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Abstraction in Parameterised Boolean Equation
Systems

S. Cranen, M.W. Gazda, J.W. Wesselink, and T.A.C. Willemse

Eindhoven University of Technology, Eindhoven, The Netherlands

Abstract. We present a general theory of abstraction for a variety of
verification problems. Our theory is set in the framework of parame-
terised Boolean equation systems. The power of our abstraction theory is
compared to that of generalised Kripke modal transition systems (GTSs).
We show that for model checking the modal µ-calculus, our abstractions
can be exponentially more succinct than GTSs and our theory is as com-
plete as the GTS framework for abstraction. Furthermore, we investigate
the completeness of our theory for verification problems other than the
modal µ-calculus. We illustrate the potential of our theory through case
studies using the first-order modal µ-calculus and a real-time extension
thereof, conducted using a prototype implementation of a new syntactic
transformation for equation systems.

1 Introduction

Parameterised Boolean equation systems [14], or equation systems for short, can
be used to encode a diverse set of verification problems, including the (first-order)
modal µ-calculus model checking problem [12, 13]; behavioural equivalence prob-
lems such as bisimilarity, similarity and branching bisimilarity [1]; model check-
ing real-time systems [23]. By solving an equation system resulting from an
encoding of a particular verification problem, an answer to the encoded problem
is obtained. Advanced tool suites, such as mCRL2 [11], rely on the use of equa-
tion systems for solving their verification problems. Solving equation systems is
generally an undecidable problem, but the problem is decidable for fragments of
the equation systems such as Boolean equation systems [17]; moreover, there are
many syntax-based transformations that effectively reduce the complexity of a
concrete equation system. Examples of such transformations are static analysis
techniques that can detect and remove unimportant data variables [20]; invari-
ant strengthening [21]; and the use of pattern-matching techniques to simplify
equations using standard solution templates [14]. Note that such techniques can
be applied regardless of the encoded verification problem.

A key instrument in scaling verification techniques is abstraction. Automated
verification using abstraction relies on the abstraction applied to a system being
(1) sufficiently coarse so that the abstract system’s behaviour has a finite rep-
resentation, and (2) sufficiently detailed permitting one to prove the properties
of interest or find a valid counterexample. The mathematical richness of the ab-
stract domain used in an abstraction framework affects the set of properties that



can be verified: frameworks using Kripke modal transition systems (MTSs) [10]
as the target of abstraction are typically more powerful than frameworks using
Kripke structures as their target of abstraction.

In this paper, we study the concept of abstraction in equation systems. Ab-
straction in equation systems is based on a notion of under-approximation (resp.
over-approximation), captured by a coinductive relation on equation systems.
This notion, called consistent consequence, was introduced in [8] for the frag-
ment of Boolean equation systems; in that setting, a proof system for the relation
and the computational complexity of deciding the relation were studied. In this
paper, we generalise the relation to arbitrary equation systems. We note that
since our abstractions are again equation systems, there is no need to invest in
dedicated tools and theories for dealing with the artefacts obtained after abstrac-
tion. All available transformations and solving algorithms for equation systems
remain applicable to the approximations. We consider this a strong positive.

Since in equation systems, abstraction is defined independent of the encoded
verification problems, it is a natural question how its power relates to that of
well-known frameworks for abstraction. This can be measured by comparing the
degree of completeness and succinctness of the frameworks. Here, completeness
refers to the capacity of a framework to answer a decision problem (e.g., proving
a property expressed in a logic) by answering it on a suitable finite abstraction
of the original object, see [4]. Completeness in the equation system setting boils
down to proving the truth of a particular variable, using a finite abstraction of
the equation system, i.e., using a Boolean equation system.

We first focus on the model checking problem for Kozen’s modal µ-calculus [15].
For this, we compare our framework to the framework of generalised Kripke
modal transition systems (GTSs) [22, 7, 9], also known as Disjunctive Transition
Systems [16]. These GTSs extend ordinary Kripke modal transition systems
(MTSs) [10] with must hyper-transitions, i.e., must transitions to sets of states.
For the modal µ-calculus, we find that:

– Abstractions in our framework can be exponentially more succinct than those
in the framework of GTSs;

– The GTS framework for abstraction and our abstraction framework are
equally powerful for proving properties using finite abstractions; that is,
they are as complete.

It is known that GTSs are complete for at least the least fixpoint-free fragment
of the modal µ-calculus, see e.g. [6, 9]. We thus find that also our abstraction
framework is complete for this fragment. The succinctness result is particularly
interesting from a practical viewpoint, as space is often a limiting factor.

When we consider verification problems beyond the modal µ-calculus, such
as, e.g., the first-order modal µ-calculus model checking problem [12] and the
behavioural equivalence checking problem [1], we obtain the following results:

– Our abstraction framework is complete for all verification problems that map
to the least fixpoint-free fragment of equation systems.
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– The abstraction framework is complete for all verification problems that map
to universal quantification-free right-hand side, least fixpoint-only equation
systems.

The first fragment includes the model checking problem for the least fixpoint-
free fragment of the first-order modal µ-calculus, but also for its real-time ex-
tensions. Moreover, it also includes behavioural equivalence checking problems
such as strong bisimilarity and similarity. Typical examples that fit in the second
category of least fixpoint-only equation systems are reachability properties.

As a proof of concept of our abstraction theory for equation systems, we de-
velop a transformation, which, given an equation system produces an abstraction
thereof. The manipulation uses homomorphisms for abstraction, and is inspired
by the abstraction techniques on Kripke structures, outlined by Clarke et al.
in [2]. In a similar vein, one could implement predicate abstraction techniques.
To the best of our knowledge, no homomorphism based tooling for abstraction
exists that has the power of abstraction of our framework. We demonstrate the
capabilities of the syntactic manipulation by reporting on a verification of Lam-
port’s Bakery Protocol and a small real-time system modelling a ball game.

Outline. In Section 2, we recall the basics of the framework of parameterised
Boolean equation systems. Then, in Section 3, we introduce our abstraction
framework. In Section 4, we compare our abstraction framework to the frame-
work of GTSs. The syntactic transformation for equation systems and two ex-
ample verifications conducted using these transformations are presented in Sec-
tion 5. Related work is addressed in Section 6, and we finish with a brief discus-
sion of future work. Detailed proofs are omitted from the current exposition but
can be found in [3].

2 Preliminaries

We briefly review the theory of parameterised Boolean equation systems, or equa-
tion systems for short. For an in-depth treatment of this framework, including
more elaborate examples of its use, we refer to [12, 14].

2.1 Data

We assume a theory of abstract data types for describing data and data trans-
formations. This means that there are nonempty data sorts, which we generally
denote using letters D, E and F . We have a set D of data variables, with typical
elements d, d1, . . ., and we assume that there is some data language that is suf-
ficiently rich to denote all relevant data terms. With every sort D we associate
a semantic set D. We use a data environment δ that assigns a value to the vari-
ables that can occur in the term. The interpretation of a data term t is given by
δ(t), where δ is extended from a variable mapping to a mapping on terms in the
standard way.
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We assume the existence of a sort B = {>,⊥} representing the Booleans B,
and a sort N = {0, 1, . . .} representing the natural numbers N. If the context
is clear, we write constants and operators in the syntactic domain the same
as their semantic counterparts. For example, we have B = {>,⊥}, and the
syntactic operator ∧ :B×B → B corresponds to the usual, semantic conjunction
∧ :B× B→ B.

2.2 Equation Systems.

A parameterised Boolean equation is a fixpoint equation that ranges over a
formula; it is of the form σX(d1:D1, · · · , dn:Dn) = φ. The right-hand side of the
equation is a predicate formula. Its left-hand side consists of a fixpoint symbol
σ ∈ {µ, ν}, where µ indicates a least fixpoint, and ν indicates a greatest fixpoint,
and a (sorted) predicate variable X, taken from some sufficiently large set P. The
domain of a predicate variable X:D1×· · ·×Dn → B is D1×· · ·×Dn. In case of
a nullary domain, i.e., X:B, we say X is a propositional variable rather than a
predicate variable. Apart from examples, we typically restrict ourselves (without
loss of generality) to predicate variables X with a unary domain.

Definition 1. We denote the empty equation system by ∅. Equation systems E
and predicate formulae φ are defined through the following grammar:

E ::= ∅ | (µX(d:D) = φ) E | (νX(d:D) = ψ) E
φ, ψ ::= b | φ ∧ ψ | φ ∨ ψ | ∀d:D. φ | ∃d:D. φ | X(e)

Here, b is a Boolean data term, e a data expression, X a predicate variable and
d a data term of sort D. In case an equation system is non-empty, we omit the
trailing ∅.

Remark 1. We often write φX when we refer to the right-hand side of an equation
for predicate variable X in an equation system. Likewise, we write dX for the
data variable occurring at the left-hand side of X’s equation, and DX refers to
the sort of dX .

Throughout this paper, we only consider equation systems in which no two
equations have the same left-hand side predicate variables. We require that the
only data variables occurring freely in an equation’s predicate formula are those
listed in its left-hand side.

The left-hand side predicate variables of an equation system E are collected
in the set bnd(E); predicate variables occurring in the right-hand sides of the
equation system are collected in the set occ(E). An equation system E is closed
if occ(E) ⊆ bnd(E), and E is open otherwise.

A predicate formula is a propositional formula if it only contains ∧,∨,>,⊥
and propositional variables X. The size of a propositional formula φ, denoted
|φ|, is defined as the number of propositional variable occurrences and operators
it contains. We say that E is a Boolean equation system [17] if all right-hand side
formulae are propositional formulae and all variables are propositional variables.
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The size of a Boolean equation system E , denoted |E|, is the sum of the sizes of all
its right-hand side propositional formulae. Note that a Boolean equation system
is always a finite equation system; that is, for all Boolean equation systems E ,
|E| <∞.

Definition 2. The semantics of a predicate formula φ is defined in the context
of an environment δ, assigning meaning to data variables and an environment θ
assigning a Boolean valued function to each predicate variable:

[[b]]θδ = δ(b)

[[X(e)]]θδ = θ(X)(δ(e))

[[φ ∧ ψ]]θδ = [[φ]]θδ ∧ [[ψ]]θδ

[[φ ∨ ψ]]θδ = [[φ]]θδ ∨ [[ψ]]θδ

[[∀d:D. φ]]θδ = ∀v ∈ D. [[φ]]θδ[v/d]

[[∃d:D. φ]]θδ = ∃v ∈ D. [[φ]]θδ[v/d]

Here, δ[v/x] overrides the environment δ by assigning value v to variable x.

A predicate formula φ can, semantically, be viewed as a function that assigns
for a given data variable d of sort D, a truth value. That is, φ induces a Boolean
functional λv ∈ D. [[φ]]θ(δ[v/d]). We denote the semantic functional obtained in
this way by [[φ〈d〉]]θδ. Similarly, given environments θ, δ and a predicate variable
X:D → B a Boolean functional can be lifted to a predicate transformer as
follows:

λf ∈ BD. ([[φ〈d〉]](θ[f/X])δ)

Such predicate transformers are monotonic over the complete lattice (BD,v) of
functions with domain D and co-domain B, ordered by v, the point-wise lifting
of implication [14]. As a result, least and greatest fixpoints are guaranteed to
exist. We replace the λ in the above transformer with µ to denote the least
solution to the transformer and ν to denote its greatest solution.

Definition 3. The solution to an equation system E, given a context of predicate
and data environments θ, δ, is defined inductively as follows:

[[∅]]θδ = θ

[[(σX(d:D) = φ) E ]]θδ = [[E ]]θXδ,

with θX = θ
[
σf∈BD. [[φ〈d〉]]([[E ]]θ[f/X]δ)δ/X

]
σ ∈ {µ, ν}

For closed equation systems we have [[E ]]ηδ(X) = [[E ]]η′δ′(X), for arbitrary
η, η′, δ, δ′, and we therefore drop the environments from the semantic brackets
for closed systems.

Example 1. Consider the (infinite state) Kripke structure K depicted below and
the modal µ-calculus formula ψ given by νZ.a ∧ ♦♦Z, expressing that there is
an infinite path on which on all even positions a holds (for the formal details on
syntax and semantics, we refer to Section 4).
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The equation system that encodes which states of the Kripke structure satisfy
ψ (see, e.g. [13]) is as follows:

(νZ(n:N) = even(n) ∧
((even(n) ∧ (Z(n+ 1) ∨ Z(n+ 2)))∨
(odd(n) ∧ (Z(n) ∨ Z(n+ 1) ∨ Z(n+ 2)))))

The equation system is obtained by combining property ψ with K. Parameter
n represents the states of K and even(n) holds exactly when property a holds.
The encoding of the construct ♦♦X can be understood as follows: in even states,
states n+1 and n+2 are reachable in exactly two steps; in odd states, states n, n+
1 and n+ 2 are reachable in exactly two steps; for one of those states, property
Z must hold again. The solution to the equation system is λn ∈ N.even(n),
which can be readily found by a standard fixpoint approximation. Computing
the solution to Z(0) by instantiating to a Boolean equation system, see [18], fails
due to the presence of an infinite chain of dependencies:

(νZ0 = Z1 ∨ Z2) (νZ1 = ⊥) (νZ2 = Z3 ∨ Z4) · · ·

Next, consider the alternating modal µ-calculus formula φ given by νX. µY. ((a∧
♦X) ∨ (b ∧ ♦Y )), which expresses that there is an infinite a, b-path on which a
holds infinitely often. The equation system E encoding which states of the Kripke
structure satisfy φ is as follows:

(νX(n:N) = Y (n))
(µY (n:N) = (even(n) ∧X(n+ 1)) ∨

(odd(n) ∧ (Y (n) ∨ Y (n+ 1))))

The solution to X and Y is λn ∈ N. >. Note that in this case, computing
this solution using Def. 3 is rather involved (and not the point of the example).
Attempting to compute the solution to X(0) by instantiating the equation sys-
tem to a Boolean equation system again fails due to the presence of an infinite
chain of dependencies. Finally, note that swapping the equations in our example
leads to solution λn ∈ N. ⊥ for both X and Y , illustrating that the ordering of
equations matters.

3 Abstraction via Consistent Consequence

Before we formaly define the notion of abstraction for equation systems, we start
with the following elementary observations. Suppose that for a closed equation
system E , with X,X ′ ∈ bnd(E), we know that for v, v′ ∈ D, the Boolean value
[[E ]](X)(v) under-approximates [[E ]](X ′)(v′). If, moreover, [[E ]](X)(v) = >, then
also [[E ]](X ′)(v′) = > and one can may skip computing the solution to X ′(v′).
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Of course, the problem of computing the solution to X ′(v′) in the above
example is now delegated to establishing that X(v) under-approximates X ′(v′).
In this section, we introduce the notion of a consistent consequence. Note that
this notion was previously introduced in [8] for the fragment of Boolean equation
systems. The absence of data in that setting greatly simplifies its formalisation;
here, we generalise the definition to arbitrary equation systems. We proceed in
small steps.

Definition 4. Let X:DX → B be a predicate variable. We say that X’s signa-
ture, notation sig(X), is the product {X} × DX . We lift the notion of a signa-
ture of a predicate variable to sets of variables P ⊆ P in the natural way, i.e.,
sig(P ) =

⋃
X∈P sig(X). Instead of (X, v) ∈ sig(X), we prefer to write the more

readable X(v) ∈ sig(X) if no confusion is possible.

In addition, we require a definition of rank of a predicate variable. Intuitively,
the rank of a predicate variable X is a measure for the nesting depth of X’s
equation in the equation system.

Definition 5. Let E be an equation system. The rank of a predicate variable
X ∈ bnd(E), denoted rankE(X) is the smallest natural number coinciding with
the number of (syntactic) least and greatest fixpoint alternations that precede X’s
equation, counting from 1 if the first equation is a least fixpoint equation and 0
otherwise.

Example 2. Consider again the equation system E of Example 1. Observe that
the signatures of both X and Y are infinite: sig(X) = {(X, v) | v ∈ N} and
sig(Y ) = {(Y, v) | v ∈ N}. Furthermore, we have rankE(X) = 0 and rankE(Y ) = 1.

Definition 6. Let R ⊆ sig(P)× sig(P) be a relation on signatures. We say that
an environment θ is consistent with R if X(v) R X ′(v′) implies that θ(X)(v)⇒
θ(X ′)(v′). The set of all environments consistent with R is denoted ΘR.

Next, we formalise the notion of a consistent consequence. We then proceed to
show that the resulting preorder under-approximates (resp. over-approximates)
the solution to an equation system, generalising the result of [8].

Definition 7. Let E be an equation system. A relation R⊆ sig(P)× sig(P) is a
consistent consequence on E if for all (σX(dX :DX) = φX) and (σ′X ′(dX′ :DX′) =
φX′) in E for which X(v) R X ′(v′) we have:

– rankE(X) = rankE(X
′).

– for all θ ∈ ΘR and all δ we have [[φX ]]θδ[v/dX ] ⇒ [[φX′ ]]θδ[v′/dX′ ].

We write X(v) l X ′(v′) if there is a consistent consequence R⊆ sig(bnd(E)) ×
sig(bnd(E)) on E such that X(v) R X ′(v′).

If X(v) l X ′(v′) we say that X ′(v′) is a consistent consequence of X(v). The
relation l is itself a consistent consequence for a given equation system, and it is
the largest such relation, which immediately follows from the proposition below.
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Proposition 1. Let C be a collection of consistent consequence relations on E.
Then

⋃
C is again a consistent consequence on E.

Proof. SupposeR,R′ are both consistent consequences on E . AssumeX(v) R ∪R′
X ′(v′). Then either X(v) R X ′(v′) or X(v) R′ X ′(v′). In both cases, we im-
mediately find that rankE(X) = rankE(X

′) if X,X ′ ∈ bnd(E). Now, let θ ∈
ΘR∪R′ . Then [[φX ]]θε[v/dX ] ⇒ [[φX ]]θε[v/dX ] follows from the observation that
θ ∈ ΘR ∩ΘR′ and the fact that the desired implication already holds for θ ∈ ΘR
and θ ∈ ΘR′ . ut

The theorem below characterises the relation between a consistent consequence
on a closed equation system, and the solution to the equation system.

Theorem 1. Let E be a closed equation system. Let R⊆ sig(P) × sig(P) be a
consistent consequence on E. We have:

X(v) R X ′(v′) implies ([[E ]])(X)(v)⇒ ([[E ]])(X ′)(v′)

Proof. See Appendix.

Note that the reverse of the above theorem does not necessarily hold: if X(v)
has a solution below that of X ′(v′), then not necessarily X(v) l X ′(v′).

We next lift the notion of a consistent consequence to a relation on signatures
between different equation systems that are compatible. The compatibility re-
quirement ensures that bound variables of both systems are disjoint and free vari-
ables in one system are not bound by the other. Formally, two equation systems
E , E ′ are compatible iff bnd(E)∩bnd(E ′) = bnd(E)∩occ(E ′) = bnd(E ′)∩occ(E) = ∅.
Two compatible equation systems can be merged, creating a single equation sys-
tem containing blocks of equations that had equal rank in the original equation
systems.

Definition 8. Let E , E ′ be compatible equation systems. A relation R ⊆ sig(P)×
sig(P) is a consistent consequence between E and E ′ if R is a consistent con-
sequence on some equation system F consisting of the equations of E and E ′
satisfying:

– rankF (ZE) = rankE(ZE) for all ZE ∈ bnd(E), and
– rankF (ZE′) = rankE′(ZE′) for all ZE′ ∈ bnd(E ′).

We write X(v) l X ′(v′) iff there is a consistent consequence R⊆ sig(bnd(E) ∪
bnd(E ′))× sig(bnd(E) ∪ bnd(E ′)) between E and E ′ such that X(v) R X ′(v′).

Example 3. Reconsider the equation system E of Example 1. As we concluded
there, the solution to X(v), for arbitrary v, cannot be computed using instanti-
ation. Next, consider the following equation system:

(νX̄(b:B) = Ȳ (b))

(µȲ (b:B) = (b ∧ X̄(¬b)) ∨ (¬b ∧ (Ȳ (b) ∨ Ȳ (¬b))))

8



We find that X̄(>) l X(v) for even v and X̄(⊥) l X(w) for odd w. That
means that if we can prove that X̄(>) has solution >, we know that also X(v)
has solution > for all even v. The solution to X̄(>) is represented by the variable
X̄> in the Boolean equation system below, which is obtained by instantiating
the above equation system:

(νX̄> = Ȳ>) (νX̄⊥ = Ȳ⊥) (µȲ> = X̄⊥) (µȲ⊥ = Ȳ⊥ ∨ Ȳ>)

The solution to all variables in the above Boolean equation system is >. We thus
have an effective way of proving that X(v), for arbitrary v, is >, too.

4 Relative Completeness and Succinctness

One may wonder how our denotational consistent consequence framework for
abstraction compares to the more traditional operational frameworks of ab-
straction. We address this question in Section 4.2 for an important abstraction
framework for the propositional modal µ-calculus. In Section 4.3, we answer a
more general question by identifying fragments of equation systems for which
our abstraction framework is complete.

4.1 Transition Systems

Let us recall the framework of generalised Kripke modal transition systems
(GTSs) [16, 22, 7, 9]. These generalise Kripke structures. Let AP be a set of atomic
propositions, and let Lit = AP ∪ {¬p | p ∈ AP}.

Definition 9. A generalised Kripke modal transition system (GTS) is a tuple
M = 〈S,R+, R−, L〉 where:

– S is a set of states,
– R− ⊆ S × S is the may transition relation; we require R− to be total,
– R+ ⊆ S× 2S is the must transition relation; we require that s R+ A implies
s R− t for all t ∈ A,

– L:S → 2Lit is a labelling function; we require that L(s) contains at most one
of p and ¬p for all s ∈ S, p ∈ AP.

We say that a GTS G is a Kripke structure if for all s, s′ ∈ S we have s R+ {s′}
iff s R− s′, and s R+ A implies |A| ≤ 1.

Remark 2. We only deal with GTSs that can be described finitely using, e.g.,
first order logic. Note that this is a common restriction and, in practice, not a
restriction at all.

The size of a GTS M = 〈S,R+, R−, L〉, denoted |M | is defined as |S|+ |R+|+
|R−|. A GTS is an abstraction of a more concrete GTS (e.g., a concrete Kripke
structure) if there is a simulation relation that relates the two GTSs. Such a
relation links every transition the abstract GTS must make to some transition
the concrete GTS must make, and may transition of the concrete GTS to a may
transition of the abstract GTS.
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Definition 10. Let M1 = 〈S1, R
+
1 , R

−
1 , L1〉 and M2 = 〈S2, R

+
2 , R

−
2 , L2〉 be two

GTSs. A relation H ⊆ S1 × S2 is a generalised mixed simulation if s1 H s2
implies

– L2(s2) ⊆ L1(s1),
– if s1 R

−
1 s′1 then there is some s′2 ∈ S2 such that s2 R

−
2 s′2 and s′1 H s′2,

– if s2 R
+
2 A2 then there is some A1 ⊆ S1 such that s1 R

+
1 A1 and for every

s′1 ∈ A1 there exists some s′2 ∈ A2 such that s′1 H s′2.

We write 〈M1, s1〉 ≤ 〈M2, s2〉 if s1 H s2 for some generalised mixed simulation
H.

The propositional modal µ-calculus, a highly expressive modal logic, can be
interpreted over GTSs. Unlike the traditional setting where formulae either hold
of a system or not, there is a third option in the GTS setting, in which the
formula is neither true nor false for the GTS; this basically means that the truth
of the formula cannot be determined. We here adopt the notation and semantics
introduced by Shoham and Grumberg [22].

Definition 11. A µ-calculus formula (in positive form) is a formula generated
by the following grammar:

f, g ::= > | ⊥ | l | X | f ∧ g | f ∨ g | �f | ♦f | νX. f | µX. f

where l ∈ Lit and X ∈ V for a set of propositional variables V. The semantics
of a formula f is defined by two inductively defined functions [[ ]]t and [[ ]]u, in
the context of a GTS M = 〈S,R+, R−, L〉 and an environment ρ:V → 2S:

f [[f ]]ρu [[f ]]ρt
> S ∅
⊥ ∅ S
l {s ∈ S | l ∈ L(s)} {s ∈ S | ¬l ∈ L(s)}
X ρ(X) ρ(X)
f ∧ g [[f ]]ρu ∩ [[g]]ρu [[f ]]ρt ∪ [[g]]ρt
f ∨ g [[f ]]ρu ∪ [[g]]ρu [[f ]]ρt ∩ [[g]]ρt
♦f ♦̃[[f ]]ρu �̃[[f ]]ρt
�f �̃[[f ]]ρu ♦̃[[f ]]ρt
µX.f µU.[[f ]]

ρ[X:=U ]
u νU.[[f ]]

ρ[X:=U ]
t

νX.f νU.[[f ]]
ρ[X:=U ]
u µU.[[f ]]

ρ[X:=U ]
t

Here, we used the following abbreviations: ♦̃U = {s | ∃A ⊆ S : s R+ A∧A ⊆ U}
and �̃U = {s | ∀t ∈ S : s R− t ⇒ t ∈ U}. In case the formula f is closed
( i.e., every propositional variable occurs within the scope of a fixpoint binding
it), its semantics is independent of the environment ρ, and we drop ρ from the
semantic brackets. A closed formula f is true in a state s ∈ S, denoted M, s |= f
if s ∈ [[f ]]u; f is false in s, denoted M, s 6|= f if s ∈ [[f ]]t and it is unknown in
s otherwise.

10



Table 1. Encodings of the model checking problems into the corresponding equation
systems EuG(f) and EtG(f).

Em
G (b) , ∅

Em
G (X) , ∅

Em
G (f ∧ g) , Em

G (f)Em
G (g)

Em
G (f ∨ g) , Em

G (f)Em
G (g)

Em
G (? f) , Em

G (f)

Em
G (σX.f) , (σXm(d : S) = RHSm

G (f))Em
G (f)

RHSm
G (X) , Xm(d)

RHSm
G (σX.f), Xm(d)

RHSuG(b) , b
RHSuG(l) , l ∈ L(d)

RHSuG(f ∧ g), RHSuG(f) ∧RHSuG(g)

RHSuG(f ∨ g), RHSuG(f) ∨RHSuG(g)

RHSuG(♦f) , ∃A:2D. R+(d,A) ∧
∀d′:D. d′ ∈ A⇒ ((RHSuG(f))[d′/d])

RHSuG(�f) , ∀d′:D. R−(d, d′)⇒ ((RHSuG(f))[d′/d])

RHStG(b) , ¬b
RHStG(l) , l /∈ L(d)

RHStG(f ∧ g), RHStG(f) ∨RHStG(g)

RHStG(f ∨ g), RHStG(f) ∧RHStG(g)

RHStG(♦f) , ∀d′:D. R−(d, d′)⇒ ((RHStG(f))[d′/d])

RHStG(�f) , ∃A:2D. R+(d,A) ∧
∀d′:D. d′ ∈ A⇒ ((RHStG(f))[d′/d])

Note that if M is a Kripke structure, then it always holds that either M, s |= f
or M, s 6|= f , and the satisfaction relation coincides with the usual semantics
for the µ-calculus. For the purpose of comparing the GTS framework with our
consistent consequence framework in the next subsection, we present the formal
encoding of the model checking problem for GTSs into equation systems below.

Definition 12. Let M = 〈S,R+, R−, L〉 be a GTS and let f be a closed µ-
calculus formula. The schemes for encoding the satisfaction and refutation model
checking problems into equation systems are given in Table 1, in which EuG(f)
encodes the satisfaction problem, and EtG(f) the refutation problem. The sort S
represents the set S of the GTS G, and R−,R+ and L are predicates describing
the semantic artefacts of G, viz. R−, R+ and L. We use m ∈ {u,t}, b ∈ {>,⊥},
X ∈ V, Xu, Xt ∈ P and ? ∈ {♦,�}.

For the ease of readability, we often assume that the outermost symbol in
the formula is the fixpoint definition, i.e. we consider the guarded form σX.f . If
this is the case, then given a state s of a GTS G, the corresponding element of

11



the signature in the equation system encoding is Xu(s) (satisfaction) or Xt(s)
(refutation).

Proposition 2. The encodings EuM (f) and EtM (f) are sound for the verification
resp. refutation model checking problems, that is:

[[EuM (σX.f)]](Xu)(s) = > ⇒ 〈M, s〉 |= σX.f
[[EtM (σX.f)]](Xt)(s) = > ⇒ 〈M, s〉 6|= σX.f

In case M is a Kripke structure, the encodings are sound and complete:

[[EuM (σX.f)]](Xu)(s) = > ⇔ 〈M, s〉 |= σX.f
[[EtM (σX.f)]](Xt)(s) = > ⇔ 〈M, s〉 6|= σX.f

For a Kripke structure M , we only need the satisfaction encoding, which we
denote with EM (f). Note that the transformation EM (f) is easily automated,
even for richer logics such as the first-order modal µ-calculus. An implementation
can be found in µCRL and mCRL2, see e.g. [14].

4.2 Succinctness and Relative Completeness

The power of an abstraction framework for the modal µ-calculus is often mea-
sured as the degree to which the framework is able to prove µ-calculus formulae
that hold of an infinite system by means of a finite abstraction of the infinite
system. This is known as completeness, see, e.g. [4].

Definition 13. Let F be a collection of modal µ-calculus formulae. GTSs with
≤ are complete for F , if, for all formulae f ∈ F and all Kripke structures
M1, s1 |= f , there is a finite GTS M2, s2 such that 〈M1, s1〉 ≤ 〈M2, s2〉 and
M2, s2 |= f .

Next, we introduce a corresponding notion of completeness for equation sys-
tems.

Definition 14. We say that the framework of equation systems with l is com-
plete for a class of closed equation systems C, if for each E ∈ C and all X(v) ∈
sig(bnd(E)) satisfying [[E ]](X)(v) = >, there is a Boolean equation system Ē and
X̄ ∈ bnd(Ē) such that X̄ l X(v) and [[Ē ]](X̄) = >.

We now show that for model checking µ-calculus formulae, the equation
systems with consistent consequence framework and the GTSs with generalised
mixed simulation framework are equally complete. That is, both are equally pow-
erful for using finite abstractions for the µ-calculus. Formally, this is expressed
by the following theorem.

Theorem 2. Let F be a collection of guarded, closed µ-calculus formulae. Then
GTSs with ≤ are complete for F iff equation systems with l are complete for
{EM (f) | Kripke Structure M and f ∈ F}.

12



Proof. Here we only sketch the key ideas, we refer to the Appendix for details.

The proof from left to right follows from Proposition 2 and by showing that
a generalised mixed simulation relation induces a consistent consequence on the
resulting Boolean equation systems and EM1

(σX.f) .

The proof in the other direction is technically quite involved. We first observe
that the consistent consequence preserves the boundedness of the µ-dominated
chains of dependencies in E in EM1(σX.f). Next, one can show that there is
a stronger least fixpoint-free formula σX̄.f̄ that can be obtained from σX.f
by under-approximating the least fixpoint-formulae in σX.f , by unfolding every
least fixpoint subformula at most |E| times. The boundedness of the µ-dominated
chains in EM1

(σX.f) can be used to establish a correspondence between the
equation systems EM1(σX.f) and EM1(σX̄.f̄) and their solutions, and, in par-
ticular, show that X̄u(s1) = >. Since GTSs are complete for the least fixpoint-
free fragment of the µ-calculus, see, e.g. [22], and σX̄.f̄ is (semantically) least
fixpoint-free.

Observe that contrary to GTSs, Kripke modal transition systems, which are
another generalisation of Kripke structures, often used for abstraction, are known
to be strictly less complete than GTSs for abstraction for the modal µ-calculus.
This follows from the incompleteness example for MTSs in [4] and the fact that
GTSs are complete for least fixpoint-free fragment of the µ-calculus [6, 9]. As a
result, we find that our abstraction framework for equation systems is strictly
more complete than such abstraction frameworks, too.

We next focus on the succinctness of the abstract objects that can be used
for proving properties. The lemma below states that the size of our “abstract”
equation systems is at most linear in the size of the formula and the abstract
GTSs capable of proving that formula.

Lemma 1. Let σX.f be a closed µ-calculus formula and let M1 = 〈S1, R
+
1 , R

−
1 , L1〉

be a Kripke structure. Suppose there is a finite GTS M2 = 〈S2, R
+
2 , R

−
2 , L2〉

such that 〈M1, s1〉 ≤ 〈M2, s2〉 and M2, s2 |= σX.f . Then there is a closed
Boolean equation system Ē with at most |σX.f | × |S2| equations and size at
most O(|σX.f | × |M2|) such that X̄ l Xu(s1) and [[Ē ]](X̄) = >.

Proof. The model checking problem M2, s2 |= σX.f is encoded by the equa-
tion system EuM2

(σX.f). Since M2 is finite, instantiating EuM2
(σX.f) yields a

Boolean equation system of size at most O(|σX.f | × |M2|). We denote this
Boolean equation system by Ē , and we assume that the solution to Xu(s2) in
EuM2

(σX.f) is encoded by the variable X̄ in Ē . Instantiation ensures in particular
that X̄ l Xu(s2).

It remains to show that Xu(s1) is a consistent consequence of X̄. This
follows from the fact that the generalised mixed simulation relation between
〈M1, s1〉 and 〈M2, s2〉 induces a consistent consequence between EuM1

(σX.f)
and EuM2

(σX.f) such that Xu(s2) l Xu(s1). From transitivity of l, we ob-
tain X̄ l Xu(s1).

13



Note that the above lemma provides an upper bound on the size of our
abstract objects. In fact, we can tighten these bounds significantly, using the
following lemma.

Lemma 2. Let E be a closed Boolean equation system consisting of n equations.
Suppose we have [[E ]](X) = >. Then there is a Boolean equation system Eu of
size O(n2) such that Xu l X and [[Eu]](Xu) = >.

Proof. Following [17, Proposition 3.36], each right-hand side in E can be strength-
ened by (non-deterministically) selecting one predicate variable in each disjunc-
tion over predicate variables, without changing the solution to X in E . In the
resulting equation system, rename all predicate variables Y to Y u. Observe that
each right-hand side contains no proper disjunctions and can therefore be rewrit-
ten to a logically equivalent conjunctive formula of size at most n. Let Eu be
the resulting equation system. We then have |Eu| is O(n2) and, by construction,
Xu l X and [[Eu]](Xu) = >.

The above lemmata together give us the following theorem.

Theorem 3. Let σX.f be a closed formula and let M1 = 〈S1, R
+
1 , R

−
1 , L1〉 be

a Kripke structure. If there is a finite GTS M2 = 〈S2, R
+
2 , R

−
2 , L2〉 such that

〈M1, s1〉 ≤ 〈M2, s2〉 and M2, s2 |= σX.f , then there is a closed Boolean equation
system Ē of size at most O(|σX.f |× |S2|2) such that X̄ l Xu(s1) and [[Ē ]](X̄) =
>.

It is rather straightforward to construct examples that demonstrate that our
framework can indeed be more succinct. The example below is a point in case.

Example 4. Let A 6= ∅ be a finite index set and let AP = {fi, ai | i ∈ A}.
Consider the Kripke structure K with the set of states 2A and transitions and
labellings given by:

– ζ → ζ ∪ {i} for all i ∈ A \ ζ, and ζ → ζ \ {i} for all i ∈ ζ and all ζ ⊆ A;
– L(ζ) = {ai | i ∈ ζ} ∪ {fi | i ∈ A \ ζ} for all ζ ⊆ A.

Next, consider the µ-calculus formula g defined as νX.
∧
i∈A

(ai ∨ fi) ∧ �X; note

that g trivially holds of K. Observe that there is no GTS M , smaller than K
that simulates K and is capable of proving the property. Hence, the size of the
smallest GTS capable of proving g is of size O(2|A|). Also, observe that the
equation system EK(g) is as follows:

νX(ζ:2A) =
∧
i∈A

(i ∈ ζ ∨ i ∈ A \ ζ) ∧∧
j∈A\ζ

X(ζ ∪ {j}) ∧
∧
k∈ζ

X(ζ \ {k})

The smallest Boolean equation system of which the above equation system is a
consistent consequence is of size O(1): we have X̄ l X(∅) for Boolean equation
system νX̄ = X̄.
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4.3 Completeness for Fragments of Equation Systems

In the previous section, we focused on the power of our abstraction framework
for model checking of the propositional modal µ-calculus. However, equation
systems are not restricted to a single type of verification problem. We therefore
investigate the notion of completeness in equation systems in isolation of the
encoded verification problems.

The theorem below states that our framework is complete for the least
fixpoint-free fragment of equation systems.

Theorem 4. Equation systems with l are complete for the class of closed least
fixpoint-free equation systems.

Proof. Due to [17, Theorem 9.4], we know that there is an equation system
Eu, obtained by replacing all equations of the form νX(d:D) = φ in E by
νXu(d:D) = ψu, where ψ and ψu are such that:

– ψ is conjunctive and for all η, δ, [[ψ]]ηδ implies [[φ]]ηδ,

– ψu is obtained from ψ by replacing each variable Y ∈ occ(ψ) with Y u,

– [[Eu]](Xu)(v) = >.

Observe that, by construction, we have Xu(v) l X(v). Next, note that E is
a consistent consequence of any equation system Ē of which Eu is a consistent
consequence. In particular, the finite equation system νX̄ = X̄ is such that
X̄ l Xu(v). The theorem then follows from transitivity of l.

As a result of this theorem, we find that our abstraction framework is com-
plete for a large set of verification problems, as stated by the below corollary.

Corollary 1. The consistent consequence abstraction framework of equation
systems is complete for the least fixpoint-free fragment of the first-order exten-
sions of the modal µ-calculus [12, 14], the problem of deciding strong bisimilarity
and similarity between two infinite processes [1] and the least fixpoint-free frag-
ments of real-time extensions of the (first-order) modal µ-calculus, see e.g. [23].

Example 5. Reconsider Example 4, and assume that the set A can be infinite.
Generalise the formula g of that example to the following first-order µ-calculus
formula (see e.g. [12] for an action-based variant): νX.(∀i ∈ A.fi ∨ ai) ∧ �X.
Then there is no finite GTS capable of proving g for the infinite Kripke structure
K. Note that this illustrates the fact that our abstraction framework is complete
for elementary first order extensions of the least fixpoint-free fragment of the
µ-calculus, in contrast to the GTS framework.

Theorem 5. Equation systems with l are complete for the class of closed least
fixpoint-only equation systems with right-hand side formulae containing no uni-
versal quantifications.
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Proof. Let E be an equation system of the required form. Assume that [[E ]](X)(v) =
>. Observe that, due to their shape, each right-hand side can be brought into a
logically equivalent disjunctive normal form with existential quantification pre-
fixes. Consider the (infinite) equation system one can obtain using instantiation
of E starting in X(v), using e.g. [18]; the resulting infinite system E∞ is in
disjunctive normal form. Assume that variable Xv in bnd(E∞) represents the
solution to X(v) in E , which, by assumption, is >.

Again, due to [17, Theorem 9.4], we know that there is an equation system
Ē∞ with the same solution as E∞, which can be obtained from E∞ by selecting
exactly one clause among the disjunctions in each right-hand side. Next, observe
that since variable Xv has solution > and Ē∞ is least fixpoint-only, there must be
a well-founded descending path through equations in Ē∞. Consider the finite sub
equation system Ēu∞ of Ē∞ containing only those equations on the well-founded
path from Xv. It follows by construction of Ēu∞ that Xv l X(v), which is what
we needed to show.

By combining the above result and Theorem 2 it follows that also GTSs with
a finite set of initial states are complete for the disjunctive, least fixpoint-only
fragment of the modal µ-calculus.

Corollary 2. GTSs with ≤ are complete for the set of least fixpoint-only modal
µ-calculus formula containing no � modalities.

5 Abstraction Through Syntactic Manipulations

The problem of checking whether there is a consistent consequence between sig-
natures of two Boolean equation systems is coNP-complete already [8]. We show
that our abstraction framework can nevertheless lead to effective tooling. For
this, we develop a syntax-based transformation—inspired by [2]—that, semanti-
cally, provably approximates l, and we briefly demonstrate its potentials using
two case studies. In a similar vein, our abstraction framework can be combined
with predicate abstraction.

5.1 Existential and Universal Abstractions

Consider a data sort D that represents a complex or infinite semantic set (e.g. the
natural numbers). Using a homomorphism, all elements, operators and relations

of the domain D can be mapped to a corresponding simpler data structure D̂.
Formally, an abstract interpretation of the concrete elements in a domain D is
given by a surjective mapping hD:D → D̂, the so-called abstraction function. In
addition, every operator and relation on the concrete data domain D is assumed
to have a corresponding abstract operation. Note that the result of an abstract
operation is no longer unique, as two different concrete elements may map to
the same abstract element.

A standard solution to the non-unicity problem is to lift the codomain of a
concrete operation or relation f :D1 × · · · ×Dn → D to a set when defining its
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abstract counterpart f̂ :D̂1 × · · · × D̂n → 2D̂. For reasons of consistency, also
the domains of the abstract functions and relations f̂ are lifted to sets for all
Aj ⊆ D̂j , 1 ≤ j ≤ n:

f̂(A1, . . . , An) =
⋃

a1∈A1,...,an∈An

f̂(a1, . . . , an)

It is then possible to define an abstraction operator ̂ that converts a term t of
sort D to its corresponding sort D̂. Assuming the following grammar for our
data terms:

t ::= d | c | f(t1, . . . , tn)

where d is a data variable, c is a closed term and f is an n-ary operator or
relation. Assuming, that we have an abstraction function h, we can define the
operator ̂ as follows:

d̂ = {d} ĉ = {h(c)} ̂f(t1, . . . , tn) = f̂(t̂1, . . . , t̂n)

Here, we introduce a fresh variable d for every variable d of some concrete sort D.
Computations in the abstract domain using the abstract operators are sensible as
long as the safety condition holds for all terms t with free variables d1, . . . , dn, and
all closed terms c1, . . . , cn: [[h(t[c1/d1, . . . , cn/dn])]] ∈ [[t̂[h(c1)/d1, . . . , h(cn)/dn]]].
Essentially, this condition ensures that t̂ always represents a set of concrete values
that includes t. This condition is met whenever for all f :D1 × · · · ×Dn → E:

∀ d1 ∈ D1, . . . , dn ∈ Dn.

hE(f(d1, . . . , dn)) ∈ f̂({hD1(d1)}, . . . , {hDn(dn)})

Given a set of abstraction functions for a set of concrete domains, we can use
these, together with the trivial abstraction (identity) functions for those domains
not equipped with a user-defined abstraction function, to strengthen or weaken
the predicate formulae we encounter in a given equation system. For simplicity,
and without loss of generality, we assume that all concrete sorts in an equation
system, with the exception of the Boolean sort, have a homomorphism hmapping
these sorts to some abstract domain.

Definition 15. Let φ be an arbitrary predicate formula. We inductively define
the under-approximation Au(φ) (resp. the over-approximation At(φ)) as fol-
lows:

Am(b) =

{
∃v:B. v ∈ b̂ ∧ v if m = t
∀v:B. v ∈ b̂⇒ v otherwise

Am(X(e)) =

{
∃v:D̂X . v ∈ ê ∧ X̂t(v) if m = t
∀v:D̂X . v ∈ ê⇒ X̂u(v) otherwise

Am(φ⊕ ψ) = Am(φ)⊕Am(ψ) for ⊕ ∈ {∧,∨}

Am(Q d1:D. φ) = Q d1:D̂. Am(φ) for Q ∈ {∀,∃}
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Note that, by definition of ,̂ the predicate formula Am(φ) contains data

variables d for the variables d in φ, and predicate variables X̂m in Am(φ) for X
in φ. We extend the above operator Am( ) to equation systems in the natural
way.

Definition 16. Let E be an equation system. The abstraction operator Am( )
for equation systems, where m ∈ {t,u}, is defined inductively as follows:

Am(∅) = ∅

Am((σX(d:D) = φ) E) = (σX̂m(d:D̂) = Am(φ))Am(E)

The following theorem states that we have achieved an under-approximation
(resp. over-approximation) of the solution to the concrete equation system.

Theorem 6. Let E be an arbitrary closed equation system. Then for all X ∈
bnd(E) and all closed terms v:DX , we have:

[[Au(E)]](X̂u)([[h(v)]])⇒ [[E ]](X)([[v]])

⇒ [[At(E)]](X̂t)([[h(v)]])

Proof. The theorem follows essentially from Theorem 1 if X̂u([[h(v)]]) l X([[v]]) l
X̂t([[h(v)]]). The latter statement follows from the following observation.

Let R⊆ sig(P) × sig(P) be defined as X̂u([[h(v)]]) R X(v) and X(v) R

X̂t([[h(v)]]), for closed terms v:DX . Then, for all θ ∈ ΘR and all data envi-
ronments δ, we have:

[[Au(φ)]]θδ[[[h(v)]]/d]⇒ [[φ]]θδ[[[v]]/d]

⇒ [[At(φ)]]θδ[[[h(v)]]/d]

The proof thereof follows using a structural induction. See Appendix for details.

Example 6. Consider the infinite Kripke structure K depicted left below.

b b a

b
a

Assume that the states of the Kripke structure are represented by the Carte-
sian product B×N . The equation system encoding K |= νX. (♦(b∨a)∨¬b)∧�X
is as follows:

νX(c:B,n:N) = (¬c ∨ (c ∧ n > 0) ∨ (c ∧ n = 0)) ∧
(∀m:N. ¬c⇒ X(>,m)) ∧
(c ∧ n > 0⇒ X(c, n− 1)) ∧
(c ∧ n = 0⇒ X(c, n))
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Through abstraction using a mapping hN :N → B, defined as hN (n) = (n = 0),
we obtain, after logical simplification, the equation system depicted below:

νX̂u(c, n̄:B) = (¬c ∨ (c ∧ ¬n̄) ∨ (c ∧ n̄)) ∧

(∀m̄:B. ¬c⇒ X̂u(>, m̄)) ∧

(c ∧ ¬n̄⇒ (X̂u(c,>) ∧ X̂u(c,⊥))) ∧

(c ∧ n̄⇒ X̂u(c, n̄))

We observe that X̂u(c, n̄) = > for all c, n̄, and, as a result, X(c, n) = > for all
c, n. A GTS that simulates K and can prove the same property is depicted next
to the Kripke structure.

5.2 Case studies

We have implemented the theory outlined in the previous section in a prototype
tool in the open source tool suite mCRL2 [11], and used it on several model
checking examples using the (action-based) first-order modal µ-calculus [12, 13]
and a real-time extension thereof. 1 Our tool takes a description of the abstrac-
tion mapping and mappings of concrete operations onto abstract operations;
checking the safety condition can be delegated to mCRL2’s provers or left to the
user in case of too complex conditions.

Lamport’s Bakery Protocol for Mutual Exclusion. This protocol has an infinite
state space due to the unbounded ticket numbers it can hand out. We analysed
the protocol with two processes (using Boolean IDs) competing for the critical
section. Typical properties that could be verified using an under-approximation
(or refuted using an over-approximation) are properties 1–4 in Table 2.

The abstraction used for verifying these formulae is a mapping of the natural
numbers to elements zero and more. Property 1 is a progress property, stat-
ing that processes requesting to enter the critical section, always can enter it
in some future. The stronger property that such processes inevitably enter the
critical section (property 2) provably fails. Property 3, asserting that invariantly,
both processes inevitably receive some ticket number also provably fails. Prop-
erty 4 expresses that there is always a process that can get a ticket number at
least as large as the ticket number currently circulating.

A real-time ball game. This is a small real-time system, describing a game in
a dense time setting in which a player has one second to pocket a ball. The
game ends when the player wins, for which he is required to pocket at least
10 balls. The real-time behaviour leads to an infinite state space. We verified
several reachability properties, see properties A–D in Table 2, analysing whether
the game can finish (property A), whether the game must finish (property B),

1 The examples have been added to mCRL2’s open source repository; see
http://www.mcrl2.org
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Table 2. Properties for the Bakery Protocol (1–4) and the real-time ball game (A–D),
verified or refuted with pbesabsinthe.

1. νX. [>]X ∧ ∀b:B.
[request(b)]µY. 〈>〉Y ∨ 〈enter(b)〉>

holds

2. νX. [>]X ∧ ∀b:B.
[request(b)]µY. ([>]Y ∧ 〈>〉>) ∨ 〈enter(b)〉>

fails

3. νX.([>]X ∧ ∀b:B.
µY.(([>]Y ∧ 〈>〉>) ∨ ∃n:N.〈c(b, n)〉>))

fails

4. νZ(i:N = 0).
(∃b:B. ∃n:N.〈c(b, n)〉(n ≥ i ∧ Z(n))) ∨
〈∀b′:B.∀n′:N.¬c(b′, n′)〉Z(i)

holds

A. µX.〈>〉X ∨ 〈finished〉> holds
B. µX.[¬finished]X ∧ 〈>〉> fails
C. µX(i:N = 0).(i < 10)⇒ 〈pocket〉X(i+ 1) holds
D. µX.〈>〉X ∨ 〈pocket@5〉> holds

whether the player can pocket at least 10 balls (property C), and a hard real-
time property expressing whether he can pocket a ball at time 5 (property D).
The abstraction we used partitions the reals between 0 and 10 in open intervals
(k, k + 1), the closed singular intervals [k, k] and the interval (10,∞), for k =
0 . . . 10.

6 Related Work

Our denotational framework provides an alternative angle to the traditional
operational abstraction frameworks. It shows that abstraction can, in a sense,
be seen as the generalisation of logical consequence to equation systems through
the use of coinduction. Below, we briefly review some of the related work.

In [19], Namjoshi addresses the question under which conditions (semantical)
completeness for branching time properties can be achieved. For this, he works on
alternating transition systems, which are basically a variation on model checking
games. By imposing extra conditions on the alternating simulation relation he
defines on these transition systems, a complete framework for abstraction is
obtained. Dams and Namjoshi continue their exploration of completeness in [4]
in which they introduce focused transition systems.

In their follow-up work [5], they show that these focused transition systems
are in fact variants of µ-automata, enabling a very brief and elegant argument for
completeness of their framework. Interestingly, we can use identical arguments
to prove the completeness of our equation system framework for the preorder
that underlies the definition of a solution to an equation system. We remark that
we think that this completeness result will not give rise to a practical framework
for abstraction; as Dams and Namjoshi’s completeness result, we consider this
to be mostly a theoretical result.

The GTS framework has received a lot of interest from the abstraction com-
munity. Shoham and Grumberg studied the precision of the framework in [22];
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Fecher and Shoham, in [7] used the framework for a more algorithmic approach
to abstraction, by performing abstraction in a lazy fashion using a variation on
parity games.

7 Concluding Remarks

We defined an elegant form of abstraction within the framework of equation
systems, and have shown that its power is on a par with the most advanced
(operational) frameworks for abstraction in the transition system setting while
staying more concise. Our framework can be extended in several directions. One
line of research is to investigate what is a minimal set of modifications to our
notion of consistent consequence that is needed to achieve completeness for all
equation systems. A second topic for investigation, which has received a lot
of attention in the transition system setting, is to incorporate techniques for
automated detection and refinement of abstractions on equation systems.
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A Proofs

A.1 Proofs of Section 3

We use an alternative definition for the notion of a solution to an equation
system, inductively defined on blocks (i.e., equations with the same rank) rather
than single equations. The two notions are known to coincide, but, compared to
the definition in the main text, which is slightly less dense than the one presented
here, the latter is better suited for the proof of Theorem 1.

The product lattice (BDX1 × · · · ×BDXn , v̇), where v̇ denotes the ordering v
lifted to vectors in the standard way, is again complete. From hereon, we ab-
breviate ([[φX1 〈dX1

〉]]θε, . . . , [[φXn 〈dXn 〉
]]θε) to [[(φX1 〈dX1

〉, . . . , φXn 〈dXn 〉
)]]θε. We

denote the i-th element of a vector (f1, . . . , fn) by (f1, . . . , fn)i.

Definition 17. The solution to an equation system, given a context of predicate
and data environments θ, ε, is defined as [[ε]]θε = θ, and for any E, and block B
given by (σX1(dX1

:DX1
) = φX1

) . . . (σXn(dXn
:DXn

) = φXn
):

[[B E ]]θε
= [[E ]]θ

[
σ(X1, . . . ,Xn)∈BDX1× · · ·×BDXn . τε[[E]]θε(X1, . . . ,Xn)/(X1, . . . , Xn)

]
ε

where τεθ is the monotone predicate transformer induced by block B:

τεθ = λ(X1, . . . ,Xn)∈BDX1 × · · · × BDXn .
[[(φX1 〈dX1

〉, . . . , φXn 〈dXn 〉
)]]θ[X1/X1, . . . ,Xn/Xn]ε

The proof for Theorem 1 employs a transfinite approximation within an induc-
tive proof. We first recall the notion of transfinite approximations of monotone
functions.

Definition 18. Let (D,≤) be a complete lattice with > and ⊥ as top and bot-
tom element. Let f :D → D be a monotone function. Then σαX.f(X) is an
approximant term, where α is an ordinal. The approximant terms are defined by
transfinite induction, where λ is a limit ordinal:

σ0X.f(X) = > if σ = ν and ⊥ else
σα+1X.f(X) = f(σαX.f(X))
σλX.f(X) =

∧
α<λ

σαX.f(X) if σ = ν and
∨
α<λ

σαX.f(X) else

We first rephrase Theorem 1 as Theorem 7 below; the correspondence between
both theorems is straightforward and follows from the definition of consistent
environments ΘR.

Theorem 7. Let E be an equation system. Let R⊆ sig(P)×sig(P) be a consistent
consequence on E. Then for all θ ∈ ΘR and all ε, we have [[E ]]θε ∈ ΘR.
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Proof. We proceed by induction on the number of blocks in E . Clearly, the
statement holds vacuously for |E| = 0. Assume that for all E consisting of n
blocks and all consistent consequences R⊆ sig(P)× sig(P), we have

∀θ∈ΘR, ε : ([[E ]]θε) ∈ ΘR (IH1)

Let B ≡ (νX1(dX1
:DX1

) = φX1
) · · · (νXn(dXn

:DXn
) = φXn

) be a block of ν-
equations (the case for µ is symmetric), and assume (without loss of generality)
that the first block of E is a µ-block. This implies that B is a maximal block in
BE . Let S⊆ sig(P)× sig(P) be a consistent consequence on BE .

Let X,X ′ ∈ bnd(BE) and assume that X(v) S X ′(v′). Assume that θ ∈ ΘS ,
and let ε be arbitrary. We proceed to show that [[BE ]]θε(X)(v)⇒ [[BE ]]θε(X ′)(v′),
or, equivalently, that ([[BE ]]θε) ∈ ΘS

[[BE ]]θε
= [[E ]]θ

[
σ(X1, . . . ,Xn)∈BDX1× · · ·×BDXn . τ ε[[E]]θε(X1, . . . ,Xn)/(X1, . . . , Xn)

]
ε

Maximality of block B implies that S is a consistent consequence on E as well.
Moreover, the first requirement in Def. 7, combined with the maximality of B,
requires that X ∈ B iff X ′ ∈ B. We therefore consider the following cases:

– Case X,X ′ ∈ bnd(B). Then, for some i, j, we have X = Xi, X
′ = Xj . We

show [[BE ]]θε(Xi)(v)⇒ [[BE ]]θε(Xj)(v
′) by means of a transfinite approxima-

tion of X1, . . . , Xn. Let α be an ordinal and denote the α-th approximation of
the fixed point vector ν(X1, . . . ,Xn) ∈ BDX1× · · ·×BDXn . τε[[E]]θε(X1, . . . ,Xn)

by (Xα
1 , . . . , X

α
n ). We show that

∀Xi(v), Xj(v
′) : Xi(v) S Xj(v

′)⇒ Xα
i (v)⇒ Xα

j (v′)

• For α = 0, it follows immediately, that for all i, j, we have X0
i (v) = > =

X0
j (v′) for all Xi(v) S Xj(v

′).
• For α = β + 1 a successor ordinal, we assume the following induction

hypothesis:

∀Xi(v), Xj(v
′) : Xi(v) S Xj(v

′)⇒ Xβ
i (v)⇒ Xβ

j (v′) (IH2)

Assume that Xi(v) S Xj(v
′). Next, we derive:(

τε[[E]]θε(X
β+1
1 , . . . , Xβ+1

n )
)
i
(v)

=
(
[[(φX1 〈dX1

〉, . . . , φXn 〈dXn 〉
)]]([[E ]]θ[Xβ

1 /X1, . . . , X
β
n/Xn]ε)ε

)
i
(v)

= [[φXi 〈dXi
〉]]([[E ]]θ[Xβ

1 /X1, . . . , X
β
n/Xn]ε)ε(v)

= [[φXi ]]([[E ]]θ[Xβ
1 /X1, . . . , X

β
n/Xn]ε)ε[v/dXi ]

⇒† [[φXj ]]([[E ]]θ[Xβ
1 /X1, . . . , X

β
n/Xn]ε)ε[v′/dXj ]

= [[φXj 〈dXj
〉]]([[E ]]θ[Xβ

1 /X1, . . . , X
β
n/Xn]ε)ε(v′)

=
(
[[(φX1 〈dX1

〉, . . . , φXn 〈dXn 〉
)]]([[E ]]θ[Xβ

1 /X1, . . . , X
β
n/Xn]ε)ε

)
j
(v′)

=
(
τε[[E]]θε(X

β+1
1 , . . . , Xβ+1

n )
)
j
(v′)
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where at †, we used (IH1) and (IH2) to conclude that the environment

obtained by [[E ]]θ[Xβ
1 /X1, . . . , X

β
n/Xn]ε is consistent with S, i.e., belongs

to ΘS , and the fact that S is a consistent consequence on E .

• For α a limit ordinal, we assume the following for all β < α:

∀Xi(v), Xj(v
′) : Xi(v) S Xj(v

′)⇒ Xβ
i (v)⇒ Xβ

j (v′) (IH3)

From this, we obtain the following consistency result:

∀Xi(v), Xj(v
′) : Xi(v) S Xj(v

′)⇒
(

(
∧
β<α

Xβ
i )(v)⇒ (

∧
β<α

Xβ
j )(v′)

)
(*)

Assuming that Xi(v) S Xj(v
′), we continue:(

τε[[E]]θε(X
α
1 , . . . , X

α
n )
)
i
(v)

= [[φXi
]]([[E ]]θ[Xα

1 /X1, . . . , X
α
n /Xn]ε)ε[v/dXi

]

= [[φXi
]]([[E ]]θ[

∧
β<α

Xβ
1 /X1, . . . ,

∧
β<α

Xβ
n/Xn]ε)ε[v/dXi

]

⇒‡ [[φXj
]]([[E ]]θ[

∧
β<α

Xβ
1 /X1, . . . ,

∧
β<α

Xβ
n/Xn]ε)ε[v/dXj

]

= [[φXj
]]([[E ]]θ[Xα

1 /X1, . . . , X
α
n /Xn]ε)ε[v′/dXj

]
=

(
τε[[E]]θε(X

α
1 , . . . , X

α
n )
)
j
(v′)

where at ‡, we used (IH1) and the consistency result (*) that followed

from (IH3) to conclude that the environment [[E ]]θ[Xβ
1 /X1, . . . , X

β
n/Xn]ε ∈

ΘS and the fact that S is a consistent consequence on E .

– Case X,X ′ /∈ bnd(B). Then [[BE ]]θε(X)(v) ⇒ [[BE ]]θε(X ′)(v′) follows from
the induction hypothesis, and

θ
[
σ(X1, . . . ,Xn)∈BDX1× · · ·×BDXn . τ ε[[E]]θε(X1, . . . ,Xn)/(X1, . . . , Xn)

]
∈ ΘS

which follows immediately from the first case. ut

A.2 Proofs of Section 4

For proving the main results in this section, we will use an alternative syntax of
the µ-calculus, namely that of Modal Equation Systems (MESs), as used by e.g.,
Andersen [Andersen, Partial Model Checking, LICS’96]. MESs are, essentially,
an equational variant of the µ-calculus, and, notationally, are a mix between µ-
calculus formulae and Boolean equation systems. Their expressive power equals
that of the µ-calculus: both can be transformed into one another (at the expense
of an exponential blow-up when moving from MESs to linear µ-calculus formu-
lae). Since MESs are syntactically closer to equation systems, the link between
the MES model checking problem and the (parameterised) Boolean equation
system solving problem is much more direct.
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Definition 19. A Modal Equation System (MES) is a sequence of equations
defined with the following grammar:

M ::= ε | (µX = f) M | (νX = f) M
f, g ::= > | ⊥ | l | ¬l | X | f ∧ g | f ∨ g | �f | ♦f

Let η be an environment, ranging over X → 2S. The necessary semantics of
a MES in the context of a GTS M = 〈S, s0, R+, R−, L〉 and environment η is
defined inductively as follows:

[[ε]]uMη = η
[[(µX = fX)M]]uMη = [[M]]uMη[(µU ∈ 2S .[[fX ]]uM [[M]]uMη[X := U ])/X]
[[(νX = φX)M]]uMη = [[M]]uMη[(νU ∈ 2S . [[φX ]]uM [[M]]uMη[X := U ])/X]

[[⊥]]uMη = ∅
[[>]]uMη = S
[[X]]uMη = η(X)
[[f ∨ g]]uMη = [[f ]]uMη ∪ [[g]]uMη
[[f ∧ g]]uMη = [[f ]]uMη ∩ [[g]]uMη
[[♦f ]]uMη = {s ∈ S | ∃A ∈ 2S : sR+A ∧ ∀q ∈ A : q ∈ [[f ]]uM}
[[�f ]]uMη = {s ∈ S | ∀s′ ∈ S : sR−s′ ⇒ s′ ∈ [[f ]]uM}

The possibly semantics of a MES is defined analogously, but since we do not
need it for our results in this section, we omit it.

We permit ourselves to use the same notation for MESs as for equation systems;
e.g., bnd(M) contains the set of binding variables in MESM. Likewise, whenever
a MESM is closed, we omit the environment from the semantic brackets, as the
semantics for the binding variables is independent of this environment.

The encoding of a MES model checking problem as an equation system solv-
ing problem can be seen as creating instances of variables corresponding to every
state, and replacing modal operators with the appropriate semantics. That is,
the diamond operator is transformed to disjunctions by combining emanating
from a certain state of a GTS with the formula, and, in a similar vein, the box
operator is transformed to conjunctions.

Since the transformation of the MES model checking problem on GTSs to an
equation system solving problem is not restricted to finite GTSs, from hereon,
we tacitly assume that the constituents of a GTS G = 〈S, s0, R+, R−, L〉 are
represented by suitable predicates, where we use variable d ranging over some
sort D to represent the states S of G; R− is a relation on variables d and d′, the
latter representing the next states; R+ is a relation on variables d and A, the
latter representing sets of states. We write R−(d, d′), R+(d,A) and L(d) when
we reason about the predicates rather than “explicit” counterparts.

Definition 20. Given a GTS G = 〈S, s0, R+, R−, L〉, and a MESM, we define
the following encoding of the necessary model checking problem into an equation
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system solving problem.

EuG(ε) , ε
EuG((σX = f)M) , {(σXu(d:D) = RHSuG(f)d)}EuG(M)

RHSuG(>)d , >
RHSuG(⊥)d , ⊥
RHSuG(l)d , l ∈ L(d)

RHSuG(¬l)d , ¬l ∈ L(d)

RHSuG(X)d , Xu(d)

RHSuG(f ⊕ g)d , RHSuG(f)d⊕RHSuG(g)d

RHSuG(♦f)d , ∃A:2D. R+(d,A) ∧ ∀d′:D. d′ ∈ A⇒ ((RHSuG(f)d′)[d′/d])

RHSuG(�f)d , ∀d′:D. R−(d, d′)⇒ ((RHSuG(f)d′)[d′/d])

Note that if a MES is closed, the above transformation will yield a closed equation
system. The proposition below states the correspondence between MES model
checking on GTSs and solving an equation system.

Proposition 3 (Soundness of encoding necessary semantics on GTSs).
LetM be a closed MES, and let X ∈ bnd(M). Given a GTS G = 〈S, s0, R+, R−, L〉,
we have, for any s ∈ S:

s ∈ [[M]]uG(X) iff [[EuG(M)]](X)(s) = >

We proceed to show that mixed simulation between GTSs induces a consis-
tent consequence between variable instances of the related states. We will first
need to introduce some notation.

Observe that if E = E(G)(M), then any environment θ : bnd(E) → D → B
induces a corresponding environment η(θ) : X → P(S), namely

η(θ)(X) , {s : θ(XuG)(s) = >}}
When comparing right-hand sides of encodings of the model checking problem

in the concrete and abstract case, we will need the following straightforward
observation, which we state without proof.

Lemma 3. For any GTS G, any of its states s, environment θ and modal for-
mula ϕ without binding operators (one in the form that appears on the right-hand
side of a MES), we have the following equivalence:

[[RHSuG(ϕ)[s/d]]]θ = > ⇔ s ∈ [[ϕ]]uGη(θ)

Now we can prove the key lemma that allows us to establish consistent con-
sequence between encoding of a model checking problem on a GTS and Kripke
structure that it abstracts.

Lemma 4. Assume two GTSs GC = (SC , s
C
0 , R, LC) and GA = (SA, s

A
0 , R

+, R−, LA).
Take any sC ∈ SC and sA ∈ SA such that there is a mixed simulation from sC
to sA (sC ≤ sA). For all ϕ ∈ Lµ, and for any environment θ, consistent with ≤
(i.e. if q ≤ s, then θ(XuGA

)(s)⇒ θ(XuGC
)(q)) we have:

[[RHSuGA
(ϕ)d[sA/d]]]θ ⇒ [[RHSuGC

(ϕ)d[sC/d]]]θ
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Proof. Take any environment θ, consistent with ≤, i.e. if s ≤ q, then θ(X)(s)⇒
θ(X)(q). The proof now proceeds with straightforward structural induction on
ϕ. We will only present the proof of the most involved part of the inductive step.

– ♦ϕ: we have

[[RHSuGA
(♦ϕ)d[sA/d]]]θ = >

(def. of RHS operator)

⇔ [[∃B.sAR+B ∧ ∀d′.d′ ∈ B ⇒ RHSuGA
(ϕ)qA[d′/d]]]θ = >

(unfolding semantics)

⇔
∨
B:sAR+B

∧
qA∈B [[RHSuGA

(ϕ)qA[qA/d]]]θ = >
Take B0 that makes the above disjunction true. From Lemma 3 we know
that, for all qA ∈ B0, qA ∈ [[ϕ]]uGA

η(θ). From the fact that sC ≤ sA, there
exists qC such that sCRqC and ∀qA∈B0

, qC ≤ qA. Because mixed simulation
’backward-preserves’ necessary semantics, we have qC ∈ [[ϕ]]uGC

η(θ). By using

Lemma 3 again, we have [[RHSuGC
(ϕ)qC [qC/d]]]θ = >.

From the above observation, substituting a singleton set {qC} for B yieds
the following:∨
B:sCR+B

∧
qC∈B [[RHSuGC

(ϕ)qC [qC/d]]]θ = >
(folding semantics)

⇔ [[∃B.sCR+B ∧ ∀d′.d′ ∈ B ⇒ RHSuGA
(ϕ)qC [d′/d]]]θ = >

(def. of RHS operator)

⇔ [[RHSuGC
(♦ϕ)d[sC/d]]]θ = >

ut

Proposition 4. Assume that GC = (SC , s
C
0 , R, LC) is a concrete Kripke Struc-

ture and GA = (SA, s
A
0 , R

+, R−, LA) a GTS. Take any sC ∈ SC and sA ∈ SA
such that there is a mixed simulation from sC to sA (sC ≤ sA). We have:

XuGA
(sA) l XuGC

(sC)

As a result of the above proposition and the soundness of the MES model check-
ing problem, we have proven one part of Theorem 2. For the other direction, we
proceed as follows.

We want to prove that if encoding of a model checking problem can be
approximated (using consistent consequence) with a finite equation system, then
there exists a finite GTS that abstracts the original Kripke structure and the
desired formula can be proved on this abstraction.

Observe first that in order to prove this fact, it suffices to show that from
the existence of finite approximation in the form of equation system it follows
that there is a certain least fixpoint-free formula (or MES, in our setting), which
semantically implies the original formula and is satisfied by the original model.
The existence of a proper finite GTS is then a result of completeness of the GTS
framework for greatest-fixpoint only fragment of the modal µ-calculus.

A natural candidate for such such greatest fixpoint-only “witnesses” are the
µ approximants, defined as below.

28



Definition 21. Assume that M has m µ variables. A µ-approximant of a MES
M, denoted as (M)µ(K) with respect to K, contains, for each propositional
variable X of the original MESM, Km copies of X, parameterised with a vector
α, formally defining propositional variables are contained in the set

{X(α) | 0 ≤ αi ≤ K ∀i ∈ {1, . . . ,m}}

The right-hand sides are defined as follows.

µX(α) = ⊥ if αi = 0
µX(α) = fX [Y := Y (α[αi := αi − 1, αj := K ∀j > i])])] if αi > 0
νX(α) = fX [Y := Y (α[αj := K ∀j > i])]

where i is the consecutive number in which X appears in E.

The α vector specifies, the amount of unfoldings of each µ-variable that are
still permitted to be taken, without visiting (looking from the corresponding
parity game perspective) a more important rank.

Proposition 5. For every closed MES M with m least fixpoint equations and
α ∈ Nm we have:

1. (M)µ(K) semantically implies M, i.e. for every GTS G, [[(M)µ(K)]]uG ⊆
[[M]]uG

2. there is a least fixpoint-free MES M′ such that M′ ≡ (M)µ(K), i.e. for
every GTS G, [[M′]]uG = [[(M)µ(K)]]uG.

The first of the above facts is straightforward to observe. Intuitively, (M)µ(K)
makes right-hand sides stronger by replacing variables with the constant ⊥, or a
copy of the same variable, which cannot have a larger potential to be true. The
second observation follows from the fact that, if we look at the MES solution
for any model from a game perspective, player “Odd” or “False” can win the
play only if it is finite, since every odd priority can be visited only finitely many
times without a more important even priority occurring in between.

Suppose we have a possibly infinite GTS G (for our purposes it suffices that
G is a Kripke structure, but this assumption is irrelevant for the proof). The next
step is to establish the sufficient condition on the PBES encoding EuG(M) such
that there exists some K ∈ N for which EuG((M)µ(K)) has solution true. This
condition can be established by switching to the game-theoretical framework.

In order to avoid elaborating too much on yet another formalism, we will
explain our line of reasoning in an informal way. Deciding solution of a PBES
can be seen as finding a winner of the following game, which very much resembles
a parity game. It is played by two players: “True” (or “Disjunctive”) and “False”
(or “Conjunctive”). The arena consists of subformulae of right-hand sides of a
PBES, labelled with the defining variable and data value instance (so if there is
an equation (σX(d : D) = φX), then for every possible value v that d can take
and every subformula ψ of φX [v/d], a pair ((X(v), ψ) is a valid node in solution
game. The edges connect formulae with their direct subformulae, formulae of the
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form ((X(v), Y (w)) are linked with (Y (w), φY [w/d]) and priorities are simply
ranks of defining predicate variables. Ownership is defined in a natural way for
boolean connectives and quantifiers.

We give a more formal definition below. Let Sub(ϕ) denote the set of all
subformulae of ϕ. As a convention, we denote the predicate formula occurring
at the right-hand side of X in E as φX .

Definition 22. For a PBES E we define the corresponding solution game as a
tuple (V, V∨, V∧, E,Ω), where:

– V =
⋃
X∈bnd(E) sig(X)× Sub(φX)

– V∨ are those nodes ((X, v), φ) in which φ is of the form ∃d : D.ψ or ψ1 ∨ψ2

– V∧ are those nodes ((X, v), φ) in which φ is of the form ∀d : D.ψ or ψ1 ∧ψ2

– the rest of the nodes can be assigned an arbitary owner (they have at most
one outgoing edge)

– outgoing egdes of s = ((X, v), φ) are defined as follows (sE denotes succes-
sors of s):
• if φ = b, then sE = ∅
• if φ = ψ1 ⊕ ψ2, then sE = {((X, v), ψ1), ((X, v), ψ2)}
• if φ = Qd : D.ψ for Q ∈ {∃,∀}, then sE = {((X, v), ψ[d = v]) | v ∈ D}
• if φ = Y (e), then sE = {((Y, e), φY )}

– Ω(((X, v), φ)) , rankE(X)

A play π is a possibly infinite path in a SG. A play is winning for player True,
if either the play is finite and the last state is labelled with a boolean value >,
or if it is infinite and the lowest value occurring infinitely often in π is even. A
strategy σ of player P , given a history of play, assigns to each node owned by P
a choice of an outgoing edge. All plays consistent with a strategy σ are denoted
with Πσ.

The key property that suffices for the existence of a least fixpoint-free “wit-
ness” MES is the finiteness of odd stretches.

Definition 23. An odd stretch (µ-stretch) in a play π is a sequence i1 < i2 <
· · · < ik such that Ω(πi1) = Ω(πi2) = · · · = Ω(πik) = ω for some odd ω and
there is no j : i1 ≤ j ≤ ik such that Ω(πj) < ω and Ω(πj) is even.

We first observe that E be a BES and E ′ a PBES such that X l Y (v) for
X ∈ bnd(E), Y ∈ bnd(E ′), then in the game corresponding to E ′ the player True
can force a winning strategy in which every odd stretch is bounded by some
global natural number K.

To see that it is indeed the case, we can show that for every strategy σ of
player True on left-hand side E there exists a strategy σ′ of player True on E ′
such that there is a play in Πσ on the left-hand side in which occur the same
“stripes” of the same consecutive priorities (they may differ in length, but the
order is the same) and there is a global bound on the length of a “stripe” of
consecutive subformulae of the same right-hand side (this is because the tree of
subformulae of a predicate formula has a bounded depth). An important property
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of consistent consequence used here is that it requires the same priorities on the
related variables.

Secondly, if the above situation (global bound on odd stretches) holds for
a certain encoding of a model checking problem EuG(M), then there is a value
L ∈ N, such that [[EuG((M)µ(L))(X(L, . . . , L))(s)]] = >. This is because PBESs
for full formula and approximant have the same structure, so we can adopt
strategy from the encoding of the approximant to the full formula PBES; now
if False wins the L-th approximant, then from its construction it can visit the
same variable L times in the full PBES without a variable with a lower (more
significant) priority.

The above observations yield the following two lemmata, which formalise the
basic reasons for correctness of Theorem 2.

Lemma 5. Let E be a BES and E ′ a PBES such that X l Y (v) for X ∈
bnd(E), Y ∈ bnd(E ′). Then in the PBES solution game corresponding to E ′ there
is a strategy σ, starting in Y (v) and winning for True, and a value K ∈ N, such
that every odd stretch in any play π ∈ Πσ has length ≤ K.

Lemma 6. Let G be a GTS andM a MES such that in the solution game corre-
sponding to EuG(M) there is a strategy σ, starting in X(s) and winning for True,
and a value K ∈ N, such that every odd stretch in any play π ∈ Πσ has length ≤
K. Then there is a certain bound L ∈ N, such that [[EuG((M)µ(L))(X(K, . . . ,K))(s)]] =
>.

Using the results we obtained above, we can now formally prove Theorem 2:
Theorem 2. Let M1 = 〈S1, R

+
1 , R

−
1 , L1〉 be a Kripke structure and f an ar-

bitrary closed µ-calculus formula such that M, s1 |= f for some s1 ∈ S1. Then
there is a finite GTS M2 = 〈S2, R

+
2 , R

−
2 , L2〉 such that 〈M1, s1〉 ≤ 〈M2, s2〉

and M2, s2 |= f , iff there is a closed Boolean equation system Ē such that
X̄ l VM1,f (s1) and [[Ē ]](X̄) = >.

Proof. For the implication from left to right, stating that any formula that can be
proved using a finite abstraction in the GTS framework can also be proved using
a consistent consequence in the equation system setting follows from lemmas 3
and 4.

The implication in the other direction follows from combining lemmas 5, 6,
Proposition 5 and the completeness of GTS framework for least fixpoint-free
fragment of the µ-calculus. ut

A.3 Proofs of Section 5

In the following part we assume an isomorphism between the basic elements of
the syntactic domain (D) and the semantic domain D, and we permit ourselves
to use them interchangeably for the sake of readability.

We will call a term or formula concrete [resp. abstract ] if all the syntactic
objects occurring therein (constants, variables, operators) are concrete [abstract].
First, we will introduce the following auxiliary lemma.
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Lemma 7. For all concrete predicate formulae φ, and for all predicate environ-
ments θ such that for all X ∈ bnd(E), v ∈ DX :

(*) θ(X̂u)(h(v))⇒ θ(X)(v)⇒ θ(X̂t)(h(v))

and for all data environments δ we have:

[[Au(φ)]]θδ[h(v)/d]⇒ [[φ]]θδ[v/d]⇒ [[At(φ)]]θδ[h(v)/d]

Proof. We will prove the above property for the underapproximation transfor-
mation, the overapproximation case is similar. We assume that an environment
θ is such that (*) holds; we will show that

[[Au(φ)]]θδ[h(v)/d]⇒ [[φ]]θδ[v/d]

We proceed with structural induction on φ. The two base cases are the key
cases.

– φ = b(d):
Suppose that [[Au(b(d))]]θδ[h(v)/d] = >. We will show that [[b(d)]]θδ[v/d] =
> (which is equivalent to [[b(v)]]δ = >).
We have:
[[Au(b(d))]]θδ[h(v)/d] = >
(no predicate variable occurs in b(d))
⇔ [[Au(b(d))]]δ[h(v)/d] = >
(def. of Au())

⇔ [[∀vb : Bool.vb ∈ b̂(d)⇒ v]]δ[h(v)/d] = >
(unfolding semantics & simplification)

⇔ [[⊥ /∈ b̂(d)]]δ[h(v)/d] = >
(applying substitution)

⇔ ⊥ /∈ [[̂b(h(v))]]δ

From the construction of lifted functions it follows that [[̂b(h(v))]]δ 6= ∅, so

[[̂b(h(v))]]δ must be equal to {>}. From the safety condition we know that

[[h(b(v))]]δ ∈ [[̂b(h(v))]]δ, but since the abstraction function for booleans is an

identity, we obtain: [[b(v)]]δ ∈ [[̂b(h(v))]]δ = {>}, hence [[b(v)]]δ = >.

– φ = X(e(d)) for some expression e : D → E
Assume that [[Au(X(e(d)))]]θδ[h(v)/d] = >. We will show that
[[X(e(d))]]θδ[v/d] = >, or equivalently [[X(e(v))]]θδ = >.
We have:
[[Au(X(e(d)))]]θδ[h(v)/d] = >
(def. of Au())

⇔ [[∀v′ ∈ E.v′ ∈ ê(d)⇒ X̂u(v′)]]θδ[h(v)/d] = >
(unfolding semantics)

⇔ (∀v′ ∈ E. [[v′ ∈ ê(h(v))]]θδ ⇒ [[X̂u(v′)]]θδ = >
From the safety condition we have h(e(v)) ∈ [[ê({h(v)})]]θδ, so from the

above equality we obtain that [[X̂u(h(e(v)))]]θδ = >. From the assumption
about the environment θ (*) we finally obtain that [[X(e(v)]]θδ = >.
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We now proceed with a (very straightforward) inductive step; we assume that
the property holds for all subformulae of φ.

– φ = (χ⊕ ψ)(d)
• For ⊕ = ∨: assume that [[Au((χ ∨ ψ)(d))]]θδ[h(v)/d] = >;we have

(def. of Au())
⇔ [[Au(χ(d)) ∨ Au(ψ(d))]]θδ[h(v)/d] = >
⇔ ([[Au(χ(d))]]θδ[h(v)/d] = >) ∨ ([[Au(ψ(d))]]θδ[h(v)/d] = >)
(inductive hypothesis)
⇒ ([[χ(d)]]θδ[v/d] = >) ∨ ([[ψ(d)]]θδ[v/d] = >)
⇔ [[(χ ∨ ψ)(d)]]θδ[v/d] = >

• For ⊕ = ∧: very similar
– φ = (Q d′:D. ψ)(d)

• Q = ∃: assume that Au(∃d′:D. ψ)(d)θδ[h(v)/d] = >; we have
(def. of Au())

[[∃d′:D̂. Au(ψ(d′,d))]]θδ[h(v)/d] = >
(unfolding semantics)

⇔ ∃v̂′:D̂. [[Au(ψ(d′,d))]]θδ[(v̂′, h(v))/(d′,d)] = >
(h is a surjection)
⇔ ∃v′:D. [[Au(ψ(d′,d))]]θδ[(h(v′), h(v))/(d′,d)] = >
(h defined pointwise for vectors & d′ does not occur in Au(ψ))
⇔ ∃v′:D. [[Au(ψ(d′,d))]]θδ[h(v′, v)/(d′,d)] = >
(inductive hypothesis)
⇒ ∃v′:D. [[ψ(d′,d)]]θδ[v/d, v′/d′] = >
(h defined pointwise for vectors)
⇔ ∃v′:D. [[ψ(d′,d)]]θδ[v/d, v′/d′] = >
(def. of semantics)
⇔ [[∃d′:D. ψ(d′,d)]]θδ[v/d] = >

• Q = ∀: similar

Theorem 6. Let E be an arbitrary closed equation system. Then for all X ∈
bnd(E) and all closed terms v:DX , we have:

[[Au(E)]](X̂u)([[h(v)]])⇒ [[E ]](X)([[v]])⇒ [[At(E)]](X̂t)([[h(v)]])

Proof. As a consequence of Lemma 7, it also follows that we have X̂u([[h(v)]]) l
X([[v]]) l X̂t([[h(v)]]). By Theorem 1, we then have the desired result. ut
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