θ
E1
],E ′1),E2) (Definition 6.1)

= S(θ[X 7→ σTA,θ
E1
],E ′1E2) (IH)

= S(θ[X 7→ σTA,θ
E1E2
],E ′1E2)

= S(θ ,E1E2) (Definition 6.1)

Something similar can be shown when E1 only depends on E2, but not the other
way around.

Lemma 6.8. If E = E1E2 and fv(E2)∩ bnd(E1) = ;, then S(θ ,E) = S(S(θ ,E2),E1).

Proof. The proof for this lemma is similar to that of the previous lemma, and again
goes by induction on the size of E1. If E1 = ε, the lemma holds trivially. Assume as the
induction hypothesis that the lemma holds for E ′1 and E ′2 with E ′1 smaller than E1.

Let E1 = (σ X x̄ = ϕ)E ′1. We first show that TA,S(θ ,E2)
E1

= TA,θ
E1E2

:

TA,S(θ ,E2)
E1

(R) = {ā | A,S(S(θ ,E2)[X 7→ R],E ′1)[ x̄ 7→ ā] |= ϕ} (Definition 6.1)

= {ā | A,S(S(θ[X 7→ R],E2),E ′1)[ x̄ 7→ ā] |= ϕ} (∗)
= {ā | A,S(θ[X 7→ R],E ′1E2)[ x̄ 7→ ā] |= ϕ} (IH)

= TA,θ
E1E2
(R) (Definition 6.1)

The step at (∗) is valid because by Lemma 6.2, S(θ ,E2) and S(θ[X 7→ R],E2) are equal
on all variables in bnd(E2), and by Lemma 6.1, they are equal on all variables outside
bnd(E2), except X . Because S(θ[X 7→ R],E2)(X ) = R by Lemma 6.1, we may conclude
that S(θ[X 7→ R],E2) = S(θ ,E2)[X 7→ R]. We can now finish the proof. Below, the
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same reasoning is used at the (∗) mark as above.

S(S(θ ,E2),E1) = S(S(θ ,E2)[X 7→ σTA,S(θ ,E2)
E1

],E ′1) (Definition 6.1)

= S(S(θ[X 7→ σTA,S(θ ,E2)
E1

],E2),E ′1) (∗)

= S(θ[X 7→ σTA,S(θ ,E2)
E1

],E ′1E2) (IH)

= S(θ[X 7→ σTA,θ
E1E2
],E ′1E2)

= S(θ ,E1E2) (Definition 6.1)

The following two lemmas show that if in a system E = E1E2, we are interested in
the solution of a variable in one of the two subsystems, and that subsystem is inde-
pendent of the other, then we only need to calculate the solution for the subsystem in
which the variable is bound.

Lemma 6.9. If E = E1E2 such that fv(E1)∩bnd(E2) = ;, then S(θ ,E)(X ) = S(θ ,E1)(X )
for all X ∈ bnd(E1) and all θ .

Proof. By Lemma 6.7, S(θ ,E) = S(S(θ ,E1),E2), and then by Lemma 6.1 we can derive
S(S(θ ,E1),E2)(X ) = S(θ ,E1)(X ) for all X ∈ bnd(E1), since bnd(E1) ∩ bnd(E2) = ; by
the unique naming convention.

Lemma 6.10. If E = E1E2 such that fv(E2)∩bnd(E1) = ;, then S(θ ,E)(X ) = S(θ ,E2)(X )
for all X ∈ bnd(E2) and all θ .

Proof. This can be shown by a straightforward induction on the number of equations
in E1. If E1 = ε, then the lemma holds vacuously, because then E = E2. Assume as
the induction hypothesis that S(θ ,E ′1E2)(X ) = S(θ ,E2)(X ) for all X ∈ bnd(E2) and all
E ′1 smaller than E1 such that fv(E2) ∩ bnd(E1) = ;. Now suppose that E1 = (σ Y ȳ =
ϕ)E ′1. Then S(θ ,E)(X ) = S(θ[Y 7→ σTA,θ

E ],E ′1E2)(X ). By the induction hypothesis
this is equal to S(θ[Y 7→ σTA,θ

E ],E2)(X ), which in turn is equal to S(θ ,E2)(X ) by
Lemma 6.2.

For completeness, we also give the generalisation of Lemma 3.10 in [Mad97],
which can now easily be proven using the previous lemmas.

Lemma 6.11. If E = E1E2 such that fv(E1)∩bnd(E2) = ; and fv(E2)∩bnd(E1) = ;, then
S(θ ,E) = S(S(θ ,E2),E1).

Proof. By Lemma 6.1, S(θ ,E)(X ) = θ (X ) = S(θ ,E2)(X ) = S(S(θ ,E2),E1)(X ) for all
X /∈ bnd(E). For X ∈ bnd(E1) note that by Lemma 6.2, S(S(θ ,E2),E1)(X ) = S(θ ,E1)(X ),
and then by Lemma 6.9 this is equal to S(θ ,E)(X ). For X ∈ bnd(E2), by Lemma 6.1,
S(S(θ ,E2),E1)(X ) = S(θ ,E2)(X ), and then by Lemma 6.10, this can now be seen to be
equal to S(θ ,E)(X ).
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6.3 Monotonicity

Definition 6.1 computes fixpoints over predicate transformers. Such fixpoints are only
guaranteed to exist when the predicate transformers are monotone. We will call a
system E semantically monotone if S(θ ,E) is defined for all θ , which is the same as
saying that all predicate transformers that are used in the computation of S(θ ,E) are
monotone.

In general, the monotonicity property of the predicate transformers is undecidable,
so we would like to define a syntactic restriction of our EFL formulas that is guaranteed
to only give rise to monotone predicate transformers. Of course, determining whether
a given formula adheres to the restriction should be computable in a reasonable time;
we give a definition that is easily seen to be computable in linear time with respect to
the size of the formula.

The following definition of syntactic monotonicity for EFL could be informally
stated as ‘any bound second-order variable only occurs positively in the right-hand
side of its defining equation, and in the equations reachable via its defining equation’.

Definition 6.2. An equation system E is syntactically monotone if and only if for all
X ∈ bnd(E), there exist functions posE,X and negE,X satisfying the equalities denoted in
the table below, such that posE,X (ϕX ). An EFL formula ϕ is syntactically monotone if
and only if for every subformula [Y t̄ :F]v ϕ, F is syntactically monotone.

χ posE,X (χ) negE,X (χ)

[Y t̄ :F]







t,

t,

posE,X (ϕY ),

t,

f,

negE,X (ϕY ),

Y <E X
Y = X
Y 6≤E X

Rt̄ t t

¬ψ negE,X (ψ) posE,X (ψ)
∃x ψ posE,X (ψ) negE,X (ψ)
ψ0 ∨ψ1 posE,X (ψ0)∧ posE,X (ψ1) negE,X (ψ0)∧ negE,X (ψ1)

We assume that for each monotone E and X ∈ bnd(E), posE,X and negE,X are uniquely de-
termined (for instance by defining them to be the least functions satisfying the restrictions
above, with respect to some arbitrary ordering on functions).

Although the definition is somewhat unwieldy, syntactic monotonicity is concep-
tually quite simple. Imagine an edge-labelled graph with the bound variables of a
system as vertices, with an edge labelled ‘positive’ from X to Y if Y occurs in ϕX in
the scope of an even number of negations, and with an edge labelled ‘negative’ from
X to Y if Y occurs in ϕX in the scope of an odd number of negations. The system is
syntactically monotone if in this graph, every cycle contains an even number of edges
labelled ‘negative’.

Note that we need not uniquely define posE,X and negE,X ; the existence of such
predicates is a sufficient condition to prove semantic monotonicity.
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Example. The following formula is syntactically monotone.

[X :lfp X = ¬Y ∨ [Z : lfp Z = Z]
gfp Y = ¬X ∧ Y ∧¬[W :gfpW =W ∧¬Y ]]

Removing any single negation symbol from this formula will cause it not to be syntac-
tically monotone anymore. �

Our syntactic restriction is more complicated than the restrictions that are usually
imposed on LFP and PBES. This is due to the fact that for PBES, it is usually required
that all variables occur only in the scope of an even number of negations. This restric-
tion is obviously sufficient, but more stringent than the restriction imposed on LFP, in
which a bound variable is only required not to occur in the scope of an odd number of
negations in its own right-hand side. Because we wish to be able to treat any valid LFP
formula as an EFL formula, we have chosen to adapt this less strict requirement to the
setting of EFL, resulting in a slightly more complicated notion of syntactic monotonicity
due to our use of equation systems.

We wish to show that the predicate transformers induced by a system E are indeed
monotone when E is syntactically monotone. Because the calculation of one predi-
cate transformer may involve calculating the solution of another equation system, and
therefore calculating the fixpoints of a number of other predicate transformers, we
adopt a proof strategy in which we characterize how the solution S(θ ,E) of an equa-
tion system relates to the environment θ that it was given as input. This is done in
terms of a relation underX , defined as follows.

Definition 6.3. Given a syntactically monotone system E and environments θ1 and θ2,
we say that θ1 is under θ2 with respect to X , denoted θ1 underX θ2, if and only if

θ1 ≡V θ2 ∧∀Y∈bnd(E) (posE,X (ϕY )⇒ θ1(Y ) ⊆ θ2(Y ))∧
(negE,X (ϕY )⇒ θ1(Y ) ⊇ θ2(Y )).

We can now show that this relationship is preserved by S. This is stated in the
following lemma.

Lemma 6.12. For all syntactically and semantically monotone E , X ∈ X , θ1 and θ2,

θ1 underX θ2⇒ S(θ1,E) underX S(θ2,E).

The proof of this lemma is postponed, but will involve two inductions: one on the
structure of E , and one on the structure of right-hand sides within E . The proof used in
that second induction will be re-used later, and is therefore stated in the next lemma.
It sets some sufficient conditions under which monotonicity of a predicate transformer
can be proven.

Lemma 6.13. Let E , ϕ, X , θ1,θ2 and ȳ and ā of corresponding size be such that:

– X ∈ bnd(E)
– ϕ = ϕY for some Y ∈ bnd(E)
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– S(η1,E ′) underX S(η2,E ′) for all E ′ v E and all η1,η2 such that η1 underX η2

– θ1 underX θ2

Then the following implications hold:

posE,X (ϕ)⇒ (A,S(θ1,E)[ ȳ 7→ ā] |= ϕ⇒ A,S(θ2,E)[ ȳ 7→ ā] |= ϕ), and

negE,X (ϕ)⇒ (A,S(θ2,E)[ ȳ 7→ ā] |= ϕ⇒ A,S(θ1,E)[ ȳ 7→ ā] |= ϕ).

Proof. We give the proof for the first implication; the proof for the second implication is
similar. The proof is by structural induction on ϕ. Assume as the induction hypothesis
that the lemma holds for all formulas smaller than ϕ, and assume posE,X (ϕ). Now
distinguish cases based on the shape of ϕ.

Case ϕ = S t̄, with S a first-order relation symbol. Then the semantics of ϕ depends
only on the interpretation of S in A and on the values assigned to first-order vari-
ables in S(θ1,E)[ ȳ 7→ ā] and S(θ2,E)[ ȳ 7→ ā], which are the same in both envi-
ronments by the assumption that θ1 underX θ2 (so θ1 ≡V θ2) and Lemma 6.1.

Case ϕ = [Z t̄ :E ′], then we need to show that

t̄A,S(θ1,E)[ ȳ 7→ā] ∈ S(S(θ1,E)[ ȳ 7→ ā],E ′)(Z)

⇒ t̄A,S(θ2,E)[ ȳ 7→ā] ∈ S(S(θ2,E)[ ȳ 7→ ā],E ′)(Z)

By assumption, S(θ1,E) underX S(θ2,E), and therefore, by the same assumption
(because E ′ v E), also

S(S(θ1,E)[ ȳ 7→ ā],E ′) underX S(S(θ2,E)[ ȳ 7→ ā],E ′).

Because posE,X (ϕ), also posE,X (ϕZ) by Definition 6.2, and then by the definition
of underX ,

S(S(θ1,E)[ ȳ 7→ ā],E ′)(Z) ⊆ S(S(θ2,E)[ ȳ 7→ ā],E ′)(Z),

which implies what we needed to prove.

Case ϕ = ¬ψ. Because posE,X (ϕ), negE,X (ψ). By the semantics of EFL,

A,S(θ1,E)[ ȳ 7→ ā] |= ϕ⇔ A,S(θ1,E)[ ȳ 7→ ā] |=/ ψ.

Using the induction hypothesis, we obtain (using contraposition):

A,S(θ1,E)[ ȳ 7→ ā] |=/ ψ⇒ A,S(θ2,E)[ ȳ 7→ ā] |=/ ψ.

Again using the semantics of EFL, we can now obtain our goal, because:

A,S(θ2,E)[ ȳ 7→ ā] |=/ ψ⇔ A,S(θ2,E)[ ȳ 7→ ā] |= ϕ.

The remaining two cases (ϕ =ψ1∨ψ2 andϕ = ∃x ψ) are straightforward with a single
appeal to the induction hypothesis, and are left as an exercise for the reader.
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We now return to the proof of the previously stated lemma.

Lemma 6.12. For all syntactically and semantically monotone E , X ∈ X , θ1 and θ2,

θ1 underX θ2⇒ S(θ1,E) underX S(θ2,E).

Proof. The proof is by structural induction on E . For E = ε, the lemma holds vacuously.
Now assume as the induction hypothesis that the lemma holds for all systems smaller
than E , and let E = (σ Y ȳ = ϕY )E1. Assume θ1 underX θ2.

Let T1 = TA,θ1
E and T2 = TA,θ2

E . Expanding the definition of S, we find:

S(θ1,E) = S(θ1[Y 7→ σT1],E1) and S(θ2,E) = S(θ2[Y 7→ σT2],E1).

If we can show that posE,X (ϕZ)⇒ σT1 ⊆ σT2 and negE,X (ϕY )⇒ σT1 ⊇ σT2, then
θ1[Y 7→ σT1] underX θ2[Y 7→ σT2], and then by the induction hypothesis and the
equalities above, S(θ1,E) underX S(θ2,E).

For the first implication, assume posE,X (ϕY ). We may prove that σT1 ⊆ σT2 by
showing that T1(R) ⊆ T2(R) for all R ⊆ Aar(Y ). Let R ⊆ Aar(Y ) and let ā ∈ T1(R). We
need to show that ā ∈ T2(R). Let θ ′1 = θ1[Y 7→ R] and θ ′2 = θ2[Y 7→ R]. Using the
definitions of T1 and T2, and using the same argument for the second implication, our
proof obligation becomes, for all R ⊆ Aar(Y ):

posE,X (ϕY )⇒ (A,S(θ ′1,E1)[ ȳ 7→ ā] |= ϕY ⇒ A,S(θ ′2,E1)[ ȳ 7→ ā] |= ϕY ), and

negE,X (ϕY )⇒ (A,S(θ ′2,E1)[ ȳ 7→ ā] |= ϕY ⇒ A,S(θ ′1,E1)[ ȳ 7→ ā] |= ϕY ).

The induction hypothesis lets us apply Lemma 6.13 to directly obtain this result.

The main result of this section is that syntactic monotonicity indeed implies seman-
tic monotonicity, giving us the guarantee that the solution of an equation system is
properly defined if that equation system is syntactically monotone. With the help of
Lemmas 6.13 and 6.12, what remains is a straightforward induction on the structure
of the equation system.

Theorem 6.1. If E is syntactically monotone, then E is semantically monotone.

Proof. The proof is by well-founded induction on E and v. If E = ε, then S(θ ,E) is
defined to be equal to θ . As the induction hypothesis, assume that S(θ ,E ′) is defined
for all E ′ À E .

If E = (σ X x̄ := ϕ)E1, then we need to show that S(θ ,E) = S(θ[X 7→ σTA,θ
E ],E1)

is defined. We therefore need to show that σTA,θ
E exists, which we do by proving

that TA,θ
E is monotone. Once we have the proof for monotonicity of this predicate

transformer, the induction hypothesis gives us the desired result.
To prove monotonicity of the predicate transformer, we need to show that for all

R, R′ ⊆ Aar(X ) such that R ⊆ R′, and for all ā ∈ Aar(X ),

A,S(θ[X 7→ R],E1)[ x̄ 7→ ā] |= ϕ⇒ A,S(θ[X 7→ R′],E1)[ x̄ 7→ ā] |= ϕ. (∗)

Note that all E ′ v E1 are syntactically monotone, and by the induction hypothesis
therefore also semantically monotone. By Lemma 6.12 we also have η1 underX η2⇒
S(η1,E ′) underX S(η2,E ′) for such E ′ and for all η1 and η2. This is sufficient to derive
(∗) by applying Lemma 6.13.
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6.4 The PBES and LFP sublogics

We defined EFL in such a way that first-order logic can be seen as a fragment of EFL.
We now investigate two fixpoint logics, PBES and LFP, and show that they too can be
seen as syntactic fragments of EFL, both equally expressive as EFL itself. Of course the
PBES and LFP logics traditionally use notation that differs from the EFL notation. We
do not discuss the syntactic differences in detail, but Table 6.1 gives an example of the
same statement, expressed in all three formalisms, using the traditional notation for
each formalism.

LFP: [gfp X x .[lfp Y y.Y (y + 1)∨ (X (y + 1)∧∀1<z<y y mod z 6= 0)]x]1
EFL: [X1 :gfp X x = [Y x : lfp Y y = Y (y + 1)∨ (X (y + 1)∧∀1<z<y y mod z 6= 0)]]
PBES: νX (x : N) = Y (x)

µY (y : N) = Y (y + 1)∨ (X (y + 1)∧∀1<z<y y mod z 6= 0)
init X (1)

EFL: [X1 : (gfp X x = Y x)(lfp Y y = Y (y + 1)∨ (X (y + 1)∧∀1<z<y y mod z 6= 0))]

Table 6.1: The statement ‘there are infinitely many prime numbers’ in EFL, LFP and PBES
notation.

Parameterised Boolean equation systems (PBES) The propositional variant of this
formalism, called Boolean equation systems (BES), underlies model checking tool set
CADP [Gar+11]. The first-order extension of BES results in an equational fixpoint
logic which is the basis for model checking in the mCRL2 tool set [Cra+13]. It is used
to encode the Lµ model checking problem and various equivalence checking problems
on labelled transition systems.

Definition 6.1 corresponds exactly to the semantics of parameterised Boolean equa-
tion systems presented in [GW04], in the sense that for an equation system E with only
first-order logic formulas as right-hand sides, S(θ ,E) corresponds to the definition of
solution of a PBES. We can therefore characterise the PBES formalism as a fragment
of EFL.

Definition 6.4. An EFL formula ϕ is called a parameterised Boolean equation system
(PBES) if and only if ϕ = [X t̄ :E] for some X , E and t̄, such that all subformulas [Y ū :E ′]
of right-hand sides of E have E ′ = ε.

The following lemma shows that we can always transform an equation system
into an equation system with only first-order right-hand sides, in such a way that the
solution of the original system corresponds with the solution of the transformed system.
We first define a function that removes nested fixpoint operators from a formula. This
function will be used again in Chapter 7.

Definition 6.5. If ϕ is an EFL formula, then fo(ϕ) is equal to ϕ, in which every [X t̄ :E]
is replaced by [X t̄ :ε].
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Using this function, we can define a transformation that converts an EFL formula
to a PBES formula.

Lemma 6.14. Let E be an equation system with bnd∗(E) = {X0, . . . , Xn}, and let

E ′ = (σX0
X0 x̄X0

= fo(ϕX0
)) . . . (σXn

Xn x̄Xn
= fo(ϕXn

)),

such that X i<E X j for all 0 ≤ i < j ≤ n. Then SA(θ ,E)(X ) = SA(θ ,E ′)(X ) for all A,θ
and X ∈ bnd(E).

We postpone the proof of this lemma to Appendix A, because it uses some of the
concepts that are presented in Chapter 7. It now follows that any EFL formula can be
translated to an equivalent PBES formula.

Theorem 6.2. Every EFL formula has an equivalent PBES formula.

Proof. Let ϕ be an EFL formula, and let X ∈ X be a variable that does not occur in
ϕ. Then ϕ is equivalent to [X : (lfp X = ϕ)]. By Lemma 6.14, there then is a system E
such that [X :E] is a PBES formula, and is equivalent to [X : (lfp X = ϕ)].

Least fixpoint logic (LFP) Least fixpoint logic (LFP, see, e.g., [Lib04] for an in-depth
treatment) is a well known formalism that is usually defined as first-order logic, ex-
tended with a fixpoint operator. EFL captures LFP as a syntactic subset.

Definition 6.6. An EFL formulaϕ is a formula of LFP if and only if for every [X t̄ :E]v ϕ,
E is empty or consists of a single equation that defines X .

The definition of EFL semantics with its reference to Definition 6.1 then simplifies to
the following: A,θ |= [X t̄ :ε] if and only if t̄A,θ ∈ θ (X ), and for E 6= ε, A,θ |= [X t̄ :E]
if and only if t̄A,θ ∈ σ(TA,θ ), where:

TA,η(R) = {ā | A,η[X 7→R, x̄ 7→ ā] |= ϕ}

This corresponds exactly to the semantics of the fixpoint operator in LFP.
We will now show that any EFL formula can be transformed to an equivalent LFP

formula, through the use of the two transformation rules laid out in the following two
lemmas. The first transformation rule says that if in a formula [X t̄ :E], X is the first
bound variable of E , then E1 can be ‘pushed inwards’ into ϕX , leaving a new formula
[X t̄ :E ′] in which E ′ only has one equation. This shows the correspondence between
the nesting order of variables in LFP and the order of equations in PBES.

Lemma 6.15. Given A, θ and an equation system E = (σ X x̄ = ϕ)E ′,

S(θ ,E)(X ) = S(θ , (σ X x̄ = ϕ′))(X ),

where ϕ′ is ϕ in which all [Y t̄ :F] are replaced by [Y t̄ :E ′F].
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Proof. We prove the lemma by showing that TA,θ
E = TA,θ

(σ X x̄=ϕ′). We show for all R

TA,θ
E (R)= {ā | A,S(θ[X 7→ R],E ′)[ x̄ 7→ ā] |= ϕ}

= {ā | A,S(θ[X 7→ R],ε)[ x̄ 7→ ā] |= ϕ′}= TA,θ
(σ X x̄=ϕ′)(R),

by showing that A,S(θ[X 7→ R],E ′)[ x̄ 7→ ā] |= ϕ and A,S(θ[X 7→ R],ε)[ x̄ 7→ ā] |= ϕ′
are equivalent. We do this by structural induction onϕ. We give the proof for base case
ϕ = [Y t̄ :F]. Note that by our unique-namedness assumption, fv(E ′)∩ bnd(F) = ;.

A,S(θ[X 7→ R],E ′)[ x̄ 7→ ā] |= ϕ

⇔ t̄A,S(θ[X 7→R],E ′)[ x̄ 7→ā] ∈ S(S(θ[X 7→ R],E ′)[ x̄ 7→ ā],F)(Y )

⇔ t̄A,S(θ[X 7→R],E ′)[ x̄ 7→ā] ∈ S(S(θ[X 7→ R],E ′),F)(Y ) (Lemma 6.2)

⇔ t̄A,S(θ[X 7→R],E ′)[ x̄ 7→ā] ∈ S(S(S(θ[X 7→ R],E ′),E ′),F)(Y ) (Lemma 6.4)

⇔ t̄A,S(θ[X 7→R],E ′)[ x̄ 7→ā] ∈ S(S(θ[X 7→ R],E ′)[ x̄ 7→ ā],E ′F)(Y ) (Lemma 6.7)

A,S(θ[X 7→ R],E ′)[ x̄ 7→ ā] |= ϕ′

The inductive cases are now straightforward.

Note that in the previous lemma, the resulting formula does not necessarily satisfy
the unique-name assumption anymore. This can be easily resolved by renaming the
variables in the subsystems appropriately.

Of course, we may need to translate a formula [X t̄ :E] where X is not defined by
the first equation in E . If X is bound by the ith equation in E , we will copy E i , rename
all bound variables in the copy, and prepend it to E , thus creating a system in which a
copy of X is defined by the first equation in the system. This will be formalized later;
the following lemma first states that this transformation of the system is sound.

Lemma 6.16. Given A, θ , a mapping f : bnd∗(E2)→ X \ (bnd∗(E)∪ fv(E)), and an
equation system E = E1E2,

S(θ ,E)(X ) = S(θ , f (E2)E)( f (X )) for all X ∈ bnd(E2),

where f is extended to range over X and over equation systems in the obvious way.

The proof of this lemma again uses concepts that are presented in Chapter 7, and
is therefore moved to Appendix A. Using the two previous lemmas, and the standard
lemmas at the beginning of the chapter, we can now show that any EFL formula can
be translated to LFP. The next lemma forms the main part of the proof.

Lemma 6.17. For all E1, X , E2 and t̄ such that [X t̄ :E1E2] is a PBES formula and:

– X ∈ bnd(E1),
– bnd(E1)∩ fv(E2) = ;,
– for all Y ∈ fv(E1)∩ bnd(E2) and ū of the appropriate size, [Y ū :E2] has an equivalent

LFP formula,
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[X t̄ :E1E2] has an equivalent LFP formula.

Proof. We prove the lemma with two inductions, first on the size of E1. Fix E1, and
assume as the outer induction hypothesis that the lemma holds for all E ′1 with fewer
equations. Now fix some X ∈ bnd(E1) and assume as the inner induction hypothesis
that the lemma holds for E1 and all X ′<E1

X . Finally, fix some t̄ and some E2 that
meets the requirements; our proof obligation is now to show that [X t̄ :E1E2] has an
equivalent LFP formula.

Let i be such that E i
1 = (σ X x̄ = ϕ)E ′ for some σ, x̄ , ϕ and E ′. Define a bijection

f : X → X that maps variables bound by E i
1E2 to variables not in bnd(E1E2)∪ fv(E1E2),

and that maps every variable bound by E1E2 but not by E i
1E2 to itself. For an equation

system F , let f (F) denote the syntactic replacement of every Y ∈ X in F by f (Y ) (i.e.,
it replaces variable names on both sides of the equations in F).

By Lemma 6.16, [X t̄ :E1E2] is equivalent to [ f (X ) t̄ : f (E i
1E2)E1E2]. By Lemma 6.15

then, it is equivalent to [ f (X ) t̄ : (σ f (X ) x̄ = ϕ′)], where ϕ′ is equal to f (ϕ) in which
every [Y ū :F] is replaced by [Y ū : f (E iE2)1E1E2F].

Because we assumed that [X t̄ :E1E2] is a PBES formula, F = ε, making the proof
a little easier. To meet our proof obligation, we show that we can replace every such
[Y ū : f (E i

1E2)1E1E2] in ϕ′ by an equivalent LFP formula, yielding a formula ϕ′′ equiva-
lent to ϕ′. Obviously, [ f (X ) t̄ : (σ f (X ) x̄ = ϕ′′)] is then an LFP formula (we may need
to rename some variables from X to meet the unique naming property).

Note that we may write [Y ū : f (E i
1E2)1E1E2] as [Y ū : f (E i+1

1 ) f (E2)E1E2]. Our new
proof obligation is to show that this formula has an equivalent LFP formula. We do
this by distinguishing cases on where Y is bound.

Case Y /∈ bnd( f (E i+1
1 ) f (E2)E1E2), then [Y ū :ε] is equivalent.

Case Y ∈ bnd(E1E2), note that Y cannot be bound in E i
1E2, because Y occurs in ϕ′,

in which all bound variables from E i
1E2 have been renamed by f . Therefore,

Y <E1
X . Furthermore, fv(E1E2) ∩ bnd( f (E i+1

1 ) f (E2)) = ;, so by Lemma 6.10,
[Y ū : f (E i+1

1 ) f (E2)E1E2] is equivalent to [Y ū :E1E2]. This formula in turn has an
equivalent LFP formula by the inner induction hypothesis.

Case Y ∈ bnd( f (E2)), then because fv(E2)∩bnd(E1) = ;, and f preserves this property,
fv( f (E2))∩ bnd( f (E i+1

1 )) = ;.
Furthermore, also fv( f (E2))∩bnd(E1E2) = ;, because of the way f was defined,
and because fv(E2)∩ bnd(E1) = ;, so the variables not renamed by f can not be
in bnd(E1).

We may therefore apply Lemmas 6.9 and 6.10 to see that [Y ū : f (E i+1
1 ) f (E2)E1E2]

is equivalent to [Y ū : f (E2)]. Note that because Y ∈ bnd( f (E2)), there must
be some Y ′ such that Y = f (Y ′) and Y ′ ∈ bnd(E2). Furthermore, note that
[Y ū : f (E2)] is equivalent to [Y ′ū :E2]. By our assumptions about Y ′ and E2,
[Y ′ū :E2] in turn has an equivalent LFP formula.

Case Y ∈ bnd( f (E i+1
1 )), observe that f (E i+1

1 ) has fewer equations than E1. We also
know that bnd( f (E i+1

1 ))∩ fv( f (E2)E1E2) = ;, because bnd(E1)∩ fv(E2) = ;, and
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because f creates fresh variables that did not occur in E1E2. The reasoning for
the two previous cases also applies to prove that for every Z ∈ fv( f (E i+1

1 )) ∩
bnd( f (E2)E1E2) and all v̄ of the appropriate size, [Z v̄ : f (E2)E1E2] has an equiv-
alent LFP formula. We can therefore derive from the outer induction hypothesis
that also [Y ū : f (E i+1

1 ) f (E2)E1E2] has an equivalent LFP formula.

Note that it would be possible to formulate Lemma 6.17 for EFL formulas rather
than for PBES formulas. In that case, an extra induction is needed on the nesting depth
of the formula (where in our proof we use that F = ε, this becomes a base case of the
induction). We do not need this, however, to prove the following theorem.

Theorem 6.3. Any EFL formula has an equivalent LFP formula.

Proof. Given an EFL formula, first convert it to an equivalent PBES formula [X t̄ :E]
using Theorem 6.2. Then apply Lemma 6.17 to obtain an equivalent LFP formula, by
choosing E1 = E and E2 = ε.

Note that the constructive nature of the proof immediately suggests an algorithm to
implement a translation procedure from EFL formulas to LFP formulas. We could have
chosen an approach that focuses more on this algorithmic aspect, for instance along the
lines of the translation from modal equation systems to modal μ-calculus in [BFL13],
but this approach has the advantage that it yields two independent transformations
on EFL formulas that preserve the solution, in the form of Lemmas 6.15 and 6.16.

Corollary 6.1. The EFL, LFP and PBES formalisms are equivalent.

6.5 Closing remarks

We have defined the logic EFL, which is a syntactic generalization of the LFP and PBES
logics, and we have proven it to be equally expressive as LFP and PBES by showing
that both these logics are normal forms of EFL, in the sense that a formula of EFL can
always be translated to an equivalent formula of LFP and an equivalent formula of
PBES.

Like PBES and LFP, we have defined a notion of syntactic monotonicity of EFL for-
mulas, which guarantees that a formula is semantically monotone, and that therefore
the semantics of the formula is defined. Incidentally, this notion of syntactic mono-
tonicity is more permissive on the PBES fragment of EFL than the notion of syntactic
monotonicity on PBES is, at the cost of being slightly more complicated. The origi-
nal notion of syntactic monotonicity for PBES formulas requires that all second-order
variables only occur in the scope of an even number of negations (usually achieved by
requiring that formulas can be transformed to positive normal form, in which negation
only occurs on first-order atomic subformulas). In our notion of syntactic monotonicity,
negations are allowed everywhere, as long as the equations in the formula do not imply
an equality between a second-order variable and its negation. On the LFP fragment of
EFL, our notion of syntactic monotonicity coincides with that of LFP itself.



Chapter 7

Evidence

There are many techniques that can be used to solve a model checking problem, and
all of those techniques will provide you—ultimately, given enough time and other
resources—with the answer to the question you pose to it. But although model check-
ing questions are yes/no questions, in many cases the enquirer is not so much interested
in the answer itself, but in understanding the answer.

It is difficult to define what it means to understand the answer to a model checking
problem, but it is easy to think, for specific situations, about what evidence might be
shown to the enquirer to help him understand. For instance, if the enquirer wishes
to prove for some system: ‘I can press a sequence of buttons to make the light go on,’
then presenting him with such a sequence is more helpful than just telling him that
this statement can indeed be proven. In the setting of automated verification, where
systems are usually represented by a Kripke structure or labelled transition system,
generation of such sequences can be automated for all questions about systems that
allow the answer to be motivated by a trace through the system. Such questions can
be posed in LTL, and most LTL model checkers provide functionality to automatically
extract traces from the system under scrutiny to motivate the answer to the question.

Not all questions can be explained by just looking at a trace through the system.
For example, ‘if the light burns after pressing the left button, then the light would not
have burned if I had pressed the right button’ is a statement that can only be shown
to be true by examining two distinct traces in the system: one in which I press the
left button, and one in which I press the right button. Apparently, for some questions
about systems it is essential to provide evidence that takes into account the branching
behaviour of the system. Clarke et al. showed that questions of a specific form allow for
explanations that are in a way the branching equivalent of traces through the system
[Cla+02].

For certain classes of questions, we have seen that there are notions of evidence that
can be automatically generated by model checking tools. Unfortunately, these notions
are tied to subsets of ECTL*, and the algorithms to extract evidence are all defined as
extensions of model checking algorithms that only check these subsets. The mCRL2
toolset [Cra+13] has chosen FO-Lµ as its modal logic, because of its expressivity (in
particular, it is more expressive than ECTL*). The toolkit encodes model checking
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problems in a particular equational fixpoint logic called parameterized Boolean equa-
tion systems. The parameterized Boolean equation system (PBES) that encodes the
problem is then either solved directly by a first-order variant of Gauß elimination, or
it is translated to a parity game. In the latter case, the solution of the PBES can be
derived from the solution of the parity game.

This choice of modal logic and solving method provides a lot of flexibility. The
user can use the full power of FO-Lµ, and the PBES formalism is so generic that many
results and tools for first-order logic, fixpoint logic and boolean equation systems can
be reused. But the translation of the model checking problem to this generic setting
comes at the cost of not having much feedback from the model checker, other than
the plain yes/no answer to the question it was posed. This is especially problematic
and time consuming if the question that was posed to the model checker is not the
question that was intended to be posed to the model checker.

Ultimately, the mCRL2 tools could be used a lot more efficiently if the verification
via encoding to PBES would allow for the generation of evidence. The wish to extract
evidence, however, poses a few tough questions:

– Is there a sensible notion of evidence for the FO-Lµ model checking problem?
– Can existing notions of evidence (traces, tree-like evidence) be obtained when solv-

ing model checking problems via encoding to PBES?

The first question is rather subjective, and it is not difficult to think of model checking
problems for which no real interesting evidence can be given. For instance, the only
evidence that you could logically give to disprove the statement ‘I can reach a state in
which the light is on’ is to show the user all the behaviour that the system can display.
While this would be a logical notion of evidence, it may not be very helpful, as it is
the model checker’s way of saying ‘I just checked every state in the system, but if you
don’t believe me, you can just check all those states yourself,’ which defeats the point
of performing model checking automatically.

We therefore focus on the second question. In this chapter, we will present a notion
of evidence for fixpoint logics that allows us to answer that question positively, and
which induces a notion of evidence for FO-Lµ. We leave it up to the reader to decide
whether that notion is sensible.

The fact that evidence extraction is usually dependent on the model checking al-
gorithm that is used, was previously acknowledged by Tan et al. [Tan02; TC02]. In
the setting of Lµ model checking, they investigated how evidence could be retrieved
if the model checking problem was first encoded into Boolean equation systems (the
propositional variant of PBES). This led them to define a notion of support sets, which
can be understood to be proof objects for Boolean equation systems, i.e., structures
that explain the solution to a Boolean equation system. They showed that existing,
specialised model checking algorithms are easily adapted to create support sets during
verification. Moreover, support sets can be generated for any Boolean equation system.
They claim that if a Boolean equation system encodes a model checking problem in a
certain way, system traces may be extracted that explain the answer of the encoded
problem. A similar approach, albeit slightly less generic, is followed by Mateescu in
[Mat00].



7.1. Proof graphs g 113

In [CLW13] we showed a counterexample to Tan’s claim that counterexamples
could be retrieved from support sets, but the idea of using proof objects for equation
systems that contain enough information to extract diagnostics is a sound one. Our
approach therefore was to adapt Tan’s notion of support set to the setting of PBESs by
extending it with concepts from first-order logic. This led to the definition of the notion
of proof graph in that same paper. This definition turned out to be a good proof object
for PBESs in the sense that these proof graphs formed an alternative characterisation
of the solution of PBESs, but it did not fulfil our requirement that it should contain all
information necessary to extract evidence for the encoded model checking problem.

This chapter describes our second attempt at defining a proof graph for PBESs that
enables us to extract model checking diagnostics. In order to make the results more
widely applicable, we give our definitions in the setting of EFL. As we have seen, PBES,
LFP and EFL are equivalent, and we hope that providing our definitions and proofs in
the setting of EFL will make it easier to share results between communities that prefer
different fixpoint logics.

The chapter is organised as follows. We start by presenting the notion of proof
graph for EFL in Section 7.1, and show that it characterises the solution of EFL formu-
las. Section 7.2 then presents a notion of evidence for EFL, and shows how this notion
can be specialised for EFL formulas that encode certain types of problems. Finally, in
Section 7.3, we show how the existing notions of counterexample and witness pro-
posed by Clarke et al. can be retrieved from proof graphs. The chapter is concluded
with some closing remarks in Section 7.4.

7.1 Proof graphs

In this section, we will be considering proof graphs, a type of graph that represents a
proof for an EFL formula of the form [X t̄ :E]. Before we look at the formal definition,
let us try to understand on a more intuitive level what we are trying to achieve.

A proof graph for a structure A, an environment θ and an equation system E is a
collection of nodes that represent truths or falsehoods in A and θ , connected by di-
rected edges that indicate dependencies between them. Every such truth or falsehood
is a statement of the form ‘the tuple ā is / is not an element of the relation repre-
sented by X ’, where ā ∈ A∗ is a tuple over the domain of discourse, and X a syntactic
element representing some semantic relation over A. The nodes of the graph will be
represented by tuples from the set

S = {〈α, X , ā〉 ∈ B× (R∪X )× A∗ | ar(X ) = |ā|}.

We will often be considering subsets of S in which only relation symbols and second-
order variables from some set Y occur. For such occasions, we introduce the following
shorthand:

SY = {〈α, X , ā〉 ∈ B×Y × A∗ | ar(X ) = |ā|}.
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The Boolean (usually named α,β , etc.1) indicates whether the node represents a
true statement or a false statement. X is either a relation symbol or a second-order
variable: in any case, a symbol that represents a relation over A. If α is true, then the
tuple ā represents the assertion that ā is an element of the relation represented by X ;
if α is false, then it represents the assertion that ā is not an element of that relation.
We explicitly introduce notation that denotes that the statement represented by a node
holds in a model A and environment θ :

A,θ |= 〈α, X , ā〉 denotes ā ∈ XA,θ⇔ α= t.

The edge relation of a proof graph represents dependencies between fixpoint vari-
ables. Therefore, nodes that represent truths and falsehoods that can be immediately
seen from A or θ (this is the case when the second element of the node is a relation
symbol or second-order variable unbound in E) have no successors. Nodes 〈α, X , ā〉
that say something about the validity of a bound variable X of E , must have successors
that together give enough information to conclude that the right-hand side of X in E
is indeed true if α= t, or false if α= f.

The intuition here is that we interpret each successor as a statement about the
solution of E: if 〈t, Y, b̄〉 is a successor of some node 〈α, X , ā〉 and Y is bound in some
subsystem E ′, then we interpret this successor to mean that b̄ ∈ S(S(θ ,E),E ′)(Y ). This
is equivalent to A,S(θ ,E) |= [Y t̄ :E ′] if t̄A,S(θ ,E) = b̄, so the information that this
successor conveys is enough to conclude that certain [Y t̄ :E ′] hold when evaluating
E in the environment S(θ ,E). From Lemma 6.6, we know that ā being an element
of S(θ ,E)(X ) (i.e., the value of α) depends on evaluating the right-hand side of X in
S(θ ,E). Intuitively, including such a successor for every fixpoint subformula [Y t̄ :E ′]
that occurs in the right-hand side of X in E should therefore be sufficient to explain
why that right-hand side does or does not hold.

Let us start translating this intuition into a more formal statement. Remember the
function fo(ϕ) (Definition 6.5) that replaces all [X t̄ :E]v ϕ by X t̄. From the semantics
of EFL we can see that if η(Y ) = S(S(θ ,E),E ′)(Y ) for all [Y t̄ :E ′] occurring as direct
subformulas of ϕ, then A,η |= fo(ϕ) is equivalent to A,S(θ ,E) |= ϕ (a generalised
version of this idea will be formalised in Lemma 7.5).

Later in this chapter, we will try to identify those portions of a model that are
necessary to explain the validity or invalidity of ϕ. Given a proof graph with nodes S,
we will be looking at substructures of A that have a domain of discourse that includes
all the elements that are referenced by the nodes in S. The smallest such model, given
a set of nodes S referencing elements of A= 〈Σ, A,I〉, is defined as

A � S = 〈Σ, A′,I0〉,

where A′ is the smallest superset of {a ∈ A | ∃〈α,R,c̄〉∈S a ∈ c̄} that is closed under I0,
and I0 is defined as I, except that I0(R) = ; for all first-order relation symbols R.

The following definition formalises what it means for a node to be ‘sufficiently
explained’ by its successors; in essence, it checks for a node 〈α, X , ā〉 that for any η

1The letter α is a reasonable choice not only because we are rapidly running out of Roman letters, but
also because it is the initial of the Greek word for ‘truth’: αληθεια
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and a B that include the information that is encoded by the successors of that node,
B,η |= fo(ϕX ) (or B,η |=/ fo(ϕX ) if α = f). To avoid having to distinguish between
the different values for α every time, we introduce the following shorthand notation:

A,θ α|=ϕ denotes A,θ |= ϕ⇔ α= t.

The set of successors (the postset) of a node v is denoted v•. We enforce consistency
of the reasoning represented by the graph by requiring that the successors of a node
are never contradictory: a relation→⊆ S × S is consistent if and only if for all v,α, X
and ā, not both 〈α, X , ā〉 ∈ v• and 〈¬α, X , ā〉 ∈ v•.

Definition 7.1. A dependency graph for A,θ and E is a directed graph 〈S,→〉 with
S ⊆ S and→⊆ S × S, such that→ is consistent, and for all 〈α, X , ā〉 ∈ S:

– if X ∈ bnd∗(E):

for all A � S vBv A and all η such that η≡fv(E) θ ,

if B,η |= v for all v ∈ 〈α, X , ā〉• then B,η[ x̄X 7→ ā] α|= fo(ϕX )

– if X /∈ bnd∗(E):
A,θ |= 〈α, X , ā〉 and 〈α, X , ā〉• = ;

The universal quantification over η and B ensures that the right information is
included in the proof graph; in a sense the quantification discards all information
from θ and A that we do not consider to be valid information to base a proof on.
The quantification over η, for instance, allows a proof to use information about the
value of the free variables of E in θ via η, but if information about other second-order
variables is needed to prove B,η[ x̄X 7→ ā] α|= fo(ϕX ), then this dependency must be
represented by an edge in the proof graph. Similarly, the quantification over B creates
the obligation for a dependency graph to include a node for every fact about first-order
relations that is needed to prove B,η[ x̄X 7→ ā] α|= fo(ϕX ) according to the semantics
of first-order logic.

Although a dependency graph captures ‘local’ reasoning about right-hand sides of
bound variables, it does not take into account the nature of the fixpoints associated
with those variables. Roughly speaking, a least fixpoint should be explained by an
inductive argument, and a greatest fixpoint by a coinductive argument. Such reasoning
should in turn correspond to a structure in a proof graph. An inductive argument
always combines some basic facts to derive new truths using some finite reasoning.
The proof of an inductively proven fact (i.e., the proof for a tuple ā being an element
of a relation that is a least fixpoint) always takes the form of a finite, acyclic graph. For
coinductive reasoning, this restriction is not present; a coinductive proof essentially
explains that there is no inductive proof of any size for the statement not holding—
a strategy that may require infinite or cyclic reasoning to simulate quantifying over
all inductive proofs. The requirements for a valid reasoning about least and greatest
fixpoints are stated formally in the following definition, in which IX (π) denotes the set
of indices on path π such that πi is an X -node for all i ∈ IX (π) (by X -node we mean
a node 〈α, Y, ā〉 with Y = X ).
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Definition 7.2. A dependency graph G = 〈S,→〉 for A,θ and E is a proof graph iff for
every infinite path π in G, the smallest X w.r.t. <E for which IX (π) is infinite satisfies:

– if σX = gfp, then {i ∈ IX (π) | ∃ā πi = 〈f, X , ā〉} is finite.
– if σX = lfp, then {i ∈ IX (π) | ∃ā πi = 〈t, X , ā〉} is finite.

Note that any infinite path in a dependency graph consists only of nodes from SX ,
as the nodes from SV have no successors. The following theorem shows that proof
graphs provide an alternative semantics for the EFL fixpoint operator. It is the main
result of this section.

Theorem 7.1. For allA, θ and monotone E , and for allα ∈ B, X ∈ bnd(E) and ā ∈ Aar(X ),
the following are equivalent:

– ā ∈ S(θ ,E)(X )⇔ α= t,
– there exists a proof graph 〈S,→〉 such that 〈α, X , ā〉 ∈ S.

The proof of this theorem is rather involved. We will split it into a soundness proof
and a completeness proof. The soundness proof, given in Section 7.1.3, shows that if
such a proof graph exists with 〈α, X , ā〉 ∈ S, then ā ∈ S(θ ,E) iff α = t. The complete-
ness proof in Section 7.1.4 shows the converse, namely that such a proof graph can
always be found. Before we start on these proofs, we first show how Theorem 7.1 can
be used to provide an alternative semantics for EFL, and illustrate the notion of proof
graph with an example.

Remark. We could have chosen to not quantify over η in Definition 7.1, but instead
check that the implication holds for a specific η that is in some sense minimal (i.e.,
that includes only the information provided by the successors). This is the approach
that was taken in [CLW13]. We choose this stronger formulation in this thesis because
it is slightly more convenient to work with in our proofs.

The quantification over B is also not present in the definition of proof graph in
[CLW13]. This quantification is actually not necessary to make proof graphs a sound
and complete notion, but is introduced to ensure that dependency graphs contain
enough information to extract evidence from them. The soundness proof for Theo-
rem 7.1 therefore does not actually use this quantification at all, and for the complete-
ness proof, the only implication is that we must add some extra nodes to our proof
graph that would otherwise not be there. Only in Section 7.2 we need this quantifica-
tion to be able to retrieve diagnostics from proof graphs.

The proof graph semantics of EFL is defined like the usual EFL semantics, except
that the truth value for the fixpoint operator is established using proof graphs:

A,θ |= Rt̄ iff t̄A,θ ∈ I(R)
A,θ |= [X t̄ :E] iff there is a proof graph for A,θ and E that has a node 〈t, X , t̄A,θ 〉
A,θ |= ¬ϕ iff A,θ |= ϕ does not hold

A,θ |= ϕ ∨ψ iff A,θ |= ϕ or A,θ |=ψ
A,θ |= ∃x ϕ iff A,θ[x 7→ a] |= ϕ for some a ∈ A
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Although |=/ is usually given as the complement of |=, note that Theorem 7.1 is
strong enough to turn this around, by defining |= to be the complement of the relation
|=/ defined by:

A,θ |=/ Rt̄ iff t̄A,θ /∈ I(R)
A,θ |=/ [X t̄ :E] iff there is a proof graph for A,θ and E that has a node 〈f, X , t̄A,θ 〉
A,θ |=/ ¬ϕ iff A,θ |=/ ϕ does not hold

A,θ |=/ ϕ ∨ψ iff A,θ |=/ ϕ and A,θ |=/ ψ
A,θ |=/ ∃x ϕ iff A,θ[x 7→ a] |=/ ϕ for all a ∈ A

So for any formula [X t̄ :E], using one of the variants of the proof graph semantics
above, we get a ‘free’ proof graph explaining why the formula holds or why it does not
hold. We can in fact assume that we have such a proof graph for any EFL formula, by
using the fact that we can add a redundant fixpoint to it: if X0 /∈ bnd(ϕ)∪ fv(ϕ), then
[X0 : lfp X0 = ϕ] is equivalent to ϕ. This construction is convenient when we extract
evidence for the validity or invalidity of formulas from proof graphs, because we can
always associate a single proof graph with every EFL formula ϕ, rather than having to
present a collection of proof graphs for every fixpoint subformula of ϕ.

Example. Consider the following labelled transition system (LTS) and EFL formula ϕ,
expressing that only finitely many a steps can be taken from s0:

s0 s1

a
a

b ϕ = [Xs0 : lfp Xs = ∀s′ s →a s′⇒ Xs′]

We assume that the LTS is represented as a model A that has {s0, s1} as its domain of
discourse, and that additionally only defines the binary relations →a and →b . A proof
graph for A |=/ ϕ might be the following:

〈f, X , [s0]〉 〈f, X , [s1]〉 〈t,→a , [s1, s1]〉〈t,→a , [s0, s1]〉

To convince ourselves that this is indeed a proof graph, we need to check that the
graph is a dependency graph, and that the graph satisfies the requirement from Defini-
tion 7.2. Starting with the latter, note that the only infinite paths in the graph are those
including the self-loop. On all such paths, the most significant (and only) second-order
variable occurring infinitely often is X , which has the lfp operator associated with it.
Furthermore, all nodes on this path prove that some state is not part of the solution of
X (i.e., α= f). This infinite path is therefore allowed by Definition 7.2.

Intuitively, this cycle is allowed because we are giving a coinductive proof to show
that s0 and s1 are not in the solution of X : s0 and s1 are not in the first approximation
for X (because it is a least fixpoint, the first approximation is the bottom element of
the lattice, which assigns the empty relation to X ), and because s0 and s1 are not in the
next approximation if s1 is not in the current approximation, s0 and s1 cannot be in the
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next approximation of X (this is the information that is encoded in the edge relation
of the proof graph). This reasoning can be repeated ad infinitum to show that s0 and
s1 will never be in any approximation of X . The infinitary character of this reasoning
is the reason we need this cycle in the proof graph.

To check that the graph is a dependency graph, consider for instance the node with
the self-loop. We need to show that for any submodel B of A and any environment
η such that B,η |= s1 →

a s1 and B,η |=/ Xs1, also B,η |=/ ∀s′ s1 →
a s′⇒ Xs′. As the

truth value of universally quantified formulas is preserved in submodels, we only need
to consider the case B = A. In this model, A,η |=/ ∀s′ s1 →

a s′⇒ Xs′ simplifies to
A,η |=/ s1 →

a s1 ⇒ Xs1, which is indeed the case because we assumed that s1 →
a s1

holds in A,η, but not Xs1.
Every node in this proof of invalidity represents a statement that has a truth value

that corresponds to the first element of the node. For instance, we can see from this
proof graph that s0 →

a s1 is valid. Note that we are taking some liberty in our notation
here; to say that s0→

a As1, or even 〈s0, s1〉 ∈ →
a A, would be more accurate. Using

the information about truths and falsehoods in A allows us to construct the following
submodel of A:

s0 s1

a a

On this submodel, the EFL formula still does not hold, and moreover this can be proven
with the same proof graph. Also note that it is essential that first-order relations are
part of the proof graph: they provide us with information about which transition from
s1 (the a- or the b-transition) is causing the formula not to hold. Had the quantification
over B not been present in Definition 7.1 (but had we instead used B= A), then the
leftmost node and the rightmost node would not necessarily have been included in the
proof graph. �

7.1.1 Monotonicity

Syntactic monotonicity of EFL formulas has a natural counterpart in the proof graph
setting. It is captured in the following definition, which simulates the reachability
analysis that pos and neg perform.

Definition 7.3. A dependency graph 〈S,→〉 is monotone iff for all 〈α, X , ā〉, 〈¬α, X , c̄〉 ∈
S, if there is a path from 〈α, X , ā〉 to 〈¬α, X , c̄〉, then this path goes via a node 〈β , Y, d̄〉 ∈ S
with Y <E X .

The claim that monotonicity of dependency graphs corresponds to syntactic mono-
tonicity of EFL formulas is substantiated by the following lemma. It is easy to see that
if we apply this lemma repeatedly, we can always construct a monotone dependency
graph out of any dependency graph for A,θ and some syntactically monotone system
E .

Lemma 7.1. If 〈S,→〉 is a dependency graph for A,θ and syntactically monotone E ,
and there is a path 〈α, X , ā〉 → . . . → 〈¬α, X , c̄〉 in this graph which only visits nodes
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〈β , Y, d̄〉 such that Y 6≤E X , then there is an edge e on this path such that 〈S,→\ {e}〉 is
a dependency graph for A,θ and E .

Proof. Let v0 = 〈α0, Y0, ā0〉 → . . . → 〈αn, Yn, ān〉 = vn, with Y0 = Yn = X , be such a
path in 〈S,→〉, and towards a contradiction, suppose that if we leave out one of these
edges, the new graph is no longer a dependency graph. This must then be due to
the first requirement in the dependency graph no longer holding, as this is the only
requirement that requires edges to be present. Formally, we are therefore assuming
that for all i there exist A � S vB v A and θ ′ such that θ ′ ≡fv(E) θ and B,θ ′ |= u for
all v•i \ {vi+1} but not B,θ ′[ x̄Yi

7→ āi] αi |= fo(ϕYi
).

Let 0≤ i < n. We show that

posE,X (ϕYi
)⇒ posE,X (ϕYi+1

) and negE,X (ϕYi
)⇒ negE,X (ϕYi+1

) if αi = αi+1, and

posE,X (ϕYi
)⇒ negE,X (ϕYi+1

) and negE,X (ϕYi
)⇒ posE,X (ϕYi+1

) if αi 6= αi+1.

Suppose αi = αi+1. Let B and θ ′ be such that A � S v B v A, θ ′ ≡fv(E) θ and
B,θ ′ |= u for all v•i \ {vi+1}, but not B,θ ′[ x̄Yi

7→ āi] αi |= fo(ϕYi
). Now define an en-

vironment η that is equal to θ ′, except for η(Yn+1) = θ ′(Yn+1) ∪ {ān+1}. Because vi
is a node in the dependency graph 〈S,→〉, and because B,η |= u for all u ∈ v•i , we
know that B,η[ x̄Yi

7→ āi] αi |= fo(ϕYi
). We have therefore found two environments

that only differ on Yn+1, such that one environment assigns a larger relation to it
than the other. Furthermore, fo(ϕYi

) does not hold for the environment in which
Yn+1 is assigned the smaller relation, but it does hold for the environment in which
Yn+1 is assigned the larger one. Given how the semantics of first-order logic is de-
fined, this can only mean that there is some subformula [Yi+1 t̄ :ε]v fo(ϕYi

) occurring
in the scope of an even number of negations. By the definition of fo, there must
therefore be a subformula ψ = [Yi+1 t̄ :F] v ϕYi

occurring in the scope of an even
number of negations. From Definition 6.2, it immediately follows that for these sub-
formulas, posE,X (ψ) = posE,X (ϕYi+1

) and negE,X (ψ) = negE,X (ϕYi+1
). A straightfor-

ward induction on the structure of ϕYi
then yields posE,X (ϕYi

) ⇒ posE,X (ϕYi+1
) and

negE,X (ϕYi
)⇒ negE,X (ϕYi+1

).
The proof for the case that αi 6= αi+1 is similar.

Now suppose that all Yi+1 occur syntactically in ϕYi
, and consider 〈¬α, X , c̄〉. Sup-

pose that ¬α = f. By Definition 7.1, we have c̄ /∈ η(X ) ⇒ B,η[ x̄Yn−1
7→ ān−1] |=/

fo(ϕYn−1
)⇔ αn−1 = t for all A � S vB v A and η ≡fv(E) θ . If αn−1 = ¬α, this implies

that X occurs in the scope of an even number of negations in ϕYn−1
. Therefore, by

Definition 6.2, ¬negE,X (ϕYn−1
). If αn−1 6= ¬α, this implies that X occurs in the scope

of an odd number of negations in ϕYn−1
. Therefore, by Definition 6.2, ¬posE,X (ϕYn−1

).
In either case, we can derive with the four implications above that ¬posE,X (ϕX ), using
induction on n− 1. This contradicts the syntactic monotonicity of E .

7.1.2 Minimality

Theorem 7.1 shows that a proof graph contains enough information to prove that an
EFL formula has a certain solution, but in many cases it would be useful to have a
concise proof. We assume that we will be using this definition in the setting where we
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are given a proof graph G by a PBES solver, and we wish to discard any irrelevant or
redundant information from the proof. We are therefore looking for a subgraph of this
proof graph that is ‘as small as possible’, in a similar vein to what happens in [Cla+95].

Definition 7.4. A proof graph is minimal w.r.t. a proof graph G and a node v in G if
and only if it is a subgraph of G, includes v and there is no subgraph of G with fewer
vertices or edges that is a proof graph and includes v.

Note that there are two aspects to minimality: no minimal proof graph contains
a subgraph that is a proof graph, and minimality with respect to G means that any
proof graph contained in G is the same size or larger. Minimising a graph is a difficult
problem: we show that the problem is NP-hard by using the same technique as Sahni
used in [Sah74] to show that minimising and/or-trees is an NP-complete problem.

Theorem 7.2. Given a proof graph G for A,θ and E , finding a minimal proof graph
w.r.t. G and some node v is NP-hard.

Proof. We prove the theorem by reducing CNF-satisfiability to the problem of finding
a minimal proof graph. Let a CNF formula ϕ be given as a set V of variable names, a
set C of clause names, and mappings p : C → 2V and n : C → 2V that give, for each
clause, the variables that occur as positive (resp. negative) literals in that clause.

Consider the following EFL formula, evaluated on a model with domain of dis-
course V ∪ C and which includes the mappings p and n:

Φ= [P :lfp P =
∧

v∈V

X (v)∧
∧

c∈C

S(c)

lfpSc =
∨

v∈p(c)

T (v)∨
∨

v∈n(c)

F(v)

lfp X v = T (v)∨ F(v)
lfp F v = t

lfp T v = t]

Let Q = {〈t, P, []〉} ∪ {〈t, S, [c]〉 | c ∈ C} ∪ {〈t, X , [v]〉 | v ∈ V}. Consider the
graph made from all nodes from Q and 〈t, T, [v]〉 and 〈t, F, [v]〉 for all v ∈ V , and
transitions from every node to the nodes referred to in the associated right-hand side.
It is straightforward to check that this graph is a proof graph. We will argue that ϕ is
satisfiable if and only if there is a proof graph with 1+ |C |+2|V | nodes for Φ, and that
this is also the minimum number of nodes needed in any proof graph for Φ. Minimizing
the previously defined proof graph (with respect to itself and 〈t, P, []〉) would therefore
solve the encoded CNF-satisfiability problem.

Suppose that there is a proof graph of size 1+ |C |+ 2|V |. Notice that in any proof
graph that proves Φ, we must include all nodes in Q, as the right-hand side of P refers
to all X (v) and all S(c). Because of the definition of X , either 〈t, T, [v]〉 or 〈t, F, [v]〉
must be in the graph for every v ∈ V . Therefore, only 〈t, F, [v]〉 or 〈t, T, [v]〉 is included
for all v ∈ V , because apart from Q—which has size 1+ |C |+ |V |—there can only be
an additional |V | nodes in our proof graph. In that case, the assignment that assigns
f to all nodes for which 〈t, F, [v]〉 occurs in the graph and t to all nodes for which
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〈t, T, [v]〉 occurs in the graph is a satisfying assignment for ϕ (this can easily be seen
from the definition of S).

Conversely, given a satisfying assignment for ϕ, it is easy to check that the graph
constructed from nodes 〈t, F, [v]〉 for v which do not hold in the assignment and
〈t, T, [v]〉 for v which hold in the assignment and Q, with edges from every node
to the nodes that are referred to in their corresponding right-hand sides, is a proof
graph.

7.1.3 Soundness

Call two nodes 〈α, X , ā〉 and 〈β , Y, b̄〉 contradictory if X = Y and ā = b̄, but α 6= β .
As a preparation for our soundness proof, we would like to first establish that a proof
graph cannot contain a proof for two contradictory nodes.

Lemma 7.2. If 〈S,→〉 is a proof graph for A,θ and E , then no two nodes in S are
contradictory.

Proof. Let v = 〈α, X , ā〉 and v′ = 〈¬α, X , ā〉 be contradictory nodes. If X /∈ bnd∗(E),
then it follows immediately from Definition 7.1 that v ∈ S implies v′ /∈ S, because that
definition requires that A,θ |= v and A,θ |= v′.

If X ∈ bnd∗(E), then note that if v ∈ S and v′ ∈ S, then v• ∪ v′• must contain
contradictory nodes again. If this were not the case, then we could construct η such
that η≡fv(E) θ such that A,η |= u for all u ∈ v•∪ v′•. By Definition 7.1 then A,η[ x̄X 7→
ā] α|= fo(ϕX ), but this is contradicted by A,η[ x̄X 7→ ā]¬α|= fo(ϕX ). The fact that→ is
consistent makes that the contradictory nodes in v• ∪ v′• cannot both be in v• or v′•;
ergo, we have one of them in v•, and one in v′•.

This argument can be repeated indefinitely, thus constructing two infinite paths
through the proof graph in which the nodes are pairwise contradictory: the node at
index i on one path contradicts the node at index i on the other. Obviously, if one
path satisfies the parity condition from Definition 7.2, then the other does not, which
contradicts the fact that 〈S,→〉 is a proof graph.

The claim that proof graphs are sound says that if a proof graph exists for A,θ
and E , then the nodes of that proof graph characterize the solution of E . The proof is
rather complicated, and uses induction on the size of proof graphs. We introduce two
lemmas that allow us create smaller proof graphs from existing ones. The first lemma
is very straightforward.

Lemma 7.3. Let 〈S,→〉 be a proof graph for A,θ and E . If s ∈ S, and S′ ⊆ S is the set of
all vertices reachable from s, then 〈S′,→∩ S′× S′〉 is again a proof graph for A,θ and E .

Proof. Because all nodes in the subgraph have the same successors as the nodes in the
original one, the subgraph must also be a dependency graph. It is moreover also a
proof graph, because no infinite paths could have been introduced by removing nodes
and edges from the original graph.
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The second lemma is more complicated. In our soundness proof, we will need a way
to construct from a proof graph for a system E a proof graph for a subsystem of E . The
difficulty is that in a subsystem of E , variables from X that were bound in E may have
become free variables in the subsystem. It may therefore be the case that if the original
proof graph was a proof graph for E and environment θ , the smaller proof graph is
no longer a proof graph for the same environment. The next lemma tells us for which
environments the smaller graph is indeed still a proof graph. Essentially, the subgraph
is only a proof graph for those environments that agree on the information about
variables in X that was encoded in the nodes that were removed from the original
graph to obtain the subgraph.

Lemma 7.4. Let 〈S,→〉 be a proof graph for A (with relation symbols R), θ and E , and
let E ′ v E . Define S′ = S ∩ Sbnd∗(E ′)∪R and→′ =→∩ (S′ × S′).

For all environments θ ′ such that θ ′ ≡fv(E) θ and A,θ ′ |= u for all u ∈ (S′• \ S′) ∩
Sfv(E ′), the graph 〈S′,→′〉 is a proof graph for A,θ ′ and E ′ (where S′• is the postset w.r.t
→).

Proof. It is sufficient to show that 〈S′,→′〉 is a dependency graph; because →′ ⊆ →,
the requirement from Definition 7.2 still holds. We therefore check for every v =
〈α, X , ā〉 ∈ S′ that the requirements from Definition 7.1 hold. Distinguish cases on X :

Case X /∈ bnd∗(E ′), then we must show that A,θ ′ |= v and v• = ;. By the definition
of S′, X ∈ R, so A,θ ′ |= v is equivalent to ā ∈ XA ⇔ α = t, which in turn is
equivalent to A,θ |= v.

Case X ∈ bnd∗(E ′), then we know that

for all A � S vBv A and all η such that η≡fv(E) θ ,

if B,η |= u for all u ∈ v• then B,η[ x̄X 7→ ā] α|= fo(ϕX ). (∗)

We need to prove the corresponding requirement for A,E ′ and θ ′. By v◦ denote
the postset of v with respect to→′. Now let B and η be such that A � S vBv A
and η≡fv(E ′) θ

′, and assume that B,η |= u for all u ∈ v◦. We need to show that
B,η[ x̄X 7→ ā] α|= fo(ϕX ).

Note that v◦ ⊆ v•. Let u= 〈β , Y, b̄〉 be in v• \ v◦. Then we have Y /∈ bnd∗(E ′). If
Y /∈ fv(E ′), then Y does not appear at all in E ′, and therefore its value in η does
not influence the truth value of fo(ϕX ), in which case the implication in (∗) still
holds if we replace v• by v•\{u}. If Y ∈ fv(E ′), then A,θ ′ |= u by the assumption
of the lemma, and also B,η |= u, because η≡fv(E ′) θ

′.

Either way, we have B,η |= u for all u in a set U that includes all nodes from v•

referring to variables that are relevant for the evaluation of fo(ϕX ), allowing us
to conclude from (∗) that B,η[ x̄X 7→ ā] α|= fo(ϕX ).

We need one last lemma before we can present the soundness proof itself. In
the soundness proof, we will find ourselves in a situation that A,η α|= fo(ϕ) for some
A,η,α and ϕ, where we need to prove A,η′ α|=ϕ for some η′ that closely resembles
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η. The following lemma establishes sufficient conditions to prove A,η′ α|=ϕ in this
situation.

We introduce a special ‘direct subformula’ relation to easily identify those subfor-
mulas of a formula ϕ that have been replaced in fo(ϕ). Letψv1ϕ denote thatψv ϕ
and there is no [Y t̄ :F]v ϕ such that ψ À [Y t̄ :F].

Lemma 7.5. Let ϕ be an EFL formula, A a structure, θ and η environments, and α ∈ B.

If θ ≡fv(ϕ) η

and A,θ β |=Y t̄ implies A,η β |=[Y t̄ :F] for all [Y t̄ :F]v1ϕ,β ∈ B
and A,θ α|= fo(ϕ)
then A,η α|=ϕ.

Proof. Assume the left hand side of the implication stated by the lemma. The proof is
straightforward by structural induction on ϕ. As our induction hypothesis, we assume
that we have the result for all strict subformulas of ϕ.

Case ϕ = Rt̄ (with R a relation name). Then fo(ϕ) = ϕ and A,θ α|= fo(ϕ) is equiva-
lent to A,η α|=ϕ because θ and η agree on all free variables in t̄.

Case ϕ = [Y t̄ :F]. Then fo(ϕ) = Y t̄, so A,θ α|=Y t̄. Because [Y t̄ :F] v1 ϕ, also
A,η α|=ϕ.

Case ϕ = ¬χ. Then A,θ α|=/ fo(χ), so A,θ ¬α|= fo(χ). Note that the direct subformu-
las of χ that are of the shape [Y t̄ :F] are also direct subformulas ofϕ. Therefore,
by the induction hypothesis, A,η¬α|=χ, so A,η α|=¬χ.

Case ϕ = χ ∨ψ. Then A,θ α|= fo(χ)∨ fo(ψ). Distinguish two cases.

Ifα= t, then either A,θ α|= fo(χ) or A,θ α|= fo(ψ), and by the induction hypoth-
esis then A,η α|=χ or A,η α|=ψ, which is enough to conclude that A,η α|=ϕ.

If α= f, then both A,θ α|= fo(χ) and A,θ α|= fo(ψ). By the induction hypothesis
A,η α|=χ and A,η α|=ψ. Therefore A,η α|=ϕ.

Case ϕ = ∃y χ. Then A,θ α|=∃y fo(χ), so by the semantics of ∃ , there must be some
c ∈ A such that A,θ[y 7→ c] α|= fo(χ). Note that η[y 7→ c] ≡fv(ϕ) θ[y 7→ c], so
by the induction hypothesis, A,η[y 7→ c] α|=χ. Therefore also A,η α|=ϕ.

The final lemma of this section forms the proof of soundness. It is stated a bit more
general than the soundness claim, which says that if 〈S,→〉 is a proof graph for A,θ
and E , and includes 〈α, X , t̄A,θ 〉, then A,θ α|=[X t̄ :E]. The more general formulation
is used in the inductive proof to make the induction hypothesis strong enough. Note
that A,θ α|=[X t̄ :E] is by definition equivalent to A,S(θ ,E) |= 〈α, X , t̄A,θ 〉.

Lemma 7.6. If 〈S,→〉 is a proof graph for A,θ and monotone E , then

A,S(θ ,E) |= v for all v ∈ S ∩ Sbnd(E).
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Proof. The proof goes by induction on the size of S. If S∩Sbnd(E) = ;, then the lemma
holds vacuously, so in particular the lemma holds if S = ;. So let 〈S,→〉 be a proof
graph for A,θ and E , and assume that the lemma holds for all proof graphs (for arbi-
trary A′,θ ′ and E ′) with fewer nodes. We shall sometimes refer to this hypothesis as
the outer induction hypothesis.

Suppose X is the smallest (with respect to <E) variable such that there is a node
〈α, X , ā〉 ∈ S, and suppose that index i is such that E i = (σX x̄ = ϕ)E i+1. Note that by
Lemma 7.2, S contains no contradictory nodes. We can therefore define an environ-
ment θ̂ such that for all Y and ā:

ā ∈ θ̂ (Y ) iff

¨

α= t, if Y = X and 〈α, Y, ā〉 ∈ S
ā ∈ S(θ ,E)(Y ), otherwise.

Note that 〈S,→〉 is a proof graph for A,S(θ ,E) and E , because S(θ ,E) and θ agree
on all variables outside bnd(E) (by Lemma 6.1), and the definition of dependency
graph (Definition 7.1) does not require anything about the environment on variables
in bnd(E). Then 〈S′,→′〉 = 〈S ∩ Sbnd∗(E i+1)∪R,→∩ (S′ × S′)〉 is a proof graph for A, θ̂
and E i+1 by Lemma 7.4, because A, θ̂ |= u exactly for all u ∈ S ∩ S{X }, which are the
only nodes in (S \S′)∩Sfv(E i+1) (and therefore in (S′• \S′)∩Sfv(E i+1)). By the induction
hypothesis then, A,S(θ̂ ,E i+1) |= v for all v ∈ S′ ∩ Sbnd(E i+1). We will show later that

A,S(θ ,E) |= v for all v ∈ S ∩ S{X }. (∗)

Once this is established, we know that θ̂ = S(θ ,E), and therefore A,S(S(θ ,E),E i+1) |=
v for all v ∈ S′∩Sbnd(E i+1). By Lemma 6.4, also A,S(θ ,E) |= v for these v, and combined
with (∗) this proves A,S(θ ,E) |= v for all v ∈ S ∩ Sbnd(E), which was the statement of
the lemma.

Our only proof obligation is to show that (∗) holds. Suppose therefore that 〈α, X , ā〉
is a node in S. We show that A,S(θ ,E) |= 〈α, X , ā〉. At this point, we first establish
sufficient conditions to prove A,θ ′[ x̄ 7→ b̄] α|=ϕ, for given θ ′, α and b̄. We state it as
a sublemma, the proof of which we will postpone until we have completed our current
argument.

Sublemma 7.6.1. Let 〈S′,→′〉 be a subgraph of 〈S,→〉 that is again a proof graph for
A,θ and E . Let v = 〈α, X , b̄〉 ∈ S and θ ′ an environment such that θ ′ ≡fv(E) θ .

If A,θ ′ |= u for all u ∈ ({v} ∪ (S′ \ Sbnd(E)))• ∩ Sbnd(E), then A,θ ′[ x̄ 7→ b̄] α|=ϕ.

We will use this lemma to prove that A,S(θ ,E) |= 〈α, X , ā〉. Let 〈S∗,→∗〉 be the
part of 〈S,→〉 reachable from 〈α, X , ā〉. This is still a proof graph for A,θ and E by
Lemma 7.3.

Assume σ = lfp (the proof for σ = gfp is dual), and distinguish cases based on the
value of α.

Case α= t. Observe that no node in S∗ can have 〈α, X , ā〉 as a successor, because
then there is a cycle with 〈α, X , ā〉 on it, violating the parity condition (see Def-
inition 7.2, remember that X was chosen the smallest variable with respect to
<E).
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Therefore, the reachable graph from any u ∈ S∗ ∩ Sbnd(E) \ {v} is smaller than
〈S∗,→∗〉, and is a proof graph for A,θ and E by Lemma 7.3. By the outer in-
duction hypothesis therefore, S(θ ,E) |= u for such u. It now follows from Sub-
lemma 7.6.1 that A,S(θ ,E)[ x̄ 7→ ā] α|=ϕ.

Case α= f. We need to show ā /∈ S(θ ,E)(X ). Let F = {b̄ | 〈α, X , b̄〉 ∈ S∗}. Let
T = TS(θ ,E)

E i ; note that by Lemma 6.5, S(θ ,E)(X ) = lfpT. Let R = S(θ ,E)(X ) \
F . Then, because T is monotone, and because R ⊆ S(θ ,E)(X ), we have T(R
) ⊆ T(S(θ ,E)(X )), and therefore (because S(θ ,E)(X ) is a fixpoint of T) T(R) ⊆
S(θ ,E)(X ).
We will show later that T(R) ∩ F = ;. Then T(R) ⊆ R: suppose b̄ ∈ T(R) and
b̄ /∈ R for some b̄, then b̄ /∈ F because T(R) ∩ F = ;, therefore b̄ /∈ S(θ ,E)(X )
because b̄ /∈ R (see the definition of R), but this contradicts T(R) ⊆ S(θ ,E)(X ).
Define for ordinals γ > 0 and for S ⊆ Aar(X ):

lfp0
S T = S lfpγS T = T(

⋃

δ<γ

lfpδS T)

Note that lfpγ+1
; T = lfpγ T for all γ. Also, lfp1

R T = T(R) and lfp2
R T = T(lfp0

R T ∪
lfp1

R T) = T(R∪T(R)) = T(R) = lfp1
R T, and similarly, by induction, lfpγR T = T(R)

for all γ > 0. We know that ; ⊆ R ⊆ S(θ ,E)(X ), and a straighforward transfinite
induction shows that lfpγ; T ⊆ lfpγR T ⊆ S(θ ,E)(X ) for all γ. There is some γ
such that lfpγ; T = S(θ ,E)(X ), and for that γ, also S(θ ,E)(X ) = lfpγR T = T(R).
Because ā ∈ F and T(R)∩ F = ;, ā /∈ T(R), and then also ā /∈ S(θ ,E)(X ).
Proof for T(R) ∩ F = ;. Abbreviate S(S(θ ,E)[X 7→ R],E i+1) to θ ′. Filling in
the definition of the predicate transformer, we prove for all b̄ ∈ F (i.e., for all
〈α, X , b̄〉 ∈ S∗) that A,θ ′[ x̄ 7→ b̄] |=/ ϕ. Note that θ ≡fv(E) θ

′ by Lemma 6.1.

Note that from any node u = 〈t, X , b̄〉 ∈ S∗ there cannot be a path to v, as this
would violate the parity condition of Definition 7.2 since u is reachable from
v. The reachable subgraph from such u is therefore smaller than 〈S,→〉, and
therefore by Lemma 7.3 and the induction hypothesis, A,S(θ ,E) |= u for such u.
Furthermore, A,S(θ ,E)[X 7→ R] |= u, because of how R is defined. Because also
R∩ F = ;, we have2:

A,S(θ ,E)[X 7→ R] |= u for all u ∈ S∗ ∩ S{X }. (†)

Consider the graph 〈S′,→′〉 = 〈S∗ ∩ Sbnd∗(E i+1)∪R,→∩ (S′ × S′)〉. Observe that
(S′•\S′)∩ fv(E) ⊆ S∗∩S{X }, so because of (†) we may apply Lemma 7.4 to derive
that 〈S′,→′〉 is a proof graph for A,S(θ ,E)[X 7→ R] and E i+1. By the induction
hypothesis, A,θ ′ |= u for all u ∈ S′ ∩ Sbnd(E i+1). By (†) and Lemma 6.1, also
A,θ ′ |= u for all u ∈ S∗ ∩ S{X }, and therefore A,θ ′ |= u for all u ∈ S∗ ∩ Sbnd(E).

We can now apply Sublemma 7.6.1 again to derive A,θ ′[ x̄ 7→ b̄] |=/ ϕ.

2The argument here is that we also know A,S(θ ,E)[X 7→ R] |= u for all u= 〈f, X , b̄〉 ∈ S∗, because b̄ ∈ F
for such u, and R∩ F = ;.
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We have now concluded the proof for Lemma 7.6, but have left open the proof for
Sublemma 7.6.1. To prove this sublemma, we take a two-stage approach. First we
give sufficient requirements on v• to derive A,θ ′[ x̄ 7→ b̄] α|=ϕ. We then show that
we can instead pose requirements on a subset of Sbnd(E) to come to the same result.
Effectively, Sublemma 7.6.1 isolates the proof obligations for nodes in the proof graph
that refer to varables bound in subformulas of ϕ.

Sublemma 7.6.2. For all θ ′ and v = 〈α, X , b̄〉 ∈ S, if for all u= 〈β , Y, c̄〉 ∈ v•,

– A,θ ′ |= u if Y ∈ fv(ϕ), and
– A,S(θ ′,F) |= u if Y ∈ bnd∗(ϕ) and [Y t̄ :F]v1ϕ for some t̄,

then A,θ ′[ x̄ 7→ b̄] α|=ϕ.

Proof. Consider the environment η defined as follows:

η(Y ) =

¨

S(θ ′,F)(Y ) if Y ∈ bnd∗(ϕ) and [Y t̄ :F]v1ϕ for some t̄,
θ ′(Y ) otherwise.

Note that this defines a unique η because of the unique naming assumption (every Y
can only be defined in a single subsystem F). We have chosen η such that

1. η≡fv(ϕ) θ
′, and

2. A,η β |=Y t̄ implies A,θ ′ β |=[Y t̄ :F] for all [Y t̄ :F]v1ϕ and all β ∈ B.

Note that for all u ∈ v•, if A,η |=/ u, then Y /∈ fv(fo(ϕ)). Therefore, there is some η′

such that η′ ≡fv(fo(ϕ)) η such that A,η′ |= u for all u ∈ v•. By Definition 7.1 (because
v ∈ S), then A,η′[ x̄ 7→ b̄] α|= fo(ϕ). Because η′ ≡fv(fo(ϕ)) η, also:

3. A,η[ x̄ 7→ b̄] α|= fo(ϕ).

The proof for the latter is by a straightforward induction on the structure of fo(ϕ),
appealing to Lemma 6.2 in the fixpoint operator case. We can now use Lemma 7.5 on
observations 1–3 to conclude that A,θ ′[ x̄ 7→ b̄] α|=ϕ.

Now we have shown how to derive A,θ ′[ x̄ 7→ b̄] α|=ϕ by establishing some facts
about the successors of v = 〈α, X , b̄〉, we show that for those 〈β , Y, c̄〉 ∈ v• mentioned
in the second bullet point in Sublemma 7.6.2, we can derive the required information
if we know that A,θ ′ |= u for enough nodes in Sbnd(E). In the cases α = t and α = f

above, the induction hypothesis gives us this information for the required nodes in
Sbnd(E i+1). In the case α = t the induction hypothesis also gives it for the required
nodes in S{X }; in the case α= f the information for the required nodes in S{X } can be
derived because R was chosen to satisfy all X -nodes in S∗.

Sublemma 7.6.1. Let 〈S′,→′〉 be a subgraph of 〈S,→〉 that is still a proof graph for A,θ
and E . Let v = 〈α, X , b̄〉 ∈ S and θ ′ an environment such that θ ′ ≡fv(E) θ .

If A,θ ′ |= u for all u ∈ ({v} ∪ (S′ \ Sbnd(E)))• ∩ Sbnd(E), then A,θ ′[ x̄ 7→ b̄] α|=ϕ.
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Proof. We will be using Lemma 7.6.2 to reach our conclusion. Assume the left hand
side of the implication, and note that A,θ |= u and therefore A,θ ′ |= u for all u ∈
S′ ∩ Sfv(E) by Definition 7.1. Observe that fv(ϕ) ⊆ fv(E)∪ bnd(E), so we have A,θ ′ |=
〈β , Y, c̄〉 for all 〈β , Y, c̄〉 ∈ v• such that Y ∈ fv(ϕ), satisfying part of the precondition
for Lemma 7.6.2.

We set out to prove the remainder of that precondition. Let 〈β , Y, c̄〉 ∈ v• and F
be such that Y ∈ bnd∗(ϕ) and [Y t̄ :F]v1ϕ for some t̄. We must prove A,S(θ ′,F) |=
〈β , Y, c̄〉.

Consider the graph 〈S′′,→′′〉= 〈S′ ∩Sbnd∗(F)∪R,→∩ (S′′× S′′)〉. Because F occurs
in ϕ, fv(F) ⊆ fv(E)∪bnd(E). We therefore have A,θ ′ |= u for all u ∈ (S′′• \S′′)∩Sfv(F),
so by Lemma 7.4, 〈S′′,→′′〉 is a proof graph for A,θ ′ and F . By the outer induction
hypothesis then A,S(θ ′,F) |= u for all u ∈ S′′ ∩ Sbnd(F). In particular, A,S(θ ′,F) |=
〈β , Y, c̄〉.

7.1.4 Completeness

Given A,θ and E and some ā ∈ A∗ and X ∈ X , we need to show that there is always
a proof graph for A,θ and E that includes node 〈t, X , ā〉 if ā ∈ S(θ ,E)(X ), or that
includes 〈f, X , ā〉 otherwise. We will do so by creating a parity game based on A,θ
and E (similar to the parity game encoding of LFP formulas in [Grä02]), restricting
that parity game using a winning strategy for one of the players, and then extracting a
suitable proof graph from the restricted parity game. This proof strategy has the prac-
tical implication that the extraction mechanism can be implemented on top of existing
tools if the parity game was finite. Because our completeness proof uses the fact that
winning strategies in parity games and proof graphs encode similar information, prov-
ing completeness and implementing an algorithm that generates proof graphs have
both become relatively straightforward.

We will be using a slightly different definition of parity game than the one given in
Chapter 5: we no longer require that the game graph is finite, nor do we require that
the edge relation is total. Plays are then defined as maximal paths, and are no longer
always infinite. We do however still require that the amount of different priorities
occurring in the game is finite. The winner of a finite play is the opponent of the
owner of the last vertex in the play (the player who gets stuck, loses). For infinite
plays, the winner is defined as before. Our completeness proof relies only on the fact
that such parity games are determined (that is, for every node in a parity game there
is a winning strategy for one of the players from that node). This still holds for this
adapted notion of parity game [Zie98; AN01].

Before we define our parity game encoding, we first define an auxiliary function
Ω: X ×B→ N that will be used to assign priorities to some of the nodes in our parity
game.

Ω(X ,α) =

¨

2 · |{Y ∈ bnd∗(E) | Y <E X }|, α= t⇔ σX = gfp

2 · |{Y ∈ bnd∗(E) | Y <E X }|+ 1, otherwise

Some nodes in the parity game will not correspond to any node in the proof graph
that we will extract from it. These nodes do not have a counterpart in the proof graph
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ϕ next(v) Ω(v) Π(v)

[X t̄ :E]

( {〈α,η[ x̄X 7→ t̄A,η], fo(ϕX )〉}
;
;

Ω(X ,α)
0

0

�,
� ,

�,

X ∈ bnd∗(E)
X /∈ bnd∗(E)∧A,η α|=ϕ
X /∈ bnd∗(E)∧A,η α|=/ ϕ

Rt̄ ; 0
§ � ,

�,
A,η α|=ϕ
A,η α|=/ ϕ

¬ψ {〈¬α,η,ψ〉} Ωmax �

ψ1 ∨ψ2 {〈α,η,ψ1〉, 〈α,η,ψ2〉} Ωmax
§

�,
� ,

α= t

α= f

∃x ψ {〈α,η[x 7→ a],ψ〉 | a ∈ A} Ωmax
§

�,
� ,

α= t

α= f

Table 7.1: Definitions of next(v), Ω(v) and Π(v) for v = 〈α,η,ϕ〉 in the context of A and E , by
case distinction on ϕ.

because they represent some fine-grained information about the first-order logic oper-
ators in E , that do not affect the reasoning about the fixpoint operators in E . We will
make these nodes the least relevant vertices of the parity game by assigning them the
highest priority in the game, which we will call Ωmax. The parity of Ωmax is irrelevant,
because vertices with this priority represent proofs of first-order logic formulas, which
do not contain loops (so whenever Ωmax occurs infinitely often along a play, it is not
the most significant priority occurring infinitely often, and therefore does not influence
the winner of the play). We define Ωmax as follows.

Ωmax =max{Ω(X ,α) | X ∈ bnd∗(E)∧α ∈ B}+ 1

We are now ready to define our parity game G = 〈V,→,Ω,Π〉, given A,θ ,E , ā ∈ A∗,
X ∈ X and α ∈ B. Our objective is to construct a parity game that allows us to extract
a proof graph from it that contains either the node 〈α, X , ā〉, or 〈¬α, X , ā〉.

We define Ω, Π and a function next as specified in Table 7.1. Using the next
function, V and→ are then inductively defined as Vω and→ω in:

V 0 = {〈α,θ[ x̄ 7→ ā], [X x̄X :ε]〉} →0 = ;

V i+1 = V i ∪
⋃

v∈V

next(v) →i+1 =→i ∪
⋃

v∈V

{〈v, v′〉 | v′ ∈ next(v)}

Now we have defined a parity game, we aim to use the fact that parity games are
determined to help us create a proof graph. The memoryless determinacy of parity
games ensures that for the parity game we just created, we can always find a strategy—
either for player � or for player�—that wins from the node in V 0. Our hypothesis will
be that if such a strategy can be found for player �, it must be the case thatA,S(θ ,E) |=
〈α, X , ā〉, and if such a strategy exists for player �, then A,S(θ ,E) |= 〈¬α, X , ā〉. So
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depending on the player that wins the node in V 0, we extract a proof graph that
contains either 〈α, X , ā〉 or 〈¬α, X , ā〉. The soundness result from the previous section
will then confirm our hypothesis.

We first establish that if two vertices differ only in the value of α, then they are
won by different players.

Lemma 7.7. If 〈α,η,ϕ〉 and 〈¬α,η,ϕ〉 are both vertices in G, then they are not won by
the same player.

Proof. Given a vertex u, let ¬u denote u with its α value negated, e.g., ¬〈β ,η′,χ〉 =
〈¬β ,η′,χ〉. Note that ¬u• = {¬v | v ∈ u•}. Furthermore, if in G a vertex u has more
than one successor, then it is of the form 〈β ,η′,χ ∨ψ〉 or of the form 〈β ,η′,∃x χ〉; in
both cases Π(u) 6= Π(¬u). For any strategy s ∈ Si , we can therefore define a strategy
s̄ ∈ S¬i as follows:

s̄(u) =

¨

u′ if u• = {u′}
¬s(¬u) otherwise

Suppose s ∈ Si is a winning strategy from 〈α,η,ϕ〉 for player i. We will show that s̄
is winning for ¬i. Consider any play p starting from 〈¬α,η,ϕ〉 that is allowed by s̄.
There must be a strategy s′ ∈ Si such that p is the only play allowed by s̄ and s′. Now
consider the unique play q from 〈α,η,ϕ〉 that is allowed by s and s̄′. This play must
be won by player i, because s was winning for i. A straightforward induction shows
that for all k > 0, pk = ¬qk.

If p is finite, then so is q, and the last vertex of p is owned by a different player
than the last vertex of q. Hence if p is won by i, then q is won by ¬i. If p is infinite,
then so is q, and there must be an infinite number of indices k such that Ω(pk)< Ωmax

(otherwise, we would have an infinite sequence of ¬-, ∨- and ∃ -vertices, which could
never have been generated by the rules in Table 7.1). Because pk = ¬qk for all these
k, if Ω(pk) = Ω(X ,α), then Ω(qk) = Ω(X ,¬α). The definition of Ω(X ,α) ensures
that Ω(X ,α) < Ω(Y,β) if X <E Y . Therefore, if Ω(X ,α) is the lowest infinitely often
occurring priority on p, Ω(X ,¬α) is the lowest infinitely often occurring priority on q.
We know that the parity of Ω(X ,α) makes that p is won by i. Because the parity of
Ω(X ,¬α) is the opposite of that of Ω(X ,α), q is then won by ¬i.

To allow a wider range of proof graphs to be extracted, we will not use regular
strategies, but a nondeterministic variation on memoryless strategies.

Definition 7.5. A nondeterministic memoryless strategy for player i is a partial map-
ping s : V → 2V that is defined such that s(v) ⊆ v• for all v ∈ V such that Π(v) = i.

Note that any memoryless strategy can be seen as a nondeterministic memoryless
strategy that only maps nodes onto singleton sets. Therefore, for any node in a parity
game, we can always find a nondeterministic strategy for one of the players that wins
from that node.

We will generate a proof graph from a parity game G and a winning strategy s.
Depending on the player for whom s is a strategy, the generated proof graph is either
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v

v0 vn

Ωmax
dep

f (v)

f (v0) f (vn)

Figure 7.1: The dep transformation ignores all nodes with priority Ωmax.

a proof of validity, or a proof of invalidity of the encoded fixpoint formula. This is
reflected in theα-values in the proof graph nodes. The partial mappings f +, f − : V → S
map nodes of the parity game to nodes of the proof graph we are creating; f + is used
if a proof graph is generated from a winning strategy for player �, for player �, f − is
used.

f +(v) =







〈α, X , t̄A,θ 〉,v = 〈α,θ , [X t̄ :ε]〉,
〈α, R, t̄A,θ 〉, v = 〈α,θ , Rt̄〉,
undefined, otherwise,

〈¬α, X , t̄A,θ 〉
〈¬α, R, t̄A,θ 〉
undefined







= f −(v)

We now define a mapping dep that transforms a parity game into a graph structure with
nodes from S. Define V− = {v ∈ V | Ω(v) < Ωmax} and define for a nondeterministic
strategy s for player i and for f ∈ { f +, f −} that dep(G, s, f ) = 〈S,→〉, in which:

S = { f (v) | v ∈ V− ∧ i wins from v with s},
→= {〈 f (v), f (v′)〉 | v, v′ ∈ V− ∧ ∃V ′⊆V− v′ ∈ V ′ ∧ v 7−−−−→s,V\V− V ′}.

In the above, v 7−−−−→s,V\V− V ′ is defined as in Section 5.1, meaning that the plays from
v allowed by s can only reach nodes from V ′ after doing zero or more steps through
nodes of priority Ωmax. Effectively, we are filtering out all such nodes, and applying
the transformation given by f to the remaining nodes. If v could reach v′ with s via
a number of nodes with priority Ωmax, then f (v) has an edge to f (v′) in the resulting
graph. This transformation is schematically depicted in Figure 7.1.

Our claim now is that the graph generated by dep is in fact a proof graph. Note that
this is all we need, because if v0 is the node in V 0, the generated graph will always
include f +(v0) or f −(v0), which by definition are equal to 〈α, X , ā〉 and 〈¬α, X , ā〉,
respectively.

Lemma 7.8. If s is a winning nondeterministic strategy for � in G, then dep(G, s, f +) is
a proof graph. If s is a winning nondeterministic strategy for � in G, then dep(G, s, f −)
is a proof graph.

Proof. Let s be a winning nondeterministic strategy for � in G (the proof for the case
that s is winning for � is dual). Let dep(G, s, f +) = 〈S,→〉. We first show that 〈S,→〉
is a dependency graph. Let v = 〈α, X , ā〉 ∈ S, and distinguish two cases.
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Case X ∈ bnd∗(E). From Table 7.1 we can see that Π(v) = �, and from the definition
of dep we know that v = f (u) for some u = 〈α,θ ,ϕ〉. Again look at the table
and notice that u has only one successor: 〈α,θ[ x̄X 7→ ā], fo(ϕX )〉. Now define a
sequence of sets as follows:

V 0
u = {〈α,θ[ x̄X 7→ ā],ϕX 〉}

V i+1
u = {u′′ ∈ V | u′′ ∈ V i

u \ V− ∨ ∃u′∈V i
u∩V− u′ →s u′′}

Let A � S vBv A, and η≡fv(E) θ . We will prove by induction that for all i,

η′ ≡fv(E) η for all 〈β ,η′,ψ〉 ∈ V i
u , and

if B,η′ β |=ψ for all 〈β ,η′,ψ〉 ∈ V i
u , then B,η[ x̄X 7→ ā] α|= fo(ϕX ).

Case i = 0, θ[ x̄X 7→ ā]≡fv(E) θ because fv(E)∩ V = ;, and Lemma 6.3 gives us

B,θ[ x̄X 7→ ā] α|= fo(ϕX )⇒B,η[ x̄X 7→ ā] α|= fo(ϕX ).

Case i = j + 1 for some j, assume as the induction hypothesis that the state-
ments hold for j.
By the definition of V i we know that for every u′′ = 〈γ,η′′ψ′〉 ∈ V i there
is a u′ = 〈β ,η′,ψ〉 ∈ V j such that u′ →s u′′. It is easily seen from Table 7.1
that for such u and u′, η′′ ≡fv(E) η

′, and because η′ ≡fv(E) η by the induction
hypothesis, also η′′ ≡fv(E) η.

To prove the second statement, assume that B,η′ β |=ψ for all 〈β ,η′,ψ〉 ∈
V i

u . We must show thatB,η[ x̄X 7→ ā] α|= fo(ϕX ). This can be obtained from
the induction hypothesis if we can prove B,η′ β |=ψ for all 〈β ,η′,ψ〉 ∈ V j

u .
This is seen easily by fixing w = 〈β ,η′,ψ〉 ∈ V j

u and distinguishing cases
on the shape of ψ. Then establish that the required successors (either one
successor or all successors, depending on the player of w) listed in Table 7.1
are all in V i

u , and use our assumption about the vertices in V i
u to conclude

that B,η′ β |=ψ.

The successors of v in 〈S,→〉 are collected in the set { f (u′) | u′ ∈ V k
u } for some

k. We have shown that for all A � S vBv A and η≡fv(E) θ that

if B,η′ β |=ψ for all 〈β ,η′,ψ〉 ∈ V k
u , then B,η[ x̄X 7→ ā] α|= fo(ϕX ).

This is equivalent to the requirement that Definition 7.1 poses for X :

if B,η |= v′ for all v′ ∈ v•, then B,η[ x̄X 7→ ā] α|= fo(ϕX ).

This can be seen as follows: take any v′ ∈ v•. Then v′ = f (u′) for some u′ ∈
V k

u . Suppose that u′ = 〈β ,η′, [X t̄ :ε]〉, then v′ = 〈β , X , t̄A,η′〉. So B,η |= v′ is
equivalent to t̄A,η′ ∈ η(X )⇔ β = t, which is equivalent to t̄B,η′ ∈ η′(X )⇔
β = t (because B v A and η′ ≡X η, which can be seen from Table 7.1), which
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is in turn equivalent to B,η′ β |=[X t̄ :ε]. A similar reasoning can be held for the
case that u′ = 〈β ,θ ′, Rt̄〉.
We must still show that the set of successors of v does not violate the requirement
that→ should be consistent. In other words, we must show that no two vertices
in v• are conflicting. This can be seen as follows. Suppose towards a contradic-
tion that there are two conflicting nodes f (w) and f (w′) in v•. By Lemma 7.7,
either w is won by �, or w′ is won by �. By definition of v•, there are paths
from u to w and from u to w′ that are allowed by s. But this means s cannot be
winning for �.

Case X /∈ bnd∗(E). From Table 7.1 we can see that v has no successors, so Π(v) = �,
because Π(s) = � wins from v. From the definition of dep we also know that
v = f +(〈α,θ ,ϕ〉) for some node such that A,θ α|=ϕ (this can be seen from the
table again), which is equivalent to ā ∈ XA,θ .

This completes our argument that 〈S,→〉 is a dependency graph. To show that it is a
proof graph, consider an infinite path p in the dependency graph traversing some set
of nodes S′. All nodes on such a path have successors, so by the definition of dep and
V , there must be a corresponding path q in G going through parity game nodes V ′

such that S′ = { f (v) | u ∈ V ′ and f is defined on v}. Because this path is allowed by s,
it is a winning path. Therefore, the least n such that Ω(qk) = n for an infinite number
of values for k, is even.

Note that every u ∈ V ′ is of the form 〈α,θ , [X t̄ :E ′]〉, and that for such u, Ω(u) =
Ω(X ,α). So n < Ωmax, because qk ∈ V ′ for an infinite number of values for k, and
therefore n = Ω(X ,α) for some X and α. Note that Ω is defined such that Ω(Y,β) <
Ω(Z ,γ) implies Y ≤E Z . Therefore, X is the smallest variable occurring infinitely often
on p, and there are infinitely many occurrences of a node 〈α, X ,ψ〉 (for some ψ) on p.
Because Ω(X ,α) is even, we know that σX = gfp⇔ α= t.

7.2 Evidence for EFL

Fixpoint logics are capable of encoding a diverse set of decision problems. We would
however like to have a notion of evidence that is independent of the expressed prob-
lems. This notion should allow us to extract more specialised diagnostics (in particular:
diagnostics that have already been defined in literature) for various types of decision
problem that can be encoded in EFL. We propose the following definition of evidence
for EFL formulas, which formalises that evidence allows for reconstructing proof that
a formula is true.

Definition 7.6. Given A,θ ,ϕ and α, evidence for A,θ α|=ϕ is a substructure B v A
such that there is a proof graph for B,θ α|=ϕ that is also a proof graph for A,θ α|=ϕ.

Intuitively, we define evidence for a formula ϕ (not) holding on a structure A as a
substructure of A on which ϕ can be proven (not) to hold using exactly the same proof.
To obtain the smallest such substructure, we simply construct a substructure in which
at least those facts hold that were used in the proof.
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Definition 7.7. Given a proof graph 〈S,→〉 for A,θ α|=ϕ, define ev(〈S,→〉) as the
smallest B v A such that for each 〈β , X , ā〉 ∈ S (where X is a variable or a relation
name) we have ā ∈ B∗ and for each v ∈ S \ SX , we have B,θ |= v.

It is easy to see that such a substructure always exists, as A itself is always a can-
didate. It is also quite straightforward to compute the smallest such substructure, as
it must at least contain everything that occurs syntactically in ϕ or in the proof graph.
Additional elements need only be inserted in the domain of the substructure if this is
needed to make the interpretations of function symbols closed under the substructure.

Theorem 7.3. If G is a proof graph for A,θ α|=ϕ, then ev(G) is evidence for A,θ α|=ϕ.

Proof. If G is a dependency graph for ev(G),θ and ϕ, then G is also a proof graph, as
the extra requirement from Definition 7.2 obviously still holds.

To see that G is indeed a dependency graph for ev(G),θ and ϕ, pick any node
v = 〈α, R, ā〉 in G. If R /∈ bnd∗(ϕ), then we need to show that ev(G),θ |= v. This is
given directly by Definition 7.7. If R ∈ bnd∗(ϕ), we need to show that for all Bv ev(G)
and all η≡bnd∗(ϕ) θ :

if B,η |= u for all u ∈ v•

then B,η[ x̄X 7→ ā] |= fo(ϕX )

This is however very easily obtained: because G is a proof graph for A,θ and ϕ, we
have the above for all Bv A and all η≡bnd∗(ϕ) θ . Because every substructure of ev(G)
is also a substructure of A, the result follows immediately.

7.2.1 Counterexamples and witnesses

Some problems that can be encoded in fixpoint logic consist of checking an ‘imple-
mentation’ against a ‘specification’. For instance, if the behaviour of some system is
described as a Kripke structure, and we want to establish correctness properties on
that Kripke structure, then we may view it as an ‘implementation’ of sorts, which we
could check against a set of CTL* formulas, the ‘specifications’. We might also want to
check if this Kripke structure refines another, more abstract Kripke structure. In this
case, the ‘specification’ is not a formula, but another Kripke structure. We refer to such
problems as model checking problems.

For problems that have this characteristic of a division into implementation and
specification, we tend to think of the specification as being given and well-understood,
whereas the implementation may contain mistakes that need to be clarified with diag-
nostics. Such diagnostics should highlight the parts of the implementation that cause
a problem, but should not include details from the specification. To achieve this, we
propose a general scheme that combines an implementation A with a specification B
using an operator t, and that extracts the information from A from evidence C relating
to the combined model using an operator u.
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Definition 7.8. A model checking problem is a tuple 〈A,B,θ ,t,u,ϕ〉 where A and B
are models, t and u are binary functions that combine two structures into a single new
structure, and ϕ is an EFL formula such that if C is evidence for AtB,θ α|=ϕ, then

CuAv A and (CuA)tB,θ α|=ϕ.

We call CuA a witness if α= t. We call it a counterexample if α= f.

This scheme enables us to encode the semantics of a logic or equivalence in a
single EFL formula. Usually, ϕ will be a closed formula, in which case the value of
θ is irrelevant. In such cases, we will not explicitly mention θ , but assume that an
arbitrary environment is given. In the following sections we will give an example of
a formula that encodes stuttering equivalence checking, in which case A and B are
Kripke structures, and an example of a formula that encodes ∃ECTL* model checking,
in which case A is a Kripke structure, and B is a model that represents an ∃ECTL*
formula. This approach differs from those in [Che+07; GM99], in which a different
fixpoint formula is generated for every A and B.

To apply our notions of witness and counterexample, we need to define the op-
erations t and u from Definition 7.8. Essentially, the t operator must merge two
structures together, and the u operator must be able to retrieve a substructure of one
of the original structures again from the merged structure. Natural candidates to im-
plement this operation on the domain of discourse of the two structures are the set
union and set intersection operations. We do however also need to define what hap-
pens to the relations and functions in the structures. If the two structures that are to be
merged define the same function f , but with different interpretations I1( f ) and I2( f ),
then this poses a problem, because there is no natural merge operation for such inter-
pretations. If the interpretations agree on the intersection of their respective domains
however, then a natural merge operation is to take the interpretation that assigns to
every input the same output as I1( f ) does if the input is in the domain of I1( f ), or
the output of I2( f ) if the input is in the domain of I2( f ).

For pairs of models in which the interpretation of the function symbols are compat-
ible in this way, we define union and intersection operators in the following definition.
We then show that using these operators, witnesses and counterexamples can be ex-
tracted as per Definition 7.8.

Definition 7.9. Two structures A = 〈A,R1,F1,I1〉 and B = 〈B,R2,F2,I2〉 are called
composable if for all f ∈ F1 ∩ F2, I1( f ) and I2( f ) agree on the intersection of their
domains. For such composable models we define A∪B= 〈C∪,R∪,F∪,I∪〉 and A∩B=
〈C∩,R∩,F∩,I∩〉 in which:

C∪ = A∪ B C∩ = A∩ B

R∪ =R1 ∪R2 R∩ =R1 ∩R2

F∪ = F1 ∪F2 F∩ = F1 ∩F2
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The interpretation function I∪ is defined such that:

I∪(R) =











I1(R),

I2(R),

I1(R)∪ I2(R)

R ∈R1 \R2

R ∈R2 \R1

R ∈R1 ∩R2

I1(R),

I2(R),

I1(R)∩ I2(R)











= I∩(R)

I∪( f ) =











I1( f ),

I2( f ),

I1( f )∪ I2( f )

R ∈ F1 \F2

R ∈ F2 \F1

R ∈ F1 ∩F2

I1( f ),

I2( f ),

I1( f ) � C∩











= I∩( f )

Here, I1( f ) � C∩ is the restriction of I1( f ) to C∩. The union I1( f )∪I2( f ) is the function
that agrees with I1( f ) and I2( f ) on their respective domains. Note that such a function
exists because I1( f ) and I2( f ) agree on the intersection of their domains.

Theorem 7.4. If A and B are composable, θ is an environment and ϕ is an EFL formula
over A∪B, then 〈A,B,θ ,∪,∩,ϕ〉 is a model checking problem.

Proof. Suppose that C is evidence for A∪B,θ α|=ϕ. It is trivial to check that C∩Av A.
To see that (C∩A)∪B,θ α|=ϕ, consider a proof graph G = 〈S,→〉 that is a proof both
for A∪B,θ α|=ϕ and for C,θ α|=ϕ, as per Definition 7.6. Note that Cv (C∩A)∪Bv
A∪B. Now check that G is also a proof for (C∩A)∪B,θ α|=ϕ by checking on each
node the conditions from Definition 7.1 (the condition from Definition 7.2 still holds).
The first condition is still valid because it is independent of the model. The second
condition follows from the fact that (A∪B) � S v (C∩A)∪Bv A∪B and G is proof
for A∪B,θ α|=ϕ; the third from the fact that Cv (C∩A)∪B and C,θ α|=ϕ.

7.2.2 Example: stuttering bisimulation

To illustrate the use of the ∪ and ∩ operators on models, and to illustrate how coun-
terexamples can be extracted for an equivalence checking problem, we consider the
problem of checking that two systems are stuttering bisimilar. We use Namjoshi’s for-
mulation of stuttering bisimulation [Nam97], because it already closely resembles our
definition in EFL.

Definition 7.10. Given a Kripke structure 〈A, AP,→,`〉, a relation X ⊆ A× A is a stut-
tering bisimulation if and only if it is symmetric, and there exist a well-founded order
〈W,≺〉 and some mapping rank : A× A× A→W such that for all s, t such that X st:

`(s) = `(t)∧∀u s→ u⇒ ((Xut ∧ rank(u, u, t)≺ rank(s, s, t))∨
∃v t → v ∧ ((Xsv ∧ rank(u, s, v)≺ rank(u, s, t))∨ Xuv)).

States s and t are said to be stuttering bisimilar, denoted s ' t, if a stuttering
bisimulation exists that relates s and t.
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Proposition 7.1. Let A be a Kripke structure 〈A, AP,→,`〉.

Φl r = [X l r : (gfp Xst = X ts ∧ `(s) = `(t)∧
[Y st : (lfp Y st = ∀u s→ u⇒ ((Xut ∧ Yut)∨
[Zsut : (lfp Zsut = ∃v t → v ∧ ((Xsv ∧ Zsuv)∨ Xuv))])])]

If l and r are terms of A and s = lA and t = rA, then A |= Φl r if and only if s ' t.

Consider the following two Kripke structures, that are stutter trace equivalent, but
not stutter bisimulation equivalent.

L =

l0{a}

l1{a} l2 {c}

l3{b}

R=

r0{a}

r1{b} r2 {c}

Let A = L ∪ R, and suppose that l L = l0 and rR = r0. Consider the following proof
graph for A |=/ Φl r (the nodes for `(s) = `(t) are left out to save some space; note that
technically speaking, the structures L and R should include the appropriate subsets
of AP in their domains of discourse and define a relation symbol ‘=’ that represents
equality on those sets).

〈f, X , [l0, r0]〉 〈f, Y, [l0, r0]〉 〈f, Z , [l0, l1, r0]〉 〈f, X , [l0, r2]〉
〈f, X , [l1, r2]〉

〈f, X , [l0, r1]〉
〈f, X , [l1, r1]〉

〈t,→, [l0, l1]〉 〈f, X , [l1, r0]〉

〈f, X , [r0, l1]〉

〈f, Y, [r0, l1]〉

〈f, X , [r2, l1]〉〈t,→, [r0, r2]〉

〈f, Z , [r0, r2, l1]〉
〈f, X , [r0, l3]〉
〈f, X , [r2, l3]〉

To extract evidence from this proof graph, we construct an evidence projection as per
Definition 7.7. That is, we construct a submodel B v A which must contain at least
those nodes from L and R referred to in the refutation graph (all nodes from L and
R), and which satisfies l0→ l1 and r0→ r2. This yields the following Kripke structure
B as evidence. Note that B ∩ L and B ∩ R return the offending parts of L and R,
respectively.

l0{a}

l1{a} l2 {c}

l3{b}

r0{a}

r1{b} r2 {c}
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Observe that in B, l0 and r0 are again not stuttering equivalent, and moreover, they
can be shown not to be equivalent with the same reasoning: the transition from l0 to a
state unrelated to r0 with label a cannot be mimicked by r0. All the states from A are
retained in the evidence, because the evidence gives an explanation for the invalidity
of every X -node in the proof graph. Taking the projection of the refutation graph
minimised with respect to B would yield evidence in which only the reachable nodes
from l0 and r0 are included.

Other refutation graphs are possible, leading to different evidence. For instance,
if we had chosen 〈f, X , [l0, r0]〉 to depend on 〈f, X , [r0, l0]〉 (using the symmetry of
stuttering bisimulation), we could have obtained evidence in which only the edge
r0 → r1 was retained. The explanation here is that it is sufficient to show that r0 can
reach an equivalence class labelled with b, without moving through another class first,
whereas l0 cannot do so.

We would like to remark that there are alternatives to our notion of evidence for
bisimulation and stuttering bisimulation. For instance, a common notion is a distin-
guishing formula in Hennesy-Milner logic (for bisimulation [Cle91]) or CTL*\X (for
stuttering bisimulation [Kor92]). However, in our experience, such formulas tend to
get very unwieldy and do not always offer much insight. We believe that our notion
of evidence is a more practical alternative to distinguishing formulas in such cases.

7.3 Evidence for LTL and ACTL* model checking

In [Cla+02], Clarke et al. noted that for certain model checking problems, one can
restrict the notion of witness and counterexample to graphs of a specific form: for LTL
model checking, counterexamples are usually defined as a single (possibly infinite)
trace through the model that does not satisfy the specification. These traces can again
be seen as Kripke structures that do not satisfy the desired property. For model checking
∀CTL*—a subset of CTL* which adds to LTL universal quantification over branches—
counterexamples consist of a number of traces that are attached to each other in a tree-
like fashion. More formally, a tree-like counterexample is a Kripke structure that can
be simulated by the system under scrutiny, which does not satisfy the desired property,
in which every strongly connected component (SCC) consists of a single cycle, and of
which the SCC decomposition is a tree.

In the remainder of this section, we show how these special types of counterexam-
ple can be obtained from proof graphs.

To simplify presentation, we do not consider the generation of counterexamples for
∀CTL*, but rather the dual problem of generating witnesses for ∃CTL*. Furthermore,
to also capture the expressivity of the ω-regular extensions used in [Cla+02], we con-
sider the extended logic ∃ECTL* (originally presented in [Tho89], see Section 2.4 for
our definition), which uses Büchi automata as primitives. We note that it is also possi-
ble to define what follows directly for ∃CTL*, but this requires encoding the translation
of LTL to Büchi automata in first-order logic, as was done in Chapter 4.

An ∃ECTL* formula f can be described by a model B f over a domain that includes
at least one element for every subformula and every set of subformulas of f, and
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for each subformula of the form E(B) a unique element for every state of B. We let
B f contain an element representing AP and an element representing the set F of
accepting Büchi states. We assume that it also includes the usual relations on sets,
relations to recover the structure of formulas, and a ternary transition relation→ for
the Büchi automata. To distinguish CTL* operators from Boolean connectives, we add
a dot to the CTL* operators: ¬· for CTL* negation, and ∧· ,∨· for CTL* conjunction and
disjunction.

Proposition 7.2. Let Φ be defined as:

Φs f = [Xs f : lfp Xs f =



























f ∈ `(s) if f ∈ AP
g /∈ `(s) if f = ¬· g
X sg ∨ Xsh if f = g∨· h
Xsg ∧ Xsh if f = g∧· h
Y sb0 if f = E(B(b0))

gfp Y sb = Zsb

lfp Zsb = ∃s′,b′,g s→ s′ ∧ b →g b′ ∧ Xsg ∧
((b′ ∈ F ∧ Y s′b′)∨ (b′ /∈ F ∧ Zs′b′))]

Let A be a Kripke structure over AP, and let f be an ∃ECTL* formula over AP. If s is a
term of A and f is a term of B, and â = sA and b̂ = f B f , then A ∪B f |= Φs f if and
only if A, â |= b̂.

Let G be a minimal proof graph for A ∪B f |= Φs f . Firstly, the first element of
all nodes in G that are also in SX is equal to t. Notice that G cannot contain cycles
that pass through S{X }, because of Definition 7.2. Furthermore, because G is minimal,
nodes from S{Y,Z} have exactly one successor in S{Y,Z}. Therefore, the only cycles in G
are cycles through S{Y,Z}, and every node can be in at most one cycle. In other words,
every SCC in G consists of a single cycle.

Our goal is to obtain a tree-like witness from a proof graph for A ∪B f |= Φs f ,
if state â satisfies ∃ECTL* formula b̂. We do so by first finding a witness in which
every SCC is again a single cycle. We can however not use the witness obtained from
G by Definition 7.8, because disjunct cycles in G may correspond to cycles in A that
share nodes. We therefore need to ‘unroll’ some of these cycles in order to make them
disjunct again. In [Cla+02] this is done by running a model checking algorithm not
on A, but on a bisimilar indexed Kripke structure Aω, which contains for every cycle
in A an infinitely unrolled path. We adopt the same approach: we adapt G so that it
becomes a proof graph for Aω ∪B f |= Φs f , and then use Definition 7.8 to extract a
witness from the resulting proof graph.

Definition 7.11. Given a Kripke structure A = 〈A, AP,→,`〉, its corresponding indexed
Kripke structure Aω is the Kripke structure 〈Aω, AP,→ω,`ω〉 such that:

– Aω = A×N,
– →ω is such that 〈a, i〉 →ω 〈a′, j〉 iff a→ a′ (for all a, a′, i and j),
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– `ω is such that `ω(〈a, i〉) = `(a).

Note that every a ∈ A is bisimilar to all 〈a, i〉 ∈ Aω. Therefore, fixing some i ∈ N
and replacing every a ∈ A occurring as a parameter of a node in G by 〈a, i〉 yields a
valid proof graph G i (for Aω ∪B f ). For distinct i and j, the sets of nodes of G i and
G j that have outgoing edges are disjunct, so G i ∪ G j is again a valid proof graph. By
the same reasoning, so is Gω =

⋃

i∈N G i . Associate with every node v of G a distinct
number k(v), and extend k to nodes of Gω by defining for v in G and v′ in Gω that
k(v′) = k(v) iff v′ is equal to v in which every a ∈ A is replaced by 〈a, i〉.

For every v in Gω ∩ S{Z}, we replace every edge v → 〈t, V, [〈a, i〉, b]〉 such that
V ∈ {Y, Z} and i 6= k(v) by v → 〈t, V, [〈a, k(v)〉, b]〉. Note that v also has a successor
〈t,→, [〈a′, i〉, 〈a, i〉]〉. Replace this successor by the node 〈t,→, [〈a′, i〉, 〈a, k(v)〉]〉. Let
Gt be the result of this transformation, restricted to the part that is reachable from v0.

Gt is a valid dependency graph again; the restriction to the reachable part from v0
is easily seen to preserve the conditions of Definitions 7.1 and 7.2. In the replacements
we made, only the first and last conjunct in the right-hand side of the equation for Z
are affected by a different choice for s′. These two conjuncts are represented by the
new successors we introduced, satisfying the constraint from Definition 7.1.

To see that Gt is also a proof graph, notice that no ‘bad’ cycles were introduced
during the transformation: if we view proof graphs as Kripke structures in which two
nodes are labelled identically if and only if they differ only in the index of a state in Aω

(i.e., if they are of the form 〈t, V, [〈a, i〉, b]〉 and 〈t, V, [〈a, j〉, b]〉), then all identically
labelled nodes in Gω are bisimilar. Moreover, we only replaced edges v→ u by v→ u′

such that u and u′ are bisimilar.
We now define a witness C as defined in Definition 7.8, i.e., C= ev(Gt)∩Aω. The

following theorem establishes a correspondence between the transition relations of Gt

and C. This allows us to say something about the shape of C, based on what we already
know about Gt.

Theorem 7.5. Let C = ev(Gt)∩Aω, and let S be the set of states of Gt. Then there is a
bijective mapping α from C to S such that for all c, c′ ∈ C,

c� c′⇒ α(c)� α(c′),

where� denotes the transitive closure of→.

Proof. Let G be a proof graph for A ∪B f |= Φs f again. Let vG
0 = 〈X , [â, b̂]〉 and let

c0 = 〈â, k(vG
0 )〉 be the corresponding node in C. Denote by v0 the node 〈X , [c0, b̂]〉 in

Gt. Now define:

S′ = {v0} ∪ {v | ∃v′ (v, v′) ∈→∩ S{Z} × S{Y,Z}}.

Let α be a bijective mapping from C to S such that ∀〈t,V,[c,b]〉∈S′ α(c) = 〈t, V, [c, b]〉.
Note that every v = 〈t, V, [c, b]〉 ∈ S′ has a predecessor 〈t, Z , [c, b]〉, and because Gt is
minimal, v has either 〈t, Y, [c, b]〉 or 〈t, Z , [c, b]〉 as a successor, but not both. Because
c = 〈a, k(v)〉 for some a, and all nodes in Gt are reachable from v0, 〈t, Y, [c, b]〉 and
〈t, Z , [c, b′]〉 cannot both occur in S′ (for all c, b and b′).
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Let c, c′ ∈ C . We show that c� c′⇔ α(c)� α(c′).
We first show c� c′⇒ α(c)� α(c′) by proving c→ c′⇒ α(c)� α(c′). Suppose

c → c′. Consider the node 〈t,→, [c, c′]〉 ∈ S that caused us to add this transition to
C. This node must have a predecessor u = 〈t, Z , [c, b]〉, and per construction, u must
have α(c′) as a successor. We know that u is reachable from v0, so if α(c) = v0, then
definitely α(c) � α(c′). Otherwise, note that c = 〈a, i〉, and i 6= 0. Any node that
refers to a node in Aω with index i, so in particular u, can only be reached by passing
through a transition from a node in S{Z} to a node u′ ∈ S{Y,Z} with k(u′) = i. By
construction, α(c) is the only such node, so also in this case, α(c)� α(c′).

For the implication in the other direction, suppose α(c) � α(c′). Consider the
path from α(c) to α(c′), and let N ≥ 2 be the number of times this path traverses a
node from S′. Along every such path, for each pair of successive nodes 〈t, V, [d, b]〉 →
〈t, V ′, [d ′, b′]〉we have that d = d ′ unlessα(d ′) = 〈t, V ′, [d ′, b′]〉 (the only place where
d can change to d ′ is in the right-hand side of Z , and these are the dependencies we
have included in our mapping α).

Note that because of the way we constructed Gt, α(c′) must have a predecessor
〈t, Z , [c′′, b]〉 that has a successor 〈t,→, [c′′, c′]〉. By Definition 7.7 therefore c′′→ c′.

We prove that c � c′ by induction on N . If N = 2, then c = c′′, and therefore
c → c′. If N > 2, then notice that α(c′) can only be reached from α(c) via α(c′′).
The induction hypothesis is that c � c′′, and we also have c′′ → c′; therefore also
c� c′.

We already noted that in G, and therefore in Gt, every SCC consists of a single
cycle. Using Theorem 7.5, we may conclude that all nodes in C are reachable (because
all nodes in Gt are), and that also every SCC in C is a single cycle. Therefore, C
can be transformed to a bisimilar, tree-like model Ct by duplicating SCCs with more
than one incoming transition. Moreover, A simulates Ct because A is bisimilar to Aω,
Cv Aω, and C is again bisimilar to Ct. The fact that f holds on C follows directly from
Proposition 7.2, so we may conclude that it also holds on the bisimilar Ct.

Corollary 7.1. Ct is a tree-like witness.

In case of ∃ELTL model checking, there can only be one cycle in G, corresponding to
the single Büchi automaton in the formula. The unfolding operation described above
is then unnecessary.

Corollary 7.2. If f was an ∃ELTL formula, then C is a linear witness.

7.4 Closing remarks

We have presented the notion of proof graph for the fixpoint logic EFL. This notion can
be used directly for the LFP and PBES logics, because those are syntactic fragments of
EFL. A proof graph represents a proof of validity or invalidity of an EFL formula. Proof
graphs can therefore be used to define an alternative semantics for EFL: a formula holds
if and only if there is a proof graph that demonstrates this, and likewise, a formula
does not hold if and only if there is a proof graph that demonstrates it.
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Proof graphs by themselves have a number of uses. Firstly, they can be used in
proofs instead of the doubly recursive fixpoint semantics of Definition 6.1 that is nor-
mally used. In some cases, this can make proofs significantly easier (see, e.g., the
proofs of Lemmas 6.14 and 6.16).

The second use is generation of diagnostics. We have shown that counterexamples
and witnesses that can be obtained from classical model checking algorithms, can also
be extracted from proof graphs. Because proof graphs can be constructed from winning
parity game strategies, this yields a practical diagnostics generation framework for
fixpoint model checkers, as they often already calculate winning strategies in parity
games to solve the fixpoint formula that encodes the model checking problem.

A third use is certification, as was suggested by Tan and Cleaveland in [TC02]. Al-
though we have not discussed this purpose in this chapter, their results are easily seen
to carry over to our setting. We must note however that this only yields a certifica-
tion method for the propositional fragment of EFL in positive normal form (in which
all second-order variables occur only in the scope of an even number of negations).
Checking whether a graph G is a proof graph for a formula in this fragment can be
decided in O(|G| log k

2 ) time, where k is length of the longest <E -chain in the formula
(it amounts to solving the even-cycle problem, see [Tan02]). For formulas outside this
fragment, it is not very clear how successful proof graphs can be as a certification mech-
anism. Especially in the case of formulas with first-order quantification, it becomes
harder to check the requirements from Definition 7.1. For arbitrary proof graphs for
propositional EFL formulas, checking the first condition of Definition 7.1 for a node
with no successors amounts to tautology checking fo(ϕX ), which is already a co-NP
complete problem. It is unclear to what extent this problem would manifest itself in
practical situations.





Chapter 8

Discussion and conclusion

Fixpoint logic can be applied to solve model checking problems. In the first chapter
of this thesis, a case study was presented in which part of an industrial standard was
modelled in the process specification language mCRL2. Requirements that should
be satisfied by the standard were formulated in a first-order modal μ-calculus. Those
requirements were checked on the model by translating them, together with the model,
into formulas of a fixpoint logic (a parameterized Boolean equation system, or PBES,
in this case). These formulas were subsequently evaluated by generating a parity game
from it, and solving the resulting parity game.

The case study confirmed the presence of an error in the standard reported by
Steiner [Ste05b], and uncovered one previously unknown error in the standard. Some
aspects of the procedure that was used to come to these results, make it difficult and
time consuming (and therefore costly) to perform this kind of analysis. The modal μ-
calculus that was used to formulate the requirements is difficult to understand, making
it difficult to specify the requirements correctly. Evaluating the PBES is time consuming
due to the large number of states that have to be checked. Moreover, if the outcome
of evaluating the PBES is unexpected, it is very difficult to find out what the cause is.
In the remainder of the thesis, we have looked into these three issues, and made steps
towards improving these aspects of our model checking procedure.

The μ-calculus that was used to describe properties in the case study of Chapter 3
appears rather arcane to the untrained eye, and requires a fair amount of training be-
fore one develops enough intuition to easily write down properties of interest. Chap-
ter 4 discusses a translation from the more user-friendly (but less expressive) temporal
logic CTL* to a propositional variant of the modal µ-calculus that was used in the first
chapter. We showed that model checking the resulting FO-Lµ formula is no harder
than checking the original CTL* formula. Firstly, this result gives some insight into the
expressivity and compactness of FO-Lµ. Emerson and Lei suggested in 1986 [EL86]
that there is no need for specialized CTL* model checkers, if CTL* can be efficiently
encoded into Lµ. The best known translation from CTL* to Lµ however yields formulas
of a size that is doubly expential in the size of the original [Dam92]. Bhat and Cleave-
land gave a translation from CTL* to an equational variant of Lµ, yielding formulas
that are only exponentially larger than their originals [BC96]. We gave a translation
to a non-equational µ-calculus that allows first-order quantification, and showed that
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the size of the resulting formula is linear in the size of the original.
The practical upshot of this result is that CTL* can be checked efficiently using a

FO-Lµ model checker (a similar approach, using the translation by Bhat and Cleave-
land, was taken in the Concurrency Workbench of North Carolina [CS02]). In par-
ticular, for the mCRL2 toolkit this means that there is an easy way to support more
user friendly logics, without having to change the model checking infrastructure that
is already there. A side note here is that the translation should be adapted to work
for an action-based variant of CTL*, as mCRL2 uses labelled transition systems as it
semantic model. One could for instance use the logic that was proposed by De Nicola
and Vaandrager [DV90].

An issue for any model checker is that it has to deal with very large structures,
resulting in excessive time and resource usage when model checking industrial scale
systems. Much of the research in the model checking community is towards finding
ways to avoid this problem. A well-known approach is to find an equivalence on states
of the system that preserves the property of interest, and to then use the quotient—
induced by this equivalence—of the system model to check the property on. Coarser
equivalences give better speedups when using this method, as their quotient is smaller.

In Chapter 5, we applied this technique not to system models, but to parity games
that encode a model checking problem. Parity games are graph structures in which
every vertex is ‘won’ by one of two players, according to a fixed set of rules. The
solution to a model checking problem can be inferred from the winner of a specific
vertex in the parity game that encodes that problem. Instead of calculating the winner
of that vertex directly, one can calculate the winner of the vertex in the quotient of the
game (with respect to some equivalence relation) that represents the corresponding
equivalence class in the original game. As long as the equivalence that is used does
not relate two vertices in the parity game that are won by different players, the winner
of the vertex in the quotient indeed also wins the vertex in the original game. We do
not need to worry—as we do when performing classical state space reduction—that
certain properties are not preserved by the quotient: as long as an equivalence relation
does not relate vertices that are won by different players, this reduction technique is
sound.

Several equivalences, the coarsest of which is called governed stuttering bisimilar-
ity, were investigated. Earlier results indicated that minimizing a parity game using
these equivalences and then solving it could be faster than solving the parity game
directly. In the FlexRay case study, for instance, application of the parity game reduc-
tion technique saved a lot of time. Once an efficient implementation of the recursive
solving algorithm for parity games became available, however, these results were dep-
recated. It turned out that the recursive solver was in most cases so fast on realistic
model checking problems, that reducing the game before solving them only caused
additional overhead.

We showed that most model checking problems result in parity games with only few,
easily computable equivalence classes (where by ‘easily’ we mean: in O(n2m) time).
If we can lift governed stuttering bisimilarity to the setting of fixpoint logic, then we
have a way of reducing the parity game associated with a fixpoint logic formula prior
to generating it. This would be good news indeed, as instantiating such formulas
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to parity games is currently a major bottleneck: it costs a lot of time, and because
during instantiation the algorithm must check whether a state was visited before, it
also costs a lot of memory. Even if not the complete reductive power of governed
stuttering equivalence can be lifted to fixpoint logic, the reductions that were seen
in our experiments give us the hope that any heuristic that approximates it can still
give rise to a considerable size reduction. Given that governed stuttering bisimilarity
combines the notions of stuttering and idempotence, it seems that on the level of
fixpoint logic, governed stuttering bisimilarty should correspond to a confluence-like
notion; if a formula contains conjunctions and disjunctions in which second-order
variables occur, then governed stuttering bisimilarity identifies those conjuncts and
disjuncts that are seen to be equivalent after a number of fixpoint approximation steps.
To find such conjuncts and disjuncts using static analysis, one might find inspiration in
termination proving, especially in the context of proving termination of loop constructs
in programming languages.

Another direction for future research could be to find equivalences that are even
weaker than governed stuttering bisimilarity, but that are still computable in polyno-
mial time. This would increase our understanding of the complexity of the problem of
solving parity games, which is currently known to be in UP ∩ co-UP. Governed stutter-
ing bisimilarity does not relate vertices with different priorities. There are equivalence
relations on parity games that relate such vertices [FW06], but they are incomparable
to governed stuttering bisimilarity [Kei13]. It would be very interesting to know if
there is any equivalence that is coarser than both and computable in polynomial time,
and that refines winner equivalence.

Model checking via fixpoint logic can be used to verify the behaviour of industrial
scale systems. Over the years, many case studies have been performed, of which the
FlexRay case study is just one example. What this method is still missing is a universally
applicable way to provide diagnostics that allow the user to interpret the answers that
the model checker provides. Such diagnostics are available for automata-based LTL
and CTL* model checkers, but model checkers based on fixpoint logic can only provide
them in very specific circumstances. In Chapters 6 and 7, we try to improve on this
state of affairs. We introduce a new notion of evidence, based on a graph structure
called proof graph, which is closely related to parity games. This notion is defined for
a fixpoint logic called EFL, which generalises two popular first-order fixpoint logics, to
which our results are therefore also immediately applicable. The notion of evidence for
EFL can be used to define counterexamples and witnesses for formulas that encode a
model checking problem. These counterexamples and witnesses are of the same shape
as those defined for LTL and CTL* model checking. Our notions are general enough
to extend to other problem domains, such as equivalence checking.

Our notion is based on support sets, as introduced by Tan and Cleaveland [Tan02],
but is generalized to deal with first-order constructs and formulas that are not in nor-
mal form. In our generalized notion, the graph structure of proofs for fixpoint formulas
is more explicitly exposed than it was in support sets. In that respect they are remi-
niscent of tableaux such as described by Janin [Jan97], and it would be interesting to
investigate the exact relationship between the two.

While proof graphs are useful to give concise proofs for statements about fixpoint
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logics, we have already come across one situation in which we desired a notion of
proof graph that carries more information. In [Cra+ed], the history-wise proof graph
is introduced; where regular proof graphs show a correspondence to winning memo-
ryless strategies in parity games (as is detailed in Section 7.1.4), these proof graphs
correspond to arbitrary winning strategies. It could be convenient to merge the two
concepts, and view the proof graphs presented in this thesis as special instances of a
more general notion, in analogy to the parity game strategies.

To put our notion of evidence to the test, the concepts from Chapter 7 should be
implemented in an actual model checker. Such a model checker must be able to per-
form the extraction of counterexamples and witnesses, and must therefore be aware
of the fact that the proof graphs it generates represent proofs in a mathematical struc-
ture that is in fact the composition of a structure that represents the implementation,
and a structure that represents the specification (as described in Definition 7.8). This
requires some bookkeeping that is unlikely to be present in current model checking
tools, as they usually treat the fixpoint logic as an intermediate datastructure, rather
than a central notion. It may therefore prove to be difficult to implement diagnostics
generation in existing tools.

That said, a toolset that is centered around fixpoint logic could be very useful in
practice. At the time of writing, there seem to be no model checking tools that have
fixpoint logic as a central notion. Roughly speaking1, one can distinguish tools that
are built around a process algebra or specification language (CADP, mCRL2, SPIN),
a specific model checking (or refinement checking) algorithm (FDR, (Nu)SMV, XMC),
specialize in timed or probabilistic model checking (UPPAAL, PRISM), or aim to provide
a uniform structure in which a wide range of different input languages and algorithms
can be used (LTSmin, Edinburgh CWB, CWB-NC).

A set of tools that focuses on fixpoint logic, allowing symbolic manipulation and
instantiation-based solving methods, could be a valuable addition. Existing techniques
for the PBES logic are already powerful enough to solve practical verification problems,
showing that such a toolset could be a serious candidate for large-scale use. The results
from Chapter 5 indicate that symbolic manipulation has the potential to combat the
state space explosion problem that inevitably arises when applying these tools in indus-
try. Using the results from Chapter 7, diagnostics generation can be implemented in a
generic manner. Furthermore, a set of tools based on fixpoint logic would operate in a
setting that is quite similar to that of SAT/SMT solving and theorem proving. Hopefully,
techniques from these areas can be more easily (and more widely) integrated into a
fixpoint-based model checker than is possible in existing tools and methodologies.

It should be noted that the PBES tools developed over the last couple of years
in the mCRL2 toolset are already a step in this direction. Yet due to its history as a
process algebraic toolset, it is difficult to separate those parts concerned with fixpoint
logic from parts dealing with other core concepts in the toolset, and to revert design
decisions that were made when fixpoint logic was not yet a central notion.

We conclude with some remarks about the verification of industrial systems in gen-
eral. Model checking research largely focuses on overcoming technical issues, such as

1There are many more features one could use to categorize these tools.
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state space explosion and the answering of ever more difficult questions about systems
(with a current trend towards probabilistic systems, timed systems, and the combina-
tion of the two). Every so often we also see usability aspects taken into account (see,
e.g., [Tan02; Don03]), but the approach is always to adapt or augment model checking
techniques to make them more usable in current (software) engineering practice. A
subject that deserves more attention, is which minimal changes the engineering disci-
plines could make to increase the effectiveness of current model checking techniques.

As an example, consider the FlexRay protocol specification. This specification is
difficult to understand. While the 300 page document is very precise, it fails to ex-
plain the choices that were made. The level of detail of the specification is that of a
reference implementation, and no precise high level descriptions are available of the
components that each node is composed of. In many cases, variables and constants
(such as the constraints on the variables) are left unexplained; the text accompanying
the SDL diagrams is merely a rephrasing of the diagram itself. It would help if the
specification were given at different levels of abstraction. A clear interface description
of the different components, for instance, would have made the job of modelling a
FlexRay node much easier.

A second issue is the monolithic nature of the specification. Although different
components are discerned in the specification of a node, these components are tied
together so strongly (as seen in Figure 3.2) that it is very difficult to model indiviual
components, while abstracting away from others. A solution could be to create a
specification that focuses on the logical functionality that is supplied, leaving room for
manufacturers to fill in implementation details. For instance, the startup phase of the
protocol consists of a clock synchronisation algorithm, a leader election protocol, and
some initialisation logic to prepare for communicating according to the schedule. It
would be much easier to prove correctness of the Flexray standard if these protocols
were separately described. Currently, the three are described by a set of SDL diagrams
that perform these tasks simultaneously.

All in all, both industry and academia have some steps to take before model check-
ing can be considered mainstream technology. When they finally do meet in the middle,
model checking based on fixpoint logic is a good candidate to provide the computa-
tional power to solve real-life problems, and the versatility to allow for a user-friendly
interface.





Appendix A

Proofs

A.1 Proofs for Chapter 6

In Chapter 6, we formulated some lemmas that allow us to convert LFP formulas to
PBES formulas and vice versa. The proofs for two of these lemmas use proof graphs for
EFL, which were only introduced in Chapter 7. These proofs are therefore presented
in this appendix.

Lemma 6.14. Let E be an equation system with bnd∗(E) = {X0, . . . , Xn}, and let

E ′ = (σX0
X0 x̄X0

= fo(ϕX0
)) . . . (σXn

Xn x̄Xn
= fo(ϕXn

)),

such that X i<E X j for all 0 ≤ i < j ≤ n. Then SA(θ ,E)(X ) = SA(θ ,E ′)(X ) for all A,θ
and X ∈ bnd(E).

Proof. We prove that ā ∈ SA(θ ,E)(X )⇔ ā ∈ SA(θ ,E ′)(X ) for all ā and X ∈ bnd(E).
We only show the implication from left to right, the proof for the other direction is
identical. Suppose ā ∈ SA(θ ,E)(X ) for some X ∈ bnd(E). Use Theorem 7.1 to obtain
a proof graph G that includes a state 〈t, X , ā〉. Definition 7.1 only refers to bnd∗(E),
fv(E), and to x̄X and fo(ϕX ) for all X ∈ bnd∗(E). By construction, these are equal to
bnd∗(E ′), fv(E ′), etc. (because fo(fo(ϕX )) = fo(ϕX )), so G is also a dependency graph
for A,θ and E ′. Definition 7.2 only refers to σX and <E , which are again preserved
in E ′. G is therefore a proof graph for A,θ and E ′, and by Theorem 7.1, therefore
ā ∈ SA(θ ,E ′)(X ).

Lemma 6.16. Given A, θ , a mapping f : bnd∗(E2)→ X \ (bnd∗(E)∪ fv(E)), and an
equation system E = E1E2,

S(θ ,E)(X ) = S(θ , f (E2)E)( f (X )) for all X ∈ bnd(E2),

where f is extended to range over X and over equation systems in the obvious way.

Proof. We construct a proof graph for ā ∈ S(θ , f (E2)E)( f (X ))⇔ α = t from a proof
graph for ā ∈ S(θ ,E)⇔ α= t (for any ā and α for which the former holds).

So suppose that for some ā and α, ā ∈ S(θ ,E)(X )⇔ α = t, and let G be a proof
graph with node v = 〈α, X , ā〉. Now add to that graph the node f (v) = 〈α, f (X ), ā〉,
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and mark it ‘unfinished’. While there is a node f (u) in the graph that is marked unfin-
ished, consider the successors w0, . . . , wn of u, and add the nodes f (w0), . . . , f (wn) to
the graph, if they did not already exist ( f (wi) may be equal to wi for some, or f (wi)
was already added to the graph because wi was a successor of an unfinished node that
we considered before). Add edges from f (u) to each of f (w0), . . . , f (wn), and remove
the marker from f (u).

This procedure obviously terminates after some time, because we only allow one
copy f (v) of every node v in G to be introduced. The new graph is also easily seen to
satisfy the condition from Definition 7.1: consider a node 〈α′, f (Y ), ā′〉 that was newly
introduced; because ϕ f (Y ) = f (ϕY ), a simple inductive argument—almost identical
to that of Lemma 7.5, and therefore left as an exercise to the reader—shows that the
successors we introduced are sufficient.

To see that the condition of Definition 7.2 also applies, consider an arbitrary infinite
path p f = f (u0), f (u1), . . . in the newly created graph.

If f (ui) = ui for some i (that is, the path visits a node of which the fixpoint variable
is in bnd∗(E1)), then we know that for all j > i, f (ui) = ui , because E does not refer
to variables in bnd∗( f (E2)). In other words, there is an infinite suffix of p f that was
already a path in G, so it immediately follows that the condition from Definition 7.2
also holds for p f itself.

If f (ui) 6= ui for all i, note that Y <E Y ′⇔ f (Y )<E ′ f (Y ′) for all Y, Y ′ ∈ bnd∗(E2).
Furthermore, because of the way we added the successors of the newly introduced
nodes, u0, u1, . . . is a path in G. Using the correspondence between the variable order-
ings, it now follows that the condition from Definition 7.2 also holds on p f .

A.2 Proofs for Chapter 7

In Chapter 7, we left out the proofs of correctness for our encodings of stuttering
bisimilarity checking and ∃ECTL* model checking into EFL, so we could focus on the
problem of evidence extraction.

A.2.1 Stuttering bisimilarity

For the reader’s convenience, we repeat the definition of stuttering bisimulation as
given by Namjoshi. Remember that two states are stuttering bisimilar if and only if
there is a stuttering bisimulation that relates them.

Definition 7.10. Given a Kripke structure 〈A, AP,→,`〉, a relation X ⊆ A× A is a stut-
tering bisimulation if and only if it is symmetric, and there exist a well-founded order
〈W,≺〉 and some mapping rank : A× A× A→W such that for all s, t such that X st:

`(s) = `(t)∧∀u s→ u⇒ ((Xut ∧ rank(u, u, t)≺ rank(s, s, t))∨
∃v t → v ∧ ((Xsv ∧ rank(u, s, v)≺ rank(u, s, t))∨ Xuv)).

The proof of correctness for our encoding of stuttering bisimilarity checking in
EFL is done by showing that the rank function corresponds to a combination of two
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decreasing measures on Y - and Z-nodes in the proof graph for the EFL formula. In-
tuitively, rank serves as a well-founded ordering on which we can base an inductive
proof that all paths in a proof graph for the EFL formula contain only finitely many Y -
and Z-nodes. Conversely, paths in such a proof graph induce an ordering on Y - and
Z-nodes from which we can derive a suitable rank function.

Proposition 7.1. Let A be a Kripke structure 〈A, AP,→,`〉.

Φl r = [X l r : (gfp Xst = X ts ∧ `(s) = `(t)∧
[Y st : (lfp Y st = ∀u s→ u⇒ ((Xut ∧ Yut)∨
[Zsut : (lfp Zsut = ∃v t → v ∧ ((Xsv ∧ Zsuv)∨ Xuv))])])]

If l and r are terms of A and s = lA and t = rA, then A |= Φl r if and only if s ' t.

Proof. We show the implication in both directions. First, we assume s ' t and prove
A |= Φl r.

Suppose R is a stuttering bisimulation that witnesses s ' t, and let 〈W,≺〉 be the
well-founded ordering given by Definition 7.10. Then construct a proof graph for
A |= Φl r as follows. We write a R b for 〈a, b〉 ∈ R.

– Add node 〈t, X , [a, b]〉 for each a, b ∈ A such that a R b.
– To each node 〈t, X , [a, b]〉, add successors 〈t,=, [`A(a),`A(b)]〉 and 〈t, Y, [a, b]〉,

and add a transition to 〈t, X , [b, a]〉. Note that this node exists, because R is sym-
metric.

– To each node 〈t, Y, [a, b]〉, add successor nodes as follows. For each c such that a→
c: add successor 〈t, Y, [c, b]〉 and an edge to 〈t, X , [c, b]〉 if c R b and rank(c, c, b)≺
rank(a, a, b), or add successor 〈t, Z , [a, c, b]〉 otherwise.

– For each node 〈t, Z , [a, c, b]〉, find some d such that b → d and either c R d, or
a R d and rank(c, a, d) ≺ rank(c, a, b). We know from Definition 7.10 that such a
d exists, because 〈t, Z , [a, c, b]〉 was only added if a → c and not both c R b and
rank(c, c, b) ≺ rank(a, a, b). If the latter holds, add successors 〈t,→, [b, d]〉 and
〈t, Z , [a, c, d]〉, and add an edge to 〈t, X , [a, d]〉. Otherwise, add 〈t,→, [b, d]〉 and
an edge to 〈t, X , [c, d]〉.

It is trivial to check that the requirements from Definition 7.1 hold on this graph. To
see that also the requirement from Definition 7.2 holds, notice that only infinite paths
without X -nodes are illegal. Such paths must then end in an infinite sequence of Y -
nodes or Z-nodes, as we did not add transitions from Z- to Y -nodes. But such infinite
transitions would contradict that ≺ is well-founded ordering w.r.t. W .

We now turn to the other implication. We assume that A |= Φl r and prove that
s ' t.

Let S be the set of states of a minimal proof graph for A |= Φl r. Define a relation
R= {〈a, b〉 | 〈t, X , [a, b]〉 ∈ S}. We claim that R is a stuttering bisimulation. Note that
the proof graph transition relation is well-founded with respect to the set of Y - and
Z-nodes in S. We can therefore define rank : A3 → S2 and ≺ ⊆ S2 × S2 as follows
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(because S ⊆ S):

rank(x , y, z) = 〈〈t, Y, [y, z]〉, 〈t, Z , [y, x , z]〉〉
〈v′0, v′1〉 ≺ 〈v0, v1〉 iff v0→ v′0 ∨ v0→ v1→ v′1

Now take any a, b ∈ A such that a R b. Note that 〈t, X , [a, b]〉 must have a de-
pendency on 〈t, X , [b, a]〉, and therefore b R a, so R is symmetric. We must now
show that for a and b the formula from Definition 7.10 holds. Using Definition 7.1
we can derive that A |= `(a) = `(b). Furthermore, 〈t, X , [a, b]〉 has a dependency
on 〈t, Y, [a, b]〉. Now suppose a → c. Then either 〈t, Y, [a, b]〉 → 〈t, X , [c, b]〉 and
〈t, Y, [a, b]〉 → 〈t, Y, [c, b]〉, or 〈t, Y, [a, b]〉 → 〈t, Z , [a, c, b]〉. In case of the former,
c R b and rank(c, c, b)≺ rank(a, a, b). Otherwise, by Definition 7.1 there must be some
d such that b → d and either 〈t, Z , [a, c, b]〉 → 〈t, X , [a, d]〉 and 〈t, Z , [a, c, b]〉 →
〈t, Z , [a, c, d]〉, or 〈t, Z , [a, c, b]〉 → 〈t, X , [c, d]〉. In the first case, we can in the same
way as before derive that a R d and rank(c, a, d)≺ rank(c, a, b). Otherwise, c R d.

A.2.2 ∃ECTL* model checking

We will prove soundness and completeness of our ∃ECTL* translation by constructing
proof graphs. This proof is inductive, and combines proof graphs for subformulas of a
∃ECTL* formula f , obtained from the induction hypothesis, into a proof graph for f .
The following definition and lemma give us the tools for this compositional approach.

Definition A.1. 〈S,→〉= 〈S1,→1〉 ] 〈S2,→2〉 iff S = S1 ∪ S2 and

→=→1 ∪ {〈v, v′〉 | v→2 v′ ∧ v /∈ S1}.

Lemma A.1. If G1 and G2 are both proof graphs for A,θ and ϕ, then G1 ] G3 is also a
proof graph for A,θ and ϕ.

Proof. To see that G1]G2 is a dependency graph, note that every node always has the
same set of successors as it had in G1 or in G2. It is also a proof graph, because no new
cycles were introduced: if there was a new cycle, then it would contain nodes from
S2 \ S1 and nodes from S1. But nodes from S2 only have →-predecessors in S2, and
can therefore never be on a cycle with nodes from S1.

We have reformulated the following proposition slightly to strictly conform to the
syntax of EFL. We choose to introduce a mapping I that yields for each Büchi automa-
ton its initial state (any other encoding, e.g., using an ‘is-initial-state’ relation, would
also work, but leads to a different proof graph in the proof below). We choose to en-
code the case distinction as a disjunction of conjunctions; here too we could have made
a different choice (we could have chosen to encode it as a conjunction of disjunctions:
( f ∈ `(s) ∨ f /∈ AP) ∧ . . .). This would lead to a slightly larger proof graph, because
any minimal proof graph would have to include a node for each of the conjuncts.

We treat ‘ f = ¬· g ’ as a binary predicate on f and g, ‘ f = g∨· h’ and ‘ f = g∧· h’ as
ternary predicates on f , g and h, and ‘ f = E(B)’ as a binary predicate on f and B.
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Proposition 7.2. Let Φ be defined as:

Φs f = [Xs f : lfp Xs f = ( f ∈ `(s)∧ f ∈ AP)∨
(g /∈ `(s)∧ f = ¬· g)∨
((Xsg ∨ Xsh)∧ f = g∨· h)∨
((Xsg ∧ Xsh)∧ f = g∧· h)∨
(Y s(IB)∧ f = E(B))]

gfp Y sb = Zsb
lfp Zsb = ∃s′,b′,g s→ s′ ∧ b →g b′ ∧ Xsg ∧

((b′ ∈ F ∧ Y s′b′)∨ (b′ /∈ F ∧ Zs′b′))]

Let A be a Kripke structure over AP, and let f be an ∃ECTL* formula over AP. If s is a
term of A and f is a term of B, and â = sA and b̂ = f B f , then A ∪B f |= Φs f if and
only if A, â |= b̂.

Proof. We prove the ‘if’ part, the ‘only if’ part is dual (by contraposition and using f

instead of t in the proof graph nodes). Assume A, â |= b̂ for some â ∈ A and b̂ ∈ B,
and let θ be an arbitrary environment. Let s, f be such that â = sA and b̂ = f B f .
We will show that there is a proof graph for A∪B f , θ and Φs f which includes node
〈t, X , [â, b̂]〉.

The proof proceeds by induction on the structure of b̂. We prove that for all a, b,
if A, a |= b and b v b̂ (b is a subformula of b̂), then there is a proof graph for A∪B f ,
θ and Φs f that includes a node 〈t, X , [a, b]〉, and in which every node 〈t, X , [a, b′]〉
is such that b′ v b. Our induction hypothesis is that we have such a proof graph for
every a and b such that A, a |= b and b À b̂.

So assume A, a |= b and b v b̂ for some a and b. We start creating our proof graph
by adding node 〈t, X , [a, b]〉, and then adding edges and nodes as follows. Following
the structure of Φ, distinguish cases based on the outer symbol in b, and add the
appropriate successor based on which case we are in: select appropriate b′, b′′, and add
〈t,∈, [b, AP]〉, 〈t,=¬· , [b, b′]〉, 〈t,=∨· , [b, b′, b′′]〉, 〈t,=∧· , [b, b′, b′′]〉, or 〈t,=E, [b,B]〉.
Now based on these cases, add the following successors to 〈t, X , [a, b]〉.

– b ∈ AP: then adding single successor 〈t,∈, [b,`A(s)]〉 suffices.
– b = ¬· b′: adding single successor 〈t, /∈, [b′,`A(s)]〉 suffices.
– b = b′∧· b′′: according to the semantics of ∃ECTL*, A, a |= b if and only if A, a |= b′

and A, a |= b′′. By the induction hypothesis, we have two proof graphs G1 and
G2 for A and Φs f that include nodes 〈t, X , [a, b′]〉 and 〈t, X , [a, b′′]〉, respectively.
Moreover, by Lemma A.1, G1 ] G2 is a proof graph for A, θ and Φab that contains
both these nodes. If 〈t, X , [a, b]〉 is not a node in this graph, then it is easy to
see that adding to this graph a node 〈t, X , [a, b]〉 with successors 〈t, X , [a, b′]〉 and
〈t, X , [a, b′′]〉 is still a dependency graph. It is also a proof graph, as no new cycles
could have been introduced by adding this node. We therefore have a proof graph
for A, θ and Φab which includes node 〈t, X , [a, b]〉.

– b = b′∨· b′′: similar to the ∧· -case, except that only one of the proof graphs is needed.
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〈t, Z , [ai , bi]〉 〈t, Y, [ai+1, bi+1]〉 〈t, Z , [ai+1, bi+1]〉

〈t, X , [ai , gi]〉

〈t,→, [bi , gi , bi+1]〉〈t,→, [ai , ai+1]〉 〈t,∈, [bi , F]〉

Figure A.1: Part of a proof graph for node 〈t, Y, [ai , bi]〉 with bi ∈ F .

〈t, Z , [ai , bi]〉 〈t, Z , [ai+1, bi+1]〉

〈t, X , [ai , gi]〉

〈t,→, [bi , gi , bi+1]〉〈t,→, [ai , ai+1]〉 〈t, /∈, [bi , F]〉

Figure A.2: Part of a proof graph for node 〈t, Y, [ai , bi]〉 with bi /∈ F .

– b = E(B): let b0 = IB f (B). We assumed that A, a |= b, so there is a path a =
a0 → a1 → . . . in A and a path b0 −→

g0 b1 −→
g1 . . . in B such that for all gi we have

A, ai |= gi .
By the induction hypothesis we have for each such ai and gi a proof graph G i,b′ for
A and Φs f that witnesses A, ai |= gi . Define an arbitrary complete ordering on these
graphs (call them G0, G1, . . .). By Lemma A.1, G∗ = G0 ] G1 ] . . . is again a proof
graph for A and Φab. Moreover, G∗ contains all nodes 〈t, X , [ai , gi]〉 for i ∈ N.
Now add to G∗ the nodes 〈t, X , [a, b]〉, 〈t, Y, [a, b0]〉 and 〈t, Z , [a, b0]〉. Then add the
transitions 〈t, X , [a, b]〉 → 〈t, Y, [a, b0]〉 and 〈t, Y, [a, b0]〉 → 〈t, Z , [a, b0]〉. Finally,
for each i ∈ N (remember that a = a0), add the structures from Figures A.2 and A.1.

We show that the resulting graph is a proof graph.
To see that it is a dependency graph, inspect every newly added node separately. It
is easily established that the successors are sufficient to satisfy the requirements of
Definition 7.1. Note that the nodes 〈t, X , [ai , b′]〉 with [ai , b′] 6= [a, b] were already
present in G∗, and therefore already satisfied these constraints.
To see that it is also a proof graph, note that the only infinite path we added is the
path

〈t, Y, [s0, b0]〉 → 〈t, Z , [s0, b0]〉 → [〈t, Y, [s1, b1]〉 →]〈t, Z , [s1, b1]〉 → . . . ,

where the part between square brackets indicates optionally present nodes in the
path. If Y occurs infinitely often on this path, then the graph is a proof graph. This
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is indeed the case, because we added such a node for every bi ∈ F . If this did not
result in an infinite number of Y nodes to be added, then the original path in the
Büchi automaton must have had only a finite number of accepting states in it, in
which case it would not have been an accepting path of the automaton.
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Summary

Getting the point
Obtaining and understanding fixpoints in model checking

High-tech industry has become heavily reliant on correctly functioning software and
logical circuits. A case in point is the automotive industry, where so-called by-wire
techniques, implemented as hybrid hardware/software systems, replace and enhance
mechanical solutions for steering and braking.

In this thesis, we investigate how model checking techniques based on fixpoint logic
can help in analysing these systems, and how these techniques might be improved to
make them easier to use.

Using existing technology, we analyse a part of the FlexRay communication pro-
tocol, which is used in the automotive industry to provide a communication channel
between the various—sometimes safety-critical—parts of a car. A previously unknown
error is uncovered by model checking the protocol under various fault models.

We then turn our attention the the process of model checking that was used in the
FlexRay case study, and develop theory to address some of the pitfalls we encountered
there. We leave the context of our case study, and address the following three issues.

– Using first order modal fixpoint logic, one can describe the desired behaviour of a
system, as we demonstrated in the case study. While this logic is expressive enough
to formulate the properties we are interested in, it can appear rather enigmatic to
those with no background in fixpoint logic. We show that the more accessible logic
CTL* can be translated succinctly into the logic that was used in the case study, and
that model checking the translated formula has the same time complexity as solving
the original formula with a CTL* model checker. The problem of translating CTL* to
modal fixpoint logic is in itself interesting, because no succinct translation existed
previously; known translations caused at least an exponential blowup in the size
of the formula. The translation in this thesis is linear, because we use a first-order
fixpoint logic.

– A major problem in model checking is that the size of the semantic model (a graph
structure) of specifications of realistic industrial systems is often immense. Fixpoint
logic formulas that encode model checking problems on such systems can be solved
by generating a graph structure called a parity game, and calculating the solution
to the model checking problem from this graph. These parity games also grow im-
practically large. We therefore investigate means to reduce the size of these games,
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while preserving their solution.
– Finally, we design a method to provide feedback to the user of a fixpoint model

checker, by equipping fixpoint logic with a notion of evidence. In the FlexRay case
study, it occurred that after two days of computing, the model checker returned with
the answer ‘no’, where we expected it to be ‘yes’. With our notion of evidence, the
model checker could also have indicated what part of the protocol we needed to
look at to understand why the answer was ‘no’.

To make our results more generally applicable, the notion of evidence is defined for
a fixpoint logic that generalizes LFP (least fixpoint logic), which extends first-order
logic with a fixpoint operator, and PBES (parameterized Boolean equation systems),
an equational fixpoint logic that underlies the model checker we used for our case
study.
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