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Abstract

Parity games play a central role in model checking and satisfiability
checking. Solving parity games is computationally expensive, among oth-
ers due to the size of the games, which, for model checking problems,
can easily contain 10

9 vertices or beyond. Equivalence relations can be
used to reduce the size of a parity game, thereby potentially alleviating
part of the computational burden. We reconsider (governed) bisimulation
and (governed) stuttering bisimulation, and we give detailed proofs that
these relations are equivalences, have unique quotients and they approx-
imate the winning regions of parity games. Furthermore, we present game-
based characterisations of these relations. Using these characterisations
our equivalences are compared to relations for parity games that can be
found in the literature, such as direct simulation equivalence and delayed
simulation equivalence. To complete the overview we develop coinduct-
ive characterisations of direct- and delayed simulation equivalence and we
establish a lattice of equivalences for parity games.

1 Introduction

We study preorders and equivalences defined on parity games. Such games
are turn-based graph games between two players taking turns pushing a token
along the vertices of a finitely coloured graph. These players, called even and
odd , strive to optimise the parity of the dominating colour occurring infin-
itely often in a play. Parity games appear in the core of various foundational
results such as Rabin’s proof of the decidability of a monadic second-order the-
ory. Solving parity games is a computationally expensive but key step in many
model checking algorithms [17, 47, 48] and synthesis and supervisory control
algorithms [3, 4, 20].

Parity game solving enjoys a special status among combinatorial optimisa-
tion problems, being one of the rare problems in the intersection of the UP and
coUP classes [33] that is not known to be in P. Despite the continued research
effort directed to it, resulting in numerous algorithms for solving parity games,
see, e.g., [7, 8, 34, 35, 41, 45, 46, 47, 49, 52], no polynomial time algorithm has
yet been found.
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Orthogonally to the algorithmic improvements, heuristics and static analyses
have been devised that may speed up solving, or fully solve parity games that
occur in practice [19, 30, 31]. Such heuristics work particularly well for veri-
fication problems, which give rise to games with only few different priorities.
In a similar vein, heuristics based on the intimate ties between temporal logics
and bisimulation relations are often exploited to speed-up model checking. First
minimising a state space by computing the equivalence quotient and only then
analysing this quotient can be an effective strategy, see e.g. [36].

Given the close connection between parity game solving and model checking,
a promising heuristic in this setting is to minimise a game prior to solving it.
Of course, this requires that the winning regions of the original game can be
recovered cheaply from the winning regions of the minimised game. Moreover,
minimisation makes sense only for equivalence relations that strike a favourable
balance between their power to compress the game graph and the computational
complexity of quotienting with respect to the equivalence relation. Indeed,
in [14, 39] we showed that quotienting using standard strong bisimilarity and
stuttering equivalence allow to solve parity games that could not be solved
otherwise. Despite the immense reductions that can be obtained, the results
were mixed and, apart from a number of cases that become solvable, there was
on average no clear gain from using such relations. It should be noted that the
stuttering equivalence experiments in [14, 15] were conducted using the Groote-
Vaandrager algorithm [28] which runs in O(mn), where m is the number of
edges and n is the number of states. A recent improvement on this algorithm,
described in [29], may very well mean the scale tips in favour of using stuttering
equivalence minimisation prior to solving a parity game, as experiments using
this O(m logn) algorithm have shown speed-ups of several orders of magnitude
compared to the O(mn) algorithm.

Similar observations can be made for governed bisimilarity [37] (also known
as idempotence-identifying bisimilarity in [39] and governed stuttering bisimil-
arity [15], which weaken strong bisimilarity and stuttering equivalence, respect-
ively, by taking the potentials of players into account. Quotienting for the latter
relations relies on the claim that the relations are equivalences.

As a side-note, simulation and bisimulation relations, tailored to parity
games, may lead to insights into the core of the parity game solving prob-
lem. Indeed, in e.g. [32], Janin relies on different types of simulations to provide
uniform proofs when showing the existence of winning strategies; at the same
time he suggests simulation relations may ultimately be used to solve games
efficiently.

Contributions. In this paper, we revisit the notions of (governed) bisimilar-
ity and (governed) stuttering bisimilarity for parity games from [14, 15, 37, 39].
We give formal proofs that they are indeed equivalence relations and, equally
important, that they approximate the winning regions of a parity game, sub-
stantiating our claims in the aforementioned papers. Showing that the relations
are indeed equivalence relations is technically rather involved, and slight over-
sights are easily made, see e.g. [5], and the added complexity of working in a
setting with two players complicates matters significantly.

We furthermore study how our equivalence relations are related to two other
notions that have been studied in the context of parity games, viz. direct simula-
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tion and delayed simulation [22] and the latter’s even and odd -biased versions. A
complicating factor is the fact that these relations have only game-based defin-
itions, whereas our equivalences are defined coinductively. We mend this by
providing alternative coinductive definitions for direct simulation and delayed
simulation, inspired by [42], and we show that these coincide with their game-
based definitions. Likewise, we give game-based definitions for our coinductively
defined relations, drawing inspiration from [9, 51], thereby offering a more op-
erational view on our relations.

Finally, we show that, contrary to (even- and odd-biased) delayed simulation
equivalence, direct simulation equivalence, governed bisimilarity and governed
stuttering bisimilarity have unique quotients.

Related work. In logic, bisimulation has been used to characterise the sub-
family of first-order logic that is definable in modal logic [6], and which fragment
of monadic second-order logic is captured by the modal µ-calculus. Bisimulation
and simulation-like relations, called consistent correlations [50] and consistent
consequence [24] for PBESs, a fixpoint-logic based framework which is closely
related to parity games, were imperative to prove the soundness of the syntax-
based static analysis techniques described in [13, 38, 43, 44]. Various simula-
tion relations have been used successfully for minimising Büchi automata, see
e.g. [11, 18, 40].

In the context of process theory, there is an abundance of different simula-
tion and bisimulation relations, allowing to reason about the powers of different
types of observers of a system’s behaviour, see [26, 27]. Coinductive definitions
of weak behavioural equivalences such as stuttering equivalence (which is, es-
sentially, the same as branching bisimulation for labelled transition systems) are
commonplace, see [27] for a comprehensive overview. Typically, these definitions
rely on the transitive closure of the transition relation. As argued by Namjoshi
[42], local reasoning typically leads to simpler arguments. He therefore intro-
duced well-founded bisimulation, a notion equivalent to stuttering bisimulation
which solely relies on local reasoning by introducing a well-founded order into
the relation. Still, at its basis, well-founded bisimulation only serves to show the
reachability of some pair of related vertices. In our coinductive characterisation
of the delayed simulation of [22], we use Namjoshi’s ideas. However, we need to
factor in that in delayed simulation each step on one side must be matched by
exactly one step on the simulating side.

There are only a few documented attempts that provide game-based defin-
itions for weak behavioural equivalences. Yin et al. describe branching bisim-
ulation games for normed process algebra [51]. A game-based characterisation
of divergence-blind stuttering bisimulation was provided by Bulychev et al. [9].
Neither of these definitions is easily extended to the setting of governed stut-
tering bisimulation for parity games. In particular, the latter definition is only
sound for transition systems that are free of divergences and requires a separate
preprocessing step to deal with these. For governed stuttering bisimulation, it is
unclear how the parity game should be preprocessed, so instead we incorporate
divergence into the game-based definition as a first-class citizen.

Structure of the paper. Parity games are introduced in Section 2. In Sec-
tion 3, we introduce notation that facilitates us to define preorders and equival-
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ences on parity games and we state several basic results concerning this notation.
A technical overview of the relations studied in the remainder of the paper, and
how these are related is presented in Section 4. In Section 5 we study direct
simulation, delayed simulation and its biased versions and in Section 6 we study
governed bisimulation and governed stuttering bisimulation. Quotienting, for
all involved equivalences that admit unique quotients, is discussed in Section 7
and in Section 8 we return to, and substantiate, the overview we presented in
Section 4. We wrap up with conclusions and an outlook for future work in
Section 9.

2 Parity Games

A parity game is a two-player graph game, played by two players even and odd
(denoted � and �) on a total directed graph in which the vertices are partitioned
into two sets, one for each player, and in which a natural priority is assigned to
every vertex. The game is played by placing a token on some initial vertex, and
if the token is on a vertex owned by player even, then she moves the token to a
successor of the current vertex (likewise for vertices owned by odd). The game
is formally defined as follows.

Definition 1 (Parity game). A parity game is a directed graph (V,→,Ω,P),
where

• V is a finite set of vertices,

• → ⊆ V × V is a total edge relation (i.e., for each v ∈ V there is at least
one w ∈ V such that (v, w) ∈ →),

• Ω :V → N is a priority function that assigns priorities to vertices,

• P :V → { �,�} is a function assigning vertices to players.

Instead of (v, w) ∈→ we typically write v → w, and we write v• for the set
{w ∈ V | v → w}. If i is a player, then ¬i denotes the opponent of i, i.e.,
¬ � = � and ¬� = �. The function P induces a partitioning of V into a set of
vertices V

�
owned by player even and a set of vertices V� owned by player odd ;

we use P and V
�
, V� interchangeably. The reward order on natural numbers

is defined such that n 4 m if n is even and m is odd; or n and m are even
and n ≤ m, or n and m are odd and m ≤ n. Note that n ≺ m means that n
is better than m for player even. Notions min and max are always used with
respect to the standard ordering on natural numbers. Finally, we remark that
the assumption that the edge relation is total only serves to simplify the theory
described in this paper. All results can be generalised to deal with the situation
in which one of the players is unable to move.

Paths. A sequence of vertices v0 . . . vn for which vm → vm+1 for all m < n is a
path. The concatenation p1p2 of paths p1 and p2 is again a path, provided there
is a step from the last vertex in p1 to the first vertex in p2. Infinite paths are
defined in a similar manner. We use p[j] to denote the jth vertex in a path p,

4



counting from 0. The set of paths of length n starting in v is defined inductively
for n ≥ 1 as follows:

Π1(v)
∆
= {v}

Πn+1(v)
∆
= {pu | p ∈ Πn(v) ∧ p[n] → u}

The set of infinite paths starting in v is denoted Πω(v), and the set of both
finite and infinite paths starting in v is defined as follows:

Π(v)
∆
= Πω(v) ∪

⋃

n∈N

Πn(v)

Plays and their winners. A game starts by placing a token on some vertex
v ∈ V . Players move the token indefinitely according to the following simple
rule: if the token is on some vertex v, player P(v) moves the token to some
vertex w such that v → w. The result is an infinite path p in the game graph;
we refer to this infinite path as a play. The parity of the lowest priority that
occurs infinitely often on p defines the winner of the play. If this priority is
even, then player � wins, otherwise player � wins.

Strategies. A strategy for player i is a partial function σ :V ∗→ V , that is
defined only for paths ending in a vertex owned by player i and determines the
next vertex to be played onto. The set of strategies for player i in a game G is
denoted S

∗
G,i , or simply S

∗
i if G is clear from the context. If a strategy yields

the same vertex for every pair of paths that end in the same vertex, then the
strategy is said to be memoryless. The set of memoryless strategies for player i
in a game G is denoted SG,i , abbreviated to Si when G is clear from the context.
A memoryless strategy is usually given as a partial function σ :V → V.

A strategy σ ∈ S∗i allows a path p of length n, denoted σ 
 p, if and
only if for all j < n − 1 it is the case that if σ is defined for p[0] . . . p[j], then
p[j + 1] = σ(p[0] . . . p[j]). The definition of consistency is extended to infinite
paths in the obvious manner. We generalise the definition of Π to paths allowed
by a strategy σ; formally, we define:

Πnσ(v)
∆
= {p ∈ Πn(v) | σ 
 p}

The definition for infinite paths is generalised in the same way and denoted
Πωσ(v). By Πσ(v) we denote Πωσ(v) ∪

⋃

n∈N
Πnσ(v), i.e., the set of all finite and

infinite paths starting in v and allowed by σ.
A strategy σ ∈ S∗i is said to be a winning strategy from a vertex v if and

only if i is the winner of every path allowed by σ. A vertex is won by player i

if i has a winning strategy from that vertex.

Solving parity games. It is well-known that parity games are determined,
i.e. that each vertex in a game is won by exactly one player, and if a winning
strategy for a player exists from a vertex, then also a memoryless strategy exists.
This is summarised in the following theorem.

Theorem 1 (Memoryless determinacy [16]). For every parity game there is
a unique partition (W

�
,W�) such that winning strategies σ

�
∈ S∗

�
from W

�
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and σ� ∈ S∗
�

from W� exist. Furthermore, if σi ∈ S∗i is winning from Wi a
memoryless strategy ψi ∈ Si winning from Wi exists.

The problem of solving a parity game is defined as the problem of computing
the winning partition (W

�
,W�) of a parity game.

3 Notation

In the remainder of this paper we frequently need to reason about the concept of
a player being able to force play towards a set of vertices. We introduce notation
that facilitates such reasoning and we provide some lemmata that express basic
properties of parity games in terms of this extended notation. Throughout this
section, we fix a parity game (V,→,Ω,P). Furthermore, we let T, U ⊆ V be
subsets of vertices in the game.

Given a memoryless strategy σ, we introduce a single-step relation σ→ ⊆→
that contains only those edges allowed by σ:

σ→
∆
= {(v, u) | (v, u) ∈→ and if σ(v) is defined σ(v) = u}

In line with v → u, we write v σ→u if (v, u) ∈ σ→. Abstracting from the
specific strategy, we write v i→u iff player i has a memoryless strategy σ such
that v σ→u.

We introduce special notation to express which parts of the graph can be
reached from a certain node. We use v 7→U T to denote that there is a finite
path v0 . . . vn, for some n, such that v = v0, vn ∈ T and for all j < n, vj ∈ U .
Conversely, v 7→U denotes the existence of an infinite path v0 v1 . . . for which
v = v0 and for all j, vj ∈ U .

We extend this notation to restrict this reachability analysis to plays that
can be enforced by a specific player. We say that strategy σ forces the play from
v to T via U , denoted v σ 7→U T , if and only if for all plays p starting in v such
that σ 
 p, there exists an n such that p[n] ∈ T and p[j] ∈ U for all j < n. Note
that, in particular, v σ 7→U T if v ∈ T . Similarly, strategy σ forces the play to
diverge in U from v, denoted v σ 7→U , if and only if for all such plays p, p[j] ∈ U
for all j.

Finally, if we are not interested in a particular strategy, but only in the
existence of a strategy for a player i via which certain parts of the graph are
reachable from v, we replace σ by i in our notation to denote an existential
quantification over memoryless strategies:

v i 7→U T
∆
= ∃σ ∈ Si : v σ 7→U T v i 7→U

∆
= ∃σ ∈ Si : v σ 7→U

The lemma below shows that rather than using memoryless strategies, one may,
if needed, use arbitrary strategies when reasoning about v i 7→U T .

Lemma 1. ∃σ ∈ Si : v σ 7→U T iff ∃σ ∈ S
∗
i : v σ 7→U T .

Proof. Observe that the implication from left to right holds by definition. So as-
sume that for some σ ∈ S

∗
i , we have v σ 7→U T . Note that v σ 7→U T iff v σ 7→U\T T .

The truth value of the latter predicate does not depend on priorities of the ver-
tices and only depends on the edges that originate in U \T . Therefore, the truth
value of this predicate will not change if we apply the following transformation
to our graph:
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• for all u ∈ T , replace all outgoing edges by a single edge u→ u.

• set the priorities for all u ∈ T to even iff i = � and the priorities of all
other vertices to odd iff i = �.

Since v σ 7→U\T T , vertex v is won by i in the resulting graph. As parity games
are memoryless determined, i must have a memoryless strategy to move from
U \ T to T in the resulting graph. Hence there is some σ′ ∈ Si such that
v σ′ 7→U\T T in the resulting graph, but then also v σ′ 7→U\T T in the original
graph, and hence also the required v σ′ 7→U T .

The complement of these relations is denoted by a slashed version of the
corresponding arrow, e.g., ¬v i 7→U T can be written v i 67→U T . We extend the
transition relation of the parity game to sets and to sets of sets in the usual way,
i.e., if T is a set of vertices, and U is a set of vertex sets, then

v → T
∆
= ∃u ∈ T : v → u v → U

∆
= v →

⋃

U

All other arrow notation is extended in the same way; if a set of sets U is given
as a parameter, it is interpreted as the union of U .

The notation v i 7→U T is closely related to the notion of attractor sets [41]. To
formalise this correspondence, we generalise the attractor set definition along
the lines of the generalisation used for the computation of the Until in the
alternating-time temporal logic ATL [2].

Definition 2 (Attractor set). We define UAttr i(T ) as UAttr
ω
i (T ) where:

UAttr
0
i (T )

∆
= T

UAttr
n+1
i (T )

∆
= UAttr

n
i (T )

∪ {v ∈ U | P(v) = i ∧ ∃v′ ∈ v• : v′ ∈ UAttr
n
i (T )}

∪ {v ∈ U | P(v) 6= i ∧ ∀v′ ∈ v• : v′ ∈ UAttr
n
i (T )}

The attractor set as defined in [41] is obtained for U = V . In essence, the
attractor set UAttr i(T ) captures the subset of U ∪ T from which i can force
the game to T ⊆ V , by staying within U until T is reached. Note that Attr

is a monotone operator; i.e. for T ⊆ T ′ we have UAttr i(T ) ⊆ UAttr i(T
′).

The correspondence between our ‘forcing’ arrow notation and the (generalised)
attractor is given by the following lemma.

Lemma 2. Let U, T ⊆ V . Then v i 7→U T iff v ∈ UAttr i(T ).

Proof. We first introduce some additional notation. Let v i 7→n
U T denote that

there is a σ ∈ Si such that for all p ∈ Πn+1
σ (v), there is some m ≤ n such that

p[m] ∈ T , and p[j] ∈ U for all j < m. Note that v i 7→ω
U T iff v i 7→U T . We can

now use induction to prove u i 7→n
U T iff u ∈ UAttr

n
i (T ) for all u. The required

property then follows.
The base case, n = 0, follows instantly. For n = m + 1, our induction

hypothesis yields u i 7→m
U T iff u ∈ UAttr

m
i (T ) for all u. We distinguish two

cases: P(u) = i and P(u) 6= i.
Suppose P(u) = i, and assume u ∈ UAttr

n+1
i (T ). Then, by definition,

u ∈ UAttr
n
i (T ), or, since P(u) = i, u ∈ {v ∈ U | ∃v′ ∈ v• : v′ ∈ UAttr

n
i (T )}.

But then this is equivalent to

u ∈ UAttr
n
i (T ) or v′ ∈ UAttr

n
i (T ) for some v′ ∈ u•. (*)
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By our induction hypothesis, (*) is equivalent to u i 7→n
U T or v′ i 7→n

U T for some
v′ ∈ u•. But since i then has a strategy to play u→ v′, this is again equivalent
to

u i 7→
n
U T or u i 7→

n+1
U T (†)

Since u i 7→n
U T implies u i 7→

n+1
U T and u i 7→

n+1
U T implies u i 7→n

U T or u i 7→
n+1
U T ,

we find that (†) is equivalent to the desired u i 7→
n+1
U T , which finishes the proof

for the case P(u) = i. The case for P(u) 6= i uses a similar line of reasoning;
the only difference is that we do not need to identify a strategy for player i.

We are now ready to formalise some intuitions using our notation. One of
the most basic properties we expect to hold is that a player can force the play
towards some given set of vertices, or otherwise her opponent can force the play
to the complement of that set.

In the following lemmas, let v ∈ V , U, T, T ′ ⊆ V and i a player.

Lemma 3. v i 7→U T ∨ v ¬i 7→U V \ T.

Proof. We prove the equivalent v i 67→U T =⇒ v ¬i 7→U V \ T. Assume that
v i 67→U T . Observe that it follows directly that v 6∈ T , and hence v ∈ V \ T .
Therefore, we immediately find that v ¬i 7→U V \ T.

In a similar train of thought, we expect that if from a single vertex, each
player can force play towards some target set, then the players’ target sets must
overlap.

Lemma 4. v i 7→U T ∧ v ¬i 7→U T
′ =⇒

∃u ∈ T, u′ ∈ T ′ : u = u′ ∨ u ∈ U ∨ u′ ∈ U.

Proof. Assume v i 7→U T ∧ v ¬i 7→U T
′. Then there must be strategies σ ∈ Si and

σ′ ∈ S¬i such that v σ 7→U T ∧ v σ′ 7→U T
′. Let σ and σ′ be such, and consider

a play p such that σ 
 p and σ′ 
 p. For this play, there must be m and n
such that p[m] ∈ T ∧ ∀j < m : p[j] ∈ U , and p[n] ∈ T ′ ∧ ∀j < n : p[j] ∈ U .
If m = n, then this witnesses ∃u ∈ T, u′ ∈ T ′ : u = u′. If m < n, then
p[m] ∈ T ∧ p[m] ∈ U , and if n < m, then p[n] ∈ T ′ ∧ p[n] ∈ U .

The above lemmata reason about players being able to reach sets of vertices.
The following lemma is essentially about avoiding sets of vertices: it states that
if one player can force divergence within a set, then this is the same as saying
that the opponent cannot force the play outside this set.

Lemma 5. v i 7→U ⇐⇒ v ¬i 67→U V \ U

Proof. Again, note that the truth values of v i 7→U and v ¬i 67→U V \U only depend
on edges that originate in U , and that these truth values do not depend on
priorities at all. Therefore, the truth value of these predicates will not change
if we apply the following transformations to our graph:

• For all u ∈ V \ U , replace all outgoing edges by a single edge u→ u.

• Make the priorities of all vertices in U such that they are even iff i = �,
and the priorities of all other vertices odd iff i = �.

In the resulting graph, player i wins if and only if v i 7→U , and player ¬i wins if
and only if v ¬i 7→U V \ U . Since parity games are determined, i.e. v can only
be won by one player, the desired result follows.
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Next, we formalise the idea that if a player can force the play to a first set
of vertices, and from there he can force the play to a second set of vertices, then
he must be able to force the play to that second set.

Lemma 6. (v i 7→U T ∧ ∀u ∈ T : u i 7→U T
′) =⇒ v i 7→U T

′

Proof. By Lemma 2, ∀u ∈ T : u i 7→U T
′ implies T ⊆ UAttr i(T

′). By monoton-
icity of Attr we have UAttr i(T ) ⊆ UAttr i(UAttr i(T

′)). Since UAttr i(UAttr i(T
′)) =

UAttr i(T
′), we thus have UAttr i(T ) ⊆ UAttr i(T

′). By the same token, from
v i 7→U T we find v ∈ UAttr i(T ). Combined, we find v ∈ UAttr i(T

′) which, by
Lemma 2, yields the desired v i 7→U T

′.

Finally, we state two results that relate a player’s capabilities to reach a
set of vertices to the capabilities of the vertices that are able to leave a set of
vertices in a single step.

Lemma 7. Let S = {u ∈ U | u• ∩ T 6= ∅} and v /∈ T . Then v i 7→U T implies
Vi ∩ S 6= ∅ or for some u ∈ S, u• ⊆ T .

Proof. Assume v i 7→U T and suppose Vi ∩S = ∅. Assume that for all u ∈ S, not
u• ⊆ T . Then UAttr i(T ) = T follows from S ⊆ V¬i . Since v /∈ T this implies
v /∈ UAttr i(T ). By Lemma 2 we then have v i 67→U T . Contradiction. So there is
some u ∈ S such that u• ⊆ T .

Lemma 8. For v ∈ U , v i 7→U T implies v i 7→U T
′ whenever T ′ ⊆ T and w• ⊆

U ∪ T ′ for all w ∈ U .

Proof. Choose σ ∈ Si such that v σ 7→U T , and let p be a path for which p[0] =
v ∈ U and σ 
 p. Then for some j > 0, p[j] ∈ T and p[k] ∈ U for all k < j. Since
p[j − 1]• ⊆ U ∪ T ′, also p[j] ∈ T ′ and therefore v σ 7→U T

′. Thus v i 7→U T
′.

4 A Lattice of Parity Game Relations

In the rest of this paper, we study relations on parity games. We forego a formal
treatment and present an overview of the studied relations and how these are
related in this section.

4.1 Relations

Let R be a relation over a set V , i.e. R ⊆ V × V . For v, w ∈ V we write

v R w to denote (v, w) ∈ R. For a relation R and vertex v ∈ V we define v R
∆
=

{w ∈ V | v R w}, and likewise R v
∆
= {w ∈ V | w R v}. We also generalise

this notation to sets of vertices such that, for U ⊆ V , U R
∆
=

⋃

u∈U u R, and

R U
∆
=

⋃

u∈U R u.
A relation R is a preorder if it is reflexive and transitive. If, in addition, R

is symmetric, then it is an equivalence relation. Note that for an equivalence
relation R, and vertex v ∈ V , we have v R = R v. In this case we also write

[v]R
∆
= {v ∈ V | v R w}, and call this the equivalence class of v under R. By

abuse of notation, for a subset V ′ ⊆ V , we write [V ′]R for the set of equivalence
classes with respect to V , i.e. the set {[v]R | v ∈ V ′}. The set of equivalence
classes of V under R is denoted V/R , and defined as {[v]R | v ∈ V }.

9



4.2 Introducing a Lattice of Equivalences

Preorders for parity games are particularly (and perhaps only) interesting if
they allow one to approximate the winning regions of a game. A preorder R
approximates the winning region of a game if, whenever v R w, and player even
has a winning strategy from v, then she also has a winning strategy from w.
For equivalence relations, this requirement is stronger and often more useful:
we require that if v R w, then even has a winning strategy from v if and only if
she has a winning strategy from w. The finest natural equivalence relation on
V is graph isomorphism, denoted ∼=.

Definition 3 (Isomorphism). Let (V,→,Ω,P) be a parity game. Vertices v, w ∈
V are isomorphic, denoted v ∼= w iff φ(v) = w for some bijection φ : V → V
that satisfies, for all v̄ ∈ V :

• Ω(v̄) = Ω(φ(v̄)),

• P(v̄) = P(φ(v̄)), and

• v̄ → v̄′ if and only if φ(v̄) → φ(v̄′).

The coarsest sensible equivalence on parity games is the equivalence induced
by the determinacy of parity games, viz. the equivalence that exactly relates
only and exactly those vertices won by the same player.

Definition 4 (Winner equivalence). Let (V,→,Ω,P) be a parity game. Vertices
v, w ∈ V are winner equivalent, denoted v ∼w w iff v and w are won by the
same player.

Deciding winner equivalence of parity games is equivalent to paritioning the
vertices in the parity game into winning sets.

Winner equivalence and isomorphism are the extreme points in the lattice
of equivalence relations shown in Figure 1. Between the extremal points in the
lattice of Figure 1 we list the other parity game equivalences that we study in
more detail in the subsequent sections:

• Strong bisimilarity (↔) [37, 39], see Section 6.1;

• Strong direct simulation equivalence (≡sd), see Section 5.1;

• Direct simulation equivalence (≡d ) [22, 23, 24], see Section 5.1;

• Delayed simulation equivalence (≡de) [22], see Section 5.2;

• Delayed simulation equivalence, even-biased (≡ede) [22], see Section 5.2.1;

• Delayed simulation equivalence, odd -biased (≡ode) [22], see Section 5.2.1;

• Governed bisimilarity (↔) [37, 39], see Section 6.1;

• Stuttering bisimilarity (≃) [14], see Section 6.1;

• Governed stuttering bisimilarity (∼) [15], see Section 6.2;
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∼=

↔

↔ ≡sd≃

∼ ≡d

≡ode ≡ede

≡de

∼w

1

2
2 2

3

4

4

7

8

55

6

6

6

1. Theorem 18, page 36;

2. Theorem 19, page 37;

3. Theorem 20, page 37;

4. Theorem 21, page 37;

5. Theorem 23, page 38;

6. Theorem 24, page 38;

7. Theorem 27, page 39;

8. Theorem 28, page 41;

Figure 1: Lattice of equivalences for parity games. The numbers on the edges
refer to the legend shown to the right, which in turn refers to the theorems that
witness the existence of the edge.

In the lattice, an arrow from one equivalence to the other indicates that the
first equivalence is finer than the latter. The number on an arrow refers to the
theorem in this paper that claims this strictly finer-than relation between the
equivalences.

The original definitions of the equivalences listed above vary in nature.
Strong-, governed-, stuttering-, and governed stuttering bisimilarity are defined
coinductively, whereas direct simulation and all variations of delayed simulation
are defined as simulation games. Furthermore, the direct- and delayed simula-
tion games define a preorder, whereas the others define an equivalence relation;
the preorders are lifted to equivalence relations in the standard way.

5 Direct and Delayed Simulation Equivalence

We introduce the direct simulation preorder and the induced direct simulation
equivalence in Section 5.1. In Section 5.2, we recall the delayed simulation
preorder, the induced delayed simulation equivalence and two biased versions
of the delayed simulation preorder and equivalence. Throughout these sections,
we assume that G = (V,→,Ω,P) is an arbitrary parity game.

5.1 Direct Simulation and Direct Simulation Equivalence

Direct simulation for parity games is one of the most basic preorders studied
for parity games. It is difficult to trace the exact origins of the definition, but
it was suggested (though not formally defined) in [22] and appeared earlier in
the setting of alternating Büchi automata [23]. We here follow the game-based
definition as given in [24].
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v1
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v3

Figure 2: Parity game with v0 ⊑d v1, v0 ⊑d v2, v2 ⊑d v0, and for all vi, vi ⊑d vi.

Definition 5 (Direct simulation game). The direct simulation game is played
on configurations drawn from V ×V , and it is played in rounds. A round of the
game proceeds as follows:

1. The players move from (v, w) according to the rules in Table 1;

2. Play continues in the next round from the newly reached position.

An infinite play (v0, w0), (v1, w1), . . . is won by Duplicator if Ω(vj) = Ω(wj) for
all j, i.e., Duplicator was able to mimic every move from Spoiler with a move
to a vertex with equal priority. In all other cases Spoiler wins the play.

We say that v is directly simulated by w, denoted v ⊑d w whenever Duplic-
ator has a winning strategy from (v, w) in the direct simulation game.

P(v) P(w) 1st move plays on 2nd move plays on

� � S v D w
� � S v S w
� � D w D v
� � S w D v

Table 1: Allowed moves in a (bi)simulation game.

Example 1. In the parity game in Figure 2, v0 ⊑d v1. Observe that from
(v0, v1), Duplicator can choose both successors in the direct simulation game.
We do not have v1 ⊑d v0, since from configuration (v1, v0), Spoiler ’s move
v1 → v3 cannot be matched from v0. Note that additionally we have v0 ⊑d v2
and v2 ⊑d v0.

Direct simulation is a preorder: reflexivity is easily seen to hold (Duplicator
can follow a copy-cat strategy), but transitivity is more involved. In the setting
of alternating Büchi automata, direct simulation was shown to be transitive us-
ing strategy composition, see [21, 23]. Following essentially the same technique
one can show transitivity of direct simulation for parity games. We use the dir-
ect simulation preorder to obtain direct simulation equivalence in the standard
way.

Definition 6 (Direct simulation equivalence [22, 24]). Vertices v and w are
direct simulation equivalent, denoted v ≡d w, iff v ⊑d w and w ⊑d v.

The alternative coinductive definition of direct simulation which we present
next, allows for a more straightforward proof of transitivity. Our definition
below was taken from [25], where it is also referred to as governed simulation.
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Definition 7 (Direct simulation relation [25]). A relation R ⊆ V ×V is a direct
simulation if and only if v R w implies

• Ω(v) = Ω(w);

• if v ∈ V
�
, then for each v′ ∈ v•, w

�
→ v′ R;

• if v ∈ V�, then w
�
→ v• R.

We say that vertex v is directly simulated by w, denoted v ≤d w, if and only if
there is a direct simulation relation R such that v R w.

The theorem below states that the game-based and coinductive definitions
of direct simulation coincide.

Theorem 2. For all v, w ∈ V , we have v ≤d w if and only if v ⊑d w.

Proof. We prove both implications separately.

⇒ We prove that from a pair of vertices v ≤d w the game can always be
played such that we again end up in related vertices after one round in
the direct simulation game. Since Ω(v) = Ω(w), it immediately follows
that Duplicator has a winning strategy in the direct simulation game, and
hence v ⊑d w.

Let v, w be such that v ≤d w. We distinguish two cases:

– v ∈ V
�
. Then Spoiler first chooses some v → v′. Since v ≤d w, we

know that w
�
→ v′ ≤d, hence if w ∈ V

�
, Duplicator can choose a

successor w → w′ such that v′ ≤d w′, and if w ∈ V�, all successors
w → w′ that Spoiler may choose are such that v′ ≤d w′.

– v ∈ V�. Then w
�
→ v• ≤d, so if w ∈ V

�
, there exist w → w′ and

v → v′ such that v′ ≤d w
′, and Duplicator can play such that he

picks those. In case w ∈ V�, then for all w → w′ there exists a
v → v′ such that v′ ≤d w′. Since Spoiler plays first on w, Duplicator
can match with the appropriate v → v′.

⇐ We prove that ⊑d is a direct simulation relation.

Let v, w be arbitrary such that v ⊑d w. Consider a winning strategy
for Duplicator in the direct simulation game from (v, w). Observe that
Ω(v) = Ω(w) follows trivially. We again distinguish two cases:

– v ∈ V
�
. Then Spoiler first chooses some v → v′. If w ∈ V

�
, then

Duplicator matches this with some w → w′ according to his strategy.
Since Duplicator ’s strategy is winning from (v, w), it is also winning
from (v′, w′), hence v′ ⊑d w′. If w ∈ V�, any choice of successor
w → w′ that Spoiler makes is such that v′ ⊑d w

′. In both cases we
have shown w

�
→ v′ ⊑d .

– v ∈ V�. If w ∈ V
�
, Duplicator plays both on v, say v → v′, and on

w, say w → w′, such that v′ ⊑d w
′. If w ∈ V�, Spoiler plays first on

w, say w → w′, and given this choice, Duplicator responds according
to his strategy with v → v′ such that v′ ⊑d w′. Since Duplicator ’s
strategy is winning, he is able to match any choice made by Spoiler .
In both cases the strategy witnesses w

�
→ v• ⊑d .
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Given that both definitions of direct simulation coincide, we can now say
that v and w are direct simulation equivalent, i.e. v ≡d w, if and only if v ≤d w
and w ≤d v.

Proposition 1. The relations ≤d and ≡d are a preorder and an equivalence
relation, respectively. Moreover, ≤d itself is a direct simulation relation.

Proof. One can check that for direct simulation relations R and S, the relation
R ◦ S, defined as v (R ◦ S) w iff there is some u such that v R u and u S w, is
again a direct simulation relation.

Strong Direct Simulation. If we impose an additional constraint on direct
simulation, viz. we do not allow to relate vertices owned by different players, we
obtain a notion that resembles alternating refinement [1]. Clearly, this notion
again is a preorder. We write v ≤sd w iff there is some strong direct simulation
relation that relates v and w, and we write v ≡sd w iff v ≤sd w and w ≤sd v.
Note that in the parity game in Figure 2, we still have v0 ≡sd v2, but v0 6≤sd v1.

5.2 Delayed simulation

Direct simulation equivalence is limited in its capability to relate vertices. The
reason for this is that in each step of the simulation game, Duplicator is required
to match with a move to a vertex with exactly the same priority. Following
Etessami et al. [18], in [22], a more liberal notion of simulation called delayed
simulation is considered. In this notion matching may be delayed. The idea is
that in the winning condition of a play of a parity game, only the priorities that
occur infinitely often are of importance. Therefore, intuitively it is allowed to
delay matching a given (dominating) priority for a finite number of rounds.

The delayed simulation game is, like the direct simulation game, played on
an arena consisting of configurations that contain a pair of vertices. These
configurations are now extended with a third parameter which is used to keep
track of the obligation that still needs to be met by Duplicator .

An obligation in a delayed simulation game is either a natural number or the
symbol X; the latter is used to indicate the absence of obligations. We denote
the set of obligations by K. Given two priorities and an existing obligation, a
new obligation is obtained using the function γ : N× N×K → K, where:

γ(n,m,X) =

{

X if m 4 n

min{n,m} otherwise

γ(n,m, k) =











X if m 4 n and

{

n odd and n ≤ k, or

m even and m ≤ k

min{n,m, k} otherwise

By abuse of notation we will typically write γ(v, w, k), for vertices v, w ∈ V and
obligation k ∈ K, to denote γ(Ω(v),Ω(w), k).

The intuition behind this update is as follows. Either, with the new pri-
orities, the pending obligation is fulfilled, and the new configuration does not
give rise to a new obligation, in which case the result is X. Otherwise the new
obligation is the minimum of the priorities passed to the function, or the current
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Figure 3: Parity game in which all vertices are delay simulation equivalent.

obligation. This signifies the most significant obligation that still needs to be
met by Duplicator . Note that there are two ways to fulfil the pending obligation.
Either the first argument renders the pending obligation superfluous since it is
smaller and odd, or the second argument is such that it matches the pending
obligation.

Definition 8 (Delayed simulation game [22]). A delayed simulation game is
a game played by players Spoiler and Duplicator on an arena consisting of
positions drawn from V ×V and obligations taken from K. The game is played
in rounds. Assuming (v, w) is the current position, and k the current obligation,
a round of the game proceeds as follows:

1. Spoiler and Duplicator propose moves v → v′ and w → w′ according to
the rules in Table 1.

2. The game continues from (v′, w′) with obligation γ(v′, w′, k).

An infinite play (v0, w0, k0), (v1, w1, k1), . . . is won by Duplicator iff kj = X for
infinitely many j. This means that Duplicator was always able to eventually
fulfil all pending obligations. In all other cases Spoiler wins the game.

We say that v is delayed simulated by w, denoted v ⊑de w just whenever
Duplicator has a winning strategy from (v, w) with obligation γ(v, w,X) in the
delayed simulation game.

Example 2. In the parity game in Figure 3, vi ⊑de vj for all i, j. Observe that,
with respect to direct simulation, vertices cannot be related to each other.

Delayed simulation is, like direct simulation, a preorder. The proof thereof is
substantially more involved than the proof that direct simulation is a preorder,
requiring an analysis of 24 cases, some of which are rather intricate. For details,
we refer to [21]; we here only repeat this result.

Proposition 2. The relation ⊑de is a preorder.

We obtain delayed simulation equivalence in the standard way.

Definition 9 (Delayed simulation equivalence [22]). Vertices v and w are delayed
simulation equivalent, denoted v ≡de w, iff v ⊑de w and w ⊑de v.

Next, we give an alternative, coinductive definition for delayed simulation.
Since the moves in the game for delayed simulation and direct simulation match,
one may expect that such a characterisation can be obtained by a more-or-less
straightforward enhancement of the direct simulation relation. This is partly
true: indeed, the moves of the game are captured in a way similar to how
this is done for direct simulation. However, the winning condition of delayed
simulation requires that infinitely often all obligations are met. This requires
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‘non-local’ reasoning that must somehow be captured through a coinductive
argument. Meeting an obligation is typically a progress property, requiring an
inductive argument rather than a coinductive argument.

To combine both aspects in a single, coinductive definition, we draw inspir-
ation from Namjoshi’s notion of well-founded bisimulation [42]. Well-founded
bisimulation is a relation which is equivalent to stuttering equivalence, but which
permits local reasoning by introducing a well-foundedness criterion. We use a
similar well-foundedness requirement in our coinductive definition, ensuring pro-
gress is made towards fulfilling obligations. This moreover requires, as can be
expected, that our coinductive relation ranges not only over pairs of vertices but
also over obligations. For a relation R ⊆ V ×K × V , we write v Rk w if v and
w are related under pending obligation k. The well-foundedness restriction thus
enables us to express that v Rk w holds if we can build a coinductive argument
that ultimately depends on pairs of vertices v′, w′ related under obligation X;
viz. v′ RX w′.

Definition 10 (Well-founded delayed simulation). A relation R ⊆ V ×K×V is
a well-founded delayed simulation iff there is a well-founded order<· on V×V×K
such that for all v, w ∈ V and k ∈ K for which v Rk w holds, also:

• v ∈ V
�

implies for all v′ ∈ v•, w
�
→{w′ ∈ V | ℓ = γ(v′, w′, k) ∧ v′ Rℓ

w′ ∧ (k = X ∨ (v′, w′, ℓ)<·(v, w, k))};

• v ∈ V� implies w
�
→{w′ ∈ V | ∃v′ ∈ v• : ℓ = γ(v′, w′, k) ∧ v′ Rℓ w′ ∧

(k = X ∨ (v′, w′, ℓ)<·(v, w, k))}.

Vertex v is well-founded delayed simulated by w, denoted v ≤de w, iff there
exists a well-founded delayed simulation R such that v Rγ (v,w,X) w.

In the remainder of this section we show that this definition is equivalent to
the game-based definition.

Lemma 9. For v, w ∈ V , v ≤de w implies v ⊑de w.

Proof. We prove the stronger statement that if there is a well-founded delayed
simulation R such that v Rγ (v,w,k) w. for k ∈ K, then Duplicator has a strategy
to win the delayed simulation game from (v, w, γ(v, w, k)). The result then fol-
lows immediately from the observation that v Rγ (v,w,X) w, and hence Duplicator
wins the game from (v, w, γ(v, w,X)).

We first show that Duplicator has a strategy to move between positions
(v, w) with obligation k for which v Rk w to positions (v′, w′) and obligation k′

for which v′ Rk
′

w′. Assume that v Rk w. We distinguish four cases based on
the owner of v and w.

• (v, w) ∈ V
�
× V

�
. In the delayed simulation game, this corresponds

to the vertex (v, w, k), in which Spoiler is to move first. Spoiler first
plays an arbitrary move v → v′. By definition of the well-founded delayed
simulation, there is w → w′ such that v′ Rγ (v

′,w′,k) w′; Duplicator matches
with this w′.

• (v, w) ∈ V
�
×V�. In the delayed simulation game, from position (v, w, k),

Spoiler is to make both moves, so there is no Duplicator strategy to be
defined. Observe that well-founded delayed simulation guarantees that for
all v → v′ and w → w′, v′ Rγ (v

′,w′,k) w′.
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• (v, w) ∈ V� ×V
�
. Duplicator plays twice in the delayed simulation game.

According to the well-founded delayed simulation, there exist v → v′ and
w → w′ such that v′ Rγ (v

′,w′,k) w′. Duplicator plays such moves.

• (v, w) ∈ V� × V�. In the delayed simulation game, Spoiler is to move
first, say w → w′. From the well-founded delayed simulation, we find that
for all such moves, there exists some v → v′ such that v′ Rγ (v

′,w′,k) w′.
Duplicator plays to this w′.

It remains to be shown that for all configurations (v, w, k) such that v Rk w,
this Duplicator -strategy is, indeed, winning for Duplicator . Observe that it suf-
fices to show that, if k 6= X, eventually a configuration (v′, w′,X) is reached.
This follows, since in every round in the game above moves are made from
(v, w, k) to (v′, w′, k′) such that (v′, w′, k′)<·(v, w, k). Since <· is a well-founded
order, this can only be repeated finitely many times, and eventually all obliga-
tions are met.

Before we show the converse, we first show that a winning strategy for player
Duplicator in the delayed simulation game induces a well-founded order on those
configurations won by Duplicator .

Lemma 10. The winning strategy for Duplicator in the delayed simulation
game induces a well-founded order on V × V ×K for those (v, w, k) for which
Duplicator wins position (v, w) with obligation k.

Proof. Observe that the delayed simulation game has a Büchi winning condition.
Hence those configurations in the game play that Duplicator can win, can be
won using a memoryless strategy. For the remainder of the proof, fix such a
winning memoryless strategy.

For each position (v, w) and obligation k that is won by Duplicator , we
extract a finite tree from the solitaire game that is induced by Duplicator ’s
strategy by taking the (infinite) unfolding of the game starting in (v, w, k), and
pruning each branch at the first node with obligation X. Since the strategy is
Duplicator -winning, this tree is finite. Furthermore, if (v, w, k) appears in the
tree of a different configuration, the subtree rooted in (v, w, k) in that particular
subtree is identical to the tree of (v, w, k).

These trees determine a well-founded order<·when we set (v′, w′, ℓ)<·(v, w, k)
iff the height of the tree rooted in (v′, w′, ℓ) is less than that of the tree rooted
in (v, w, k).

The following corollary immediately follows from the existence of the well-
founded order.

Corollary 1. In the delayed simulation game, for every position (v, w) with ob-
ligation k from which Duplicator has a winning strategy, if the game proceeds ac-
cording to this strategy to some position (v′, w′) with obligation ℓ = γ(v′, w′, k),
we have k = X or (v′, w′, ℓ)<·(v, w, k).

Finally, we show that any delayed simulation is also a well-founded delayed
simulation.

Lemma 11. For v, w ∈ V , v ⊑de w implies v ≤de w.
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Proof. Let R ⊆ V ×K × V be such that v Rk w if Duplicator wins the delay
simulation game from (v, w) with obligation k. Observe that, in particular, since
v ⊑de w, we have v Rγ (v,w,X) w. We show that R is a well-founded delayed
simulation.

For configurations (v, w) with obligation k, Duplicator has a winning strategy.
Since the delay simulation game has a Büchi winning condition, Duplicator also
has a memoryless winning strategy. For the remainder of the proof, fix this
strategy. Observe that a well-founded order on configurations won by Duplic-
ator exists, according to Lemma 10.

Next we show that this relation satisfies the transfer conditions. Let v, w, k
be arbitrary, such that v Rk w. We distinguish four cases.

• (v, w) ∈ V
�
×V

�
. According to Definition 8, for all moves v → v′ made by

Spoiler , Duplicator matches with a move w → w′, and the game continues
from configuration (v′, w′) with obligation ℓ = γ(v′, w′, k). Since Duplic-
ator ’s strategy is winning from (v, w) with obligation k, the strategy is
also winning from (v′, w′) with obligation ℓ hence v′ Rℓ w′. Furthermore,
if k 6= X we have (v′, w′, ℓ)<·(v, w, k) according to Corollary 1.

• (v, w) ∈ V
�
×V�. For all moves v → v′ and w → w′ made by Spoiler , the

game continues from configuration (v′, w′) with obligation ℓ = γ(v′, w′, k)
from which again Duplicator ’s strategy is winning, hence v′ Rℓ w′, and
again we have (v′, w′, ℓ)<·(v, w, k) if k 6= X according to Corollary 1.

• (v, w) ∈ V� × V
�
. Duplicator plays a move w → w′ and v → v′ and

continues from (v′, w′) with obligation ℓ = γ(v′, w′, k), from which her
strategy is again winning, hence v′ Rℓ w′. Using the same argument as
before, also (v′, w′, ℓ)<·(v, w, k) if k 6= X according to Corollary 1.

• (v, w) ∈ V� × V�. For all moves w → w′ made by Spoiler , Duplicator ’s
strategy matches with some v → v′ such that Duplicator wins from (v′, w′)
with obligation ℓ = γ(v′, w′, k). Again (v′, w′, ℓ)<·(v, w, k) if k 6= X, hence
w →

�
{w′ ∈ V | ∃v → v′ : ℓ = γ(v′, w′, k) ∧ v′ Rℓ w′ ∧ (k = X ∨

(v′, w′, ℓ)<·(v, w, k))}.

In each of the cases above, the requirements for well-founded delayed simulation
are satisfied, hence R is a well-founded delayed simulation relation, and v ≤de
w.

The following theorem, stating that delayed simulation and well-founded
delay simulation coincide, now follows directly.

Theorem 3. For all v, w ∈ V we have v ⊑de w if and only if v ≤de w.

Proof. Follows immediately from lemmata 9 and 11.

5.2.1 Biased delayed simulations.

As observed in [22], quotienting is problematic for delayed simulation: no sens-
ible definition of quotienting appears to exist such that it guarantees that the
quotient is again delayed simulation equivalent to the original game. Fritz and
Wilke ‘mend’ this by introducing two variations (so called biased delayed simula-
tions) on delayed simulation which do permit some form of quotienting although
these are not unique. We briefly describe these variations below.

18



Even-biased delayed simulation. The even-biased delayed simulation game,
and its coinductive variant, are identical to their delayed simulation and well-
founded delayed simulation counterparts. The only difference lies in the update
function on obligations. Given two priorities and an existing obligation, a new
obligation is obtained using the update function γe : N× N×K → K, where:

γe(n,m, k) =











k if m 4 n, n odd, n ≤ k,

and (m odd or k < m)

γ(n,m, k) otherwise

We again abbreviate γe(Ω(v),Ω(w), k) by γe(v, w, k).
Using the new update function in the delayed simulation game ensures that

a pending obligation is only changed back to X by a small even priority; a small
odd priority does not change the obligation. We say that v is even-biased delayed
simulated by w, denoted v ⊑ede w iff Duplicator has a winning strategy from
(v, w) with obligation γe(v, w,X) in the even-biased delayed simulation game.

Likewise, we obtain well-founded, even-biased delayed simulation by repla-
cing all occurrences of γ by γe in Definition 10. Vertex v is well-founded, even-
biased delayed simulated by w, denoted v ≤ede w, iff there exists a well-founded,
even-biased delayed simulation preorder R such that v Rγ

e(v,w,X) w.

Odd-biased delayed simulation. Odd-biased delayed simulation is defined
in a similar way as the even-biased delayed simulation. Instead of small even
priorities leading to an update of a pending obligation, small odd priorities lead
to a change in the obligation. Given two priorities and an existing obligation,
a new obligation is obtained using the update function γo : Ω × Ω × K → K,
where:

γo(n,m, k) =











k if m 4 n,m even,m ≤ k,

and (n even or k < n)

γ(n,m, k) otherwise

The game-based and coinductive definitions are analogous to the even-biased
version.

6 Governed Bisimulation and Governed Stutter-

ing Bisimulation

In this section we consider essentially two notions of bisimulation for parity
games, and some derived notions. First, in Section 6.1, we introduce governed
bisimulation, which was studied under various guises in e.g. [24, 37, 39]. Gov-
erned bisimulation is, as we demonstrate in that section, closely related to direct
simulation. Next, in Section 6.2, governed stuttering bisimulation [12, 15, 37] is
introduced.

6.1 Governed bisimulation

Our definition of governed bisimulation, as presented below, is based on the one
from [39] where it is defined in the closely related setting of Boolean equation
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Figure 4: Parity game in which v2 and v3 are governed bisimilar. Vertices v0,
v1 and v6 are direct simulation equivalent. Vertices v0 and v6 are governed
bisimilar but not strong direct simulation equivalent. Vertices v0 and v1 are
strong direct simulation equivalent, but not governed bisimilar.

systems ; because of its capabilities to relate conjunctive and disjunctive equa-
tions, it was dubbed idempotence identifying bisimulation. It was rephrased for
parity games in [37] and there named governed bisimulation.

Definition 11 (Governed bisimulation). A symmetric relation R ⊆ V ×V is a
governed bisimulation iff v R w implies

• Ω(v) = Ω(w);

• if P(v) 6= P(w), then v′ R w′ for all v′ ∈ v• and w′ ∈ w•;

• for all v′ ∈ v• there is some w′ ∈ w• such that v′ R w′.

Vertices v and w are said to be governed bisimilar, denoted v ↔ w, if and only
if there is a governed bisimulation R such that v R w.

Example 3. In the parity game in Figure 4, we have for all i, vi ↔ vi, and
furthermore, v2 ↔ v3 and v0 ↔ v6. Observe that we have v0 ≡d v1, where
v0 ≤d v1 is witnessed by relation R1 = {(vi, vi) | 0 ≤ i ≤ 5} ∪ {(v0, v1)}, and
v1 ≤d v0 is witnessed by R2 = {(vi, vi) | 0 ≤ i ≤ 5} ∪ (v1, v0), (v4, v2), (v4, v3)}.
We do, however, not have v0 ↔ v1, since the latter would require v4 to be related
to v2, but from v4 the step v2 → v5 cannot be mimicked.

Governed bisimulation is such that vertices owned by different players can
only be related whenever all their successors are. It turns out that this is exactly
what is obtained when imposing a symmetry requirement on direct simulation.
As a result, we have the following theorem.

Theorem 4. We have v ↔w iff there is a symmetric direct simulation relation
R such that v R w.

Proof. We prove both implications separately.

⇒ Let R be a governed bisimulation, and let v, w be arbitrary such that
v R w. Since R is symmetric, it suffices to show that R is a direct
simulation.

– Ω(v) = Ω(w) follows immediately.
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– Suppose v ∈ V
�
. Let v′ ∈ v•. In case w ∈ V� we have v′ R w′ for all

w′ ∈ w• If w ∈ V
�
, there is some w′ ∈ w• such that v′ R w′. Both

cases lead to the desired w
�
→ v′ R.

– Suppose v ∈ V�. We again distinguish two cases. In case w ∈ V
�

we
have for all v′ ∈ v• and w′ ∈ w•, v′ R w′, i.e. w

�
→ v• R. Suppose

w ∈ V�. Pick an arbitrary w′ ∈ w•. Since R is symmetric, also
w R v. Hence, there exists a v′ ∈ v• such that w′ R v′, which implies
v′ R w′. Thus, both cases lead to w

�
→ v• R.

⇐ Let R be a symmetric direct simulation relation. Pick arbitrary v, w for
which v R w.

– Ω(v) = Ω(w) follows immediately.

– Suppose P(v) 6= P(w). Because R is symmetric, we may assume,
without loss of generality, that v ∈ V

�
and w ∈ V�. Pick an arbitrary

v′ ∈ v•. Since R is a direct simulation, we find w
�
→ v′ R. As

w ∈ V�, we thus find that v′ R w′ for all w′ ∈ w•.

– Let v′ ∈ v•. By the previous case, it suffices to consider only the
case that P(v) = P(w). Suppose v, w ∈ V

�
. Then w

�
→ v′ R; i.e.

there is some w′ ∈ w• such that v′ R w′. Now assume v, w ∈ V�.
By symmetry, we have w R v. Then we have v

�
→w• R. Thus,

for every v′′ ∈ w• there is some w′ ∈ w• such that w′ R v′′. In
particular, we have w′ R v′ for some w′ ∈ w•. By symmetry, we then
also have v′ R w′ for some w′ ∈ w•.

As a consequence, we immediately find that governed bisimilarity is an equi-
valence relation.

Theorem 5. ↔ is an equivalence relation on parity games.

Proof. Follows from combining Theorem 4 and Proposition 1.

Additionally, we immediately obtain a game-based definition for governed
bisimulation: we only need to require that Spoiler can switch to a symmetric
position in the game play.

Definition 12 (Governed bisimulation game). The governed bisimulation game
is played on configurations drawn from V × V , and it is played in rounds. A
round of the game proceeds as follows:

1. Spoiler chooses (u0, u1) ∈ {(v, w), (w, v)};

2. The players move from (u0, u1) according to the rules in Table 1

3. Play continues in the next round from the newly reached position.

An infinite play (v0, w0), (v1, w1), . . . is won by Duplicator if Ω(vj) = Ω(wj) for
all j, i.e., Duplicator was able to mimic every move from Spoiler with a move
to a vertex with equal priority. In all other cases Spoiler wins the play.

We write v ≡g w whenever Duplicator has a winning strategy from (v, w) in
the governed bisimulation game.

Theorem 6. For all v, w ∈ V , we have v ↔w if and only if v ≡g w.

Proof. Along the lines of the proof of Theorem 2.
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Strong Bisimulation. If we again impose the additional constraint on gov-
erned bisimulation that we do not allow to relate vertices owned by different
players, we obtain a notion called strong bisimulation [37]. The derived notion
of strong bisimilarity, denoted v ↔ w and defined as v ↔ w iff there is some
strong bisimulation relation that relates v and w, is an equivalence relation.

6.2 Governed stuttering bisimulation

The (bi)simulation games discussed so far all have in common that the game-
play proceeds in ‘lock-step’: Duplicator must match every move proposed by
Spoiler with a proper countermove. In a sense, this ignores the fact that the
parity condition is not sensitive to finite repetitions of priorities but only cares
about infinite repetitions. The insensitivity of the parity condition to finite
repetitions is reminiscent to the notion of stuttering in process theory. Indeed,
as we demonstrate in what follows, governed bisimulation can be weakened such
that it becomes insensitive to finite stuttering, but remains sensitive to infinite
stuttering. The resulting relation is called governed stuttering bisimulation.

Essentially, governed stuttering bisimulation is obtained by porting stutter-
ing equivalence for Kripke structures to the setting of parity games. Intuitively,
governed stuttering bisimulation requires that a move from a vertex v to v′ is
matched by a finite (and potentially empty) sequence of moves from w, through
vertices that remain related to v, to arrive at some w′ that is related to v′. In
addition, every divergent play from a vertex v (i.e. a play that remains confined
to a single equivalence class) should be matched with a divergent play from a
related vertex w.

Details, however, are subtle. In stuttering equivalence it suffices to have
the ability to move or diverge and match such moves or divergences with some
move or a divergence. In contrast, in the parity game setting we are concerned
with player’s capabilities. Only moves and divergences that can be forced by a
player count, and matching of such moves and divergences must be done through
moves or divergences that the same player can force. Figure 5 illustrates some
of these concepts. While in the depicted parity game there is an infinite play
that passes through the two left-most vertices with priority 0, neither even nor
odd can force such an infinite play. As a result, we may ignore such infinite
plays, and in this sense, the abilities (for both players) from those two vertices
are no different from the abilities both players have from the two right-most
vertices with priority 0.

0

v0

0

v1

1

v2

0

v3
0

v4

Figure 5: Equal priorities are related by ∼. Neither player can force play to
visit only vertices with priority 0.

The definition of governed stuttering bisimulation presented below is based
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on [12, 15]. For our definition, we strongly rely on our notation to denote that
a player is able to ‘force play’.

Definition 13 (Governed stuttering bisimulation). Let R ⊆ V × V be an
equivalence relation. Then R is a governed stuttering bisimulation if and only
if v R w implies

a) Ω(v) = Ω(w);

b) v → C implies w P(v) 7→R C, for all C ∈ V/R \ {[v]R}.

c) v i 7→R implies w i 7→R for i ∈ { �,�}.

Vertices v and w are governed stuttering bisimilar, denoted v ∼w, iff a governed
stuttering bisimulation R exists such that v R w.

Example 4. The parity game in Figure 5 nicely illustrates the key properties
of governed stuttering bisimulation: for vj in {v0, v1, v3, v4} we have neither
vj �

7→∼ nor vj � 7→∼. Furthermore, for all these vertices, both players can force
the game to reach vertex v2. Therefore, all vertices with the same priorities are
related by ∼. Also note that the vertices with priority 0 are not related by, e.g.,
governed bisimulation since the latter is sensitive to counting, and v0 and v1
can reach multiple equivalence classes.

Proving that governed stuttering bisimilarity is an equivalence relation that
is again a governed stuttering bisimulation relation is technically involved. In
particular, all standard proof techniques for doing so break down or become
too complex to manage. Instead of a large monolithic proof of the result, we
proceed in small steps by gradually rephrasing the above definition to one that
is ultimately more easily seen to be an equivalence. Our first step in this dir-
ection is to remove the asymmetry in clause b) of the definition of governed
stuttering bisimulation. Before we do so, we state a useful lemma that allows
us to strengthen the conclusion of Lemma 7.

Lemma 12. Let R be a governed stuttering bisimulation. Let U ⊆ V/R \{[v]R}.
If v• ⊆

⋃

U , then u• \ [v]R ⊆
⋃

U for all u ∈ [v]R.

Proof. Let v be such that v → U for some U ⊆ V/R \ {[v]R}. Suppose u→ C for
some C /∈ U ∪ {[v]R}. Since v ∼ u, by Definition 13, we have v P(u) 7→R C. But
v• ⊆

⋃

U and C /∈ U so v P(u) 67→R C. Contradiction.

Theorem 7. Let R ⊆ V × V and v, w ∈ V . Then R is a governed stuttering
bisimulation iff R is an equivalence relation and v R w implies:

a) Ω(v) = Ω(w);

b) v i 7→R C iff w i 7→R C for all i ∈ { �,�}, C ∈ V/R \ {[v]R};

c) v i 7→R iff w i 7→R for all i ∈ { �,�}.

Proof. The proof for the implication from right to left follows immediately.
We focus on the implication from left to right. Assume that R is a governed
stuttering bisimulation. We prove the second condition only; the other two
conditions follow immediately from Definition 13 and symmetry ofR. Let i be an
arbitrary player and assume that v i 7→R C for given v ∈ V and C ∈ V/R \{[v]R}.
Let S = {u ∈ [v]R | u• ∩ C 6= ∅}. We distinguish two cases.
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• Case Vi ∩ S 6= ∅. Let u ∈ S ∩ Vi . Since u → C, w i 7→R C follows from
Definition 13.

• Case S ⊆ V¬i . By Lemma 7, there is a u ∈ S for which u• ⊆ C and by
Lemma 12 (for U = {C}), u• \ [v]R ⊆ C for all u ∈ [v]R. Furthermore, by
Lemma 5, v i 7→R C implies v ¬i 67→R. Then, by Definition 13, w ¬i 67→R and
by Lemma 5, w i 7→R V \ [v]R. But since u• ⊆ C∪ [v]R for all u, the desired
w i 7→R C follows from Lemma 8.

While the above alternative characterisation of governed stuttering bisimu-
lation is now fully symmetric, the restriction on the class C that is considered
in clause b) turns out to be too strong to facilitate an insightful proof that ∼ is
an equivalence relation. We therefore further generalise this clause such that it
is phrased in terms of sets of classes.

A perhaps surprising side-result of this generalisation is that the divergence
requirement of clause c) becomes superfluous. Note that this generalisation
is not trivial, as v i 7→R{C1, C2} is in general neither equivalent to saying that
v i 7→R C1 and v i 7→R C2, nor v i 7→R C1 or v i 7→R C2.

Theorem 8. Let R ⊆ V × V and v, w ∈ V . Then R is a governed stuttering
bisimulation iff R is an equivalence relation and v R w implies:

a) Ω(v) = Ω(w);

b) v i 7→R U iff w i 7→R U for all i ∈ { �,�},U ⊆ V/R \ {[v]R}.

Proof. We show that the second condition is equivalent to the conjunction of
the last two conditions in Theorem 7. We split the proof into an if -part and an
only-if -part.

⇐ The second condition from Theorem 7 is equivalent to the second condition
above if we let U range only over singleton sets (if v i 7→R C, take U = {C}).
The third condition is equivalent to the second condition above, where
U = V/R \ {[v]R}. This can be seen by appealing to Lemma 5.

⇒ Let R be a governed stuttering bisimulation and let v, w ∈ V such that
v R w. Assume that v i 7→R U for some U ⊆ V/R \ {[v]R}. Let S = {u ∈
[v]R | u → U}. By Lemma 7, either S ∩ Vi 6= ∅ or there is some u ∈ S
such that u• ⊆ U . We consider both cases separately.

– Case S ∩ Vi 6= ∅. Pick some u from this set. There is a class C ∈ U
such that u→ C (in particular, u i 7→R C since u ∈ Vi). By Theorem 7
then also w i 7→R C, from which w i 7→R U follows immediately.

– Case S ∩ Vi = ∅. Then u• ⊆ U for some u ∈ S, but then, by
Lemma 12, t• \ [v]R ⊆ U for all t ∈ [v]R. From v i 7→R U we derive,
using Lemma 5, that not v ¬i 7→R . By Theorem 7 it follows that not
w ¬i 7→R , and by Lemma 5 again w i 7→R V \[v]R . Since for all t ∈ [v]R,
t• ⊆ [v]R ∪

⋃

U and
⋃

U ⊆ V \ [v]R , by Lemma 8, also w i 7→R U .

In the previous theorem, we lifted the notion of forcing play via the current
equivalence class towards a target class, to the notion of forcing a play via the
current equivalence class towards a set of target classes. This is still not sufficient
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for easily proving transitivity of governed stuttering bisimulation. Therefore, in
the theorem below, we introduce a final generalisation; rather than forcing play
towards a set of target classes via the current equivalence class, we now allow
the play to be forced to that set via a set of equivalence classes.

Theorem 9. Let R ⊆ V × V and v, w ∈ V . Then R is a governed stuttering
bisimulation iff R is an equivalence relation and v R w implies:

a) Ω(v) = Ω(w);

b) v i 7→U T iff w i 7→U T for all i ∈ { �,�},U , T ⊆ V/R such that [v]R ∈ U
and [v]R /∈ T .

Proof. We show that the second condition is equivalent to the second condition
in Theorem 8. We split the proof into an if -case and an only-if -part.

⇐ The second condition from Theorem 8 is equivalent to the second condition
above if we fix U = {[v]R}.

⇒ Let R be a governed stuttering bisimulation and let i, v, w,U and T be
as described. Assume that v i 7→U T ; under this assumption we will prove
that w i 7→U T . The proof for the implication in the other direction is
completely symmetric. Let σ ∈ Si be such that v σ 7→U T and consider the
set of paths originating in v that are allowed by σ. All these paths must
have a prefix v . . . v′, u such that v, . . . , v′ /∈

⋃

T but u ∈
⋃

T . Call these
prefixes the σ-prefixes of v.

We proceed by induction on the length of the longest such prefix. If the
longest prefix has length 2, then all prefixes have length 2, implying that
v i→T . In particular, v i 7→R T and by Theorem 8 also w i 7→R T , which
proves w i 7→U T .

As the induction hypothesis, assume that if u R u′, u σ 7→U T and the
longest σ-prefix of u is shorter than the longest σ-prefix of v, then u′ i 7→U T .
Note that every σ-prefix p of v must have a first position n such that
p[n] /∈ [v]R . Collect all these p[n] in a set U , and notice that for all u ∈ U ,
also u σ 7→U T . Furthermore, v σ 7→R U .

By Theorem 8, w i 7→R [U ]R . Now consider an arbitrary u′ ∈
⋃

[U ]R . Be-
cause there is some u ∈ U such that u R u′, its longest σ-prefix is shorter
than the longest σ-prefix of v, and because u σ 7→U T for such u, we can
use the induction hypothesis to derive that u′ i 7→U T .

The above in particular implies two facts: w i 7→U [U ]R , and u′ i 7→U T for
all u′ ∈

⋃

[U ]R . Using these, we can now apply Lemma 6 to conclude
w i 7→U T .

With this last characterisation, it is now straightforward to prove that gov-
erned stuttering bisimilarity is an equivalence relation. We do so by showing
that the transitive closure of the union of two governed stuttering bisimulations
R and S is again a governed stuttering bisimulation. The generalisation from
classes to sets of classes allows us to view equivalence classes in (R ∪ S)∗ as
the union of sets of equivalence classes of R (or S), giving us an easy way to
compare the effect of the second requirement of Theorem 9 on (R∪S)∗ with its
effect on R and S.
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Theorem 10. ∼ is an equivalence relation.

Proof. We show that (R ∪ S)∗ is a governed stuttering bisimulation if R and S
are, by showing that (R∪S)∗ satisfies the conditions of Theorem 9 if R and S do.
If v, w ∈ V are related under (R ∪ S)∗, then there exists a sequence of vertices
u0, . . . , un such that v R u0 S . . . R un S w (the strict alternation between
the two relations can always be achieved because R and S are reflexive). By
transitivity of = we then have Ω(v) = Ω(w), so the first property is satisfied.

For the second property, assume that v i 7→U T for some i ∈ { �,�} and some
U , T ⊆ V/(R∪S)∗ such that [v](R∪S)∗ ∈ U and [v](R∪S)∗ /∈ T . We need to prove
that w i 7→U T . Note that R and S both refine (R ∪ S)∗, so we can find sets
UR ⊆ V/R and US ⊆ V/S such that

⋃

UR =
⋃

US =
⋃

U . Because v i 7→U T , also
v i 7→UR

T , and by Theorem 9 then u0 i 7→UR
T , which is equivalent to u0 i 7→US

T .
By a simple inductive argument we now arrive at w i 7→US

T , which is equivalent
to w i 7→U T .

As a side-result of the proof of Theorem 10, we find that the union of all
governed stuttering bisimulations is again a governed stuttering bisimulation,
which coincides with governed stuttering bisimilarity.

In order to better understand the differences between governed stuttering
bisimulation and, e.g. delayed simulation equivalence, we next provide a game-
based characterisation of the relation. While in this new game, Spoiler and Du-
plicator still move according to the same rules as in the delayed simulation game,
Duplicator now has more freedom to choose a new configuration: she can now
also choose to ‘roll-back’ one of the proposed moves. This allows her to postpone
matching a move. Of course, such moves may not be postponed indefinitely, so
some additional mechanism is needed to keep track of Duplicator ’s progress so
as to prevent Duplicator from becoming too powerful. For this, we use a system
of challenges and rewards: a †-challenge indicates Duplicator decided to match
a move by Spoiler by not moving; a X-reward indicates Duplicator matched a
move by Spoiler by making a countermove, and a challenge (k, u) taken from
{0, 1} × V indicates that Duplicator is in the process of matching a move to
vertex u. We let C denote the set of challenges ({0, 1} × V ) ∪ {†,X}.

Definition 14 (Governed Stuttering bisimulation game). The governed stut-
tering bisimulation game is played on an arena of configurations drawn from
(V × V ) × C, and it is played in rounds. A round of the game starting in a
configuration ((v, w), c) proceeds as follows:

1. Spoiler chooses to play from (u0, u1) ∈ {(v, w), (w, v)};

2. the players move from (u0, u1) to (t0, t1) according to the rules in Table 1;

3. Duplicator selects a new configuration drawn from the following set:

{((t0, t1),X), ((u0, t1), γ(c, (0, t0), v, u0)), ((t0, u1), γ(c, (1, t1), w, u1))}

where update γ is defined as follows:

γ(c, c′, u, t) =







c′ if Spoiler played on t, u = t and c ∈ {†,X, c′}
X if u 6= t, or Spoiler played on t and c /∈ {†,X, c′}
† otherwise
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An infinite play ((v0, w0), c0), ((v1, w1), c1), . . . is won by Duplicator if and
only if Ω(vj) = Ω(wj) for all j and ck = X for infinitely many k. Duplicator
wins the governed stuttering bisimulation game for a position (v, w) iff she has
a strategy that wins all plays starting in configuration ((v, w),X).

We write v ≡g,st w whenever Duplicator wins the governed stuttering bisim-
ulation game for position (v, w).

Observe that in the governed stuttering game, Duplicator earns, as explained
before, a X reward whenever she continues playing in the position determined
at the end of step 2. However, she also earns a X whenever Spoiler decides to
drop a pending challenge or, in step 1 of a round, switch positions. The example
below illustrates some of the intricacies in the game play.

Example 5. Consider the parity game depicted in Figure 5. In this parity game,
all vertices with priority 0 are related by ∼. The game illustrates why Duplicator
gains a X reward whenever Spoiler does not respect a pending challenge. This
can be seen as follows: consider the game starting in ((v1, v3),X) and suppose
Spoiler decides to play v1 → v2. The only suitable response by Duplicator is
to play v3 → v4. New configurations ((v2, v4),X) and ((v2, v3,X)) are not an
option for Duplicator since he immediately loses due to the different priorities
of v2 and v4 or v3 respectively. The new configuration chosen by Duplicator will
hence be ((v1, v3), (0, v2)), challenging Spoiler to play v1 → v2 again in the next
round. From this configuration, if Spoiler indeed plays v1 → v2, Duplicator can
match with v4 → v2, and play stays in ((v2, v2),X) indefinitely, leading to a win
from duplicator. Now, let us consider what happens if Spoiler plays v1 → v0
instead. Spoiler did not respect the challenge, and Duplicator matches with
v4 → v3, and we end up in ((v1, v3),X) again. If Duplicator would not have
earned a Xreward in this case, play would have ended up in ((v1, v3), (0, v0))
instead, and, if in the next round Spoiler again ignores the challenge, play
can alternate indefinitely between ((v1, v3), (0, v0)) and ((v1, v4), (0, v2)), which
would result in a win for Spoiler . This is undesirable since we already observed
that v1, v3 and v4 are governed stuttering bisimilar.

For the remainder of this section we turn our attention to proving that the
governed stuttering bisimulation game and governed stuttering bisimulation co-
incide. Our next result states that whenever vertices v, w are governed stutter-
ing bisimilar, Duplicator wins all plays starting in configuration ((v, w),X). We
sketch the main ideas behind the proof; details can be found in the Appendix.

Proposition 3. For all v, w ∈ V if v ∼w then v ≡g,st w.

Proof. The proof proceeds by showing that Duplicator has a strategy that en-
sures 1) that plays allowed by this strategy move along configurations of the
form ((u0, u1), c) for which u0 ∼ u1 and 2) Duplicator never gets stuck playing
according to this strategy and 3) there is a strictly decreasing measure between
two consecutive non-X configurations on any play allowed by this strategy. To-
gether, this implies that Duplicator has a winning strategy for configurations
((v, w),X).

We next establish that vertices related through the governed stuttering
bisimulation game are related by governed stuttering bisimulation. A straight-
forward proof thereof is hampered by the fact that any purported governed
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stuttering bisimulation relation is, by definition, required to be an equivalence
relation. However, proving that the governed stuttering bisimulation game in-
duces an equivalence relation is rather difficult. The strategy employed to prove
the stated result is to use contraposition; this requires showing that for any given
pair of non-governed stuttering bisimilar vertices we can construct a strategy
that is winning for Spoiler . Note that we can do so because the governed stut-
tering bisimulation game has a Büchi winning condition, which implies the game
is determined. This strategy is based on a fixpoint characterisation of governed
stuttering bisimilarity, given below.

Definition 15. Let R ⊆ V ×V be an equivalence relation on V . The predicate
transformer F : V × V → V × V is defined as follows:

F(R) = {(v, w) ∈ R | Ω(v) = Ω(w) ∧ ∀i ∈ { �,�},U , T ⊆ V/R :
[v]R ∈ U ∧ [v]R /∈ T =⇒ v i 7→U T ⇔ w i 7→U T }

The predicate transformer F has the following properties.

Lemma 13. F(R) is an equivalence relation for any equivalence relation R on
V .

Proof. Let R be an equivalence relation over V . Reflexivity of F(R) follows
from the fact that R is reflexive. Symmetry of F(R) follows from symmetry of
R and from the fact that for all (v, w) ∈ R we have [v]R = [w]R. For transitivity,
we observe that for all pairs (u, v), (v, w) ∈ F(R) and all U , T for which [u]R ∈ U
and [u]R /∈ T , if u i 7→U T then also v i 7→U T . Since [u]R = [v]R, we immediately
conclude w i 7→U T . The implication from right to left follows from symmetric
arguments. Thus, F(R) is an equivalence relation.

Lemma 14. F is a monotone operator on the complete lattice of equivalence
relations on V .

Proof. By the previous lemma, it follows that F is an operator on the lattice of
equivalence relations on V . We next show that the operator is monotone. Let
R,S be arbitrary equivalences on V . Suppose R ⊆ S, and consider some pair
(v, w) ∈ F(R). From this, it follows that Ω(v) = Ω(w). Let i ∈ { �,�}, U , T ⊆
V/S , such that [v]S ∈ U and [v]S /∈ T . Define Ū as the set {[u]R | [u]S ∈ U} and
define T̄ as the set {[u]R | [u]S ∈ T }. Since (v, w) ∈ F(R), we have:

v i 7→Ū T̄ ⇔ w i 7→Ū T̄

Since
⋃

Ū =
⋃

U and
⋃

T̄ =
⋃

U , we immediately have:

v i 7→U T ⇔ w i 7→U T

This proves that (v, w) ∈ F(S). Thus F is a monotone operator.

Corollary 2. We have ∼ = νF .

Proof. Follows from the fact that for R = νF and νF = F(νF) the definition
of F reduces to the definition of governed stuttering bisimulation.

We finally state our completeness result. Again, we only outline the main
steps of the proof; details can be found in the Appendix.
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Proposition 4. For all v, w ∈ V if v ≡g,st w then v ∼w.

Proof. We essentially prove the contrapositive of the statement, i.e. for all
v, w ∈ V , if v 6∼ w, then also v 6≡g,st w. Let v 6∼ w. By Corollary 2, then also
(v, w) /∈ νF . By the Tarski-Kleene fixpoint approximation theorem, we thus
have (v, w) /∈

⋂

k≥1

Fk(V ×V ). Using induction, one can prove, for Rk =
⋂

l≤k R
l,

that for all k ≥ 1:

Spoiler wins the governed stuttering bisimulation game
for all configurations ((u0, u1), c) for which (u0, u1) /∈ Rk

(IH)

For the inductive case, one can construct a strategy for Spoiler that guarantees
he never gets stuck and for which every play allowed by the strategy either 1)
visits some configuration ((t0, t1), c

′) for which the induction hypothesis applies,
or 2) is such that there are only a finite number of X rewards along the play.

Propositions 3 and 4 lead to the following theorem.

Theorem 11. For all v, w ∈ V we have v ∼w iff v ≡g,st w.

Stuttering Bisimulation. When we impose the additional constraint on gov-
erned stuttering bisimulation that we do not allow to relate vertices owned by
different players, we obtain a notion called stuttering bisimulation [14]. The
derived notion of stuttering bisimilarity, denoted v ≃ w and defined as v ≃ w
iff there is some stuttering bisimulation relation that relates v and w, is an
equivalence relation.

7 Quotienting

Simulation and bisimulation equivalences are often used to reduce the size of
graphs by factoring out vertices that are equivalent, i.e. by computing quotient
structures. This can be particularly interesting if computationally expensive
algorithms must be run on the graph: whenever the analysis such algorithms
perform on the graphs are insensitive to (bi)simulation equivalence, they can be
run on the smaller quotient structures instead. In our setting, the same reas-
oning applies: typically, parity game solving is expensive and it may therefore
pay off to first compute a quotient structure and only then solve the resulting
quotient structure.

In this section, we show that most of the (bi)simulation relations we studied
in the previous two sections have unique quotient structures. A fundamental
property of quotienting is that the resulting quotient structure of a game should
again be equivalent to the original game. This requires that we lift the equi-
valences defined on game graphs to equivalences between two different game
graphs. We do so in the standard way.

Definition 16. Let Gj = (Vj ,→j ,Ωj ,Pj), for j = 1, 2, be arbitrary parity
games. We say that G1 ∼ G2, for an equivalence relation ∼ defined on the
vertices of a parity game, whenever in the disjoint union of G1 and G2, for all
v1 ∈ V1 there is some v2 ∈ V2 such that v1 ∼ v2 and for all v̄2 ∈ V2 there is
some v̄1 ∈ V1 such that v̄1 ∼ v̄2.
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7.1 Simulation Equivalence Quotients

Quotienting for delayed simulation equivalence is, as observed in [21, 22], prob-
lematic, and only the biased versions admit some form of quotienting. However,
the quotients for biased delayed simulation equivalences are not unique, see also
Lemma 3.5 in [21]. We therefore only consider quotienting for direct simulation
equivalence.

The equivalence classes of direct simulation equivalence determine the set
of vertices of the quotient structure. Defining the transition relation of the
quotient structure is a bit more subtle. As observed in [10], a unique quotient
structure of simulation equivalence for Kripke structures exists, but requires
that vertices have no transitions to a pair of vertices, one of which is sometimes
referred to as a ‘little brother’ of the other one (a vertex that is simulated by,
but not equivalent to the other vertex).

While in the setting of Kripke structures, only transitions to maximal suc-
cessor vertices must be retained, depending on the owner of the source vertex,
we need to consider maximal or minimal successor vertices.

Definition 17. Let V ′ ⊆ V be an arbitrary non-empty set of vertices. An
element v is:

• minimal among V ′ iff for all u ∈ V ′ for which u ≤d v, also v ≤d u;

• maximal among V ′ iff for all u ∈ V ′ for which v ≤d u, also u ≤d v.

For a given vertex v, a successor v′ ∈ v• is in the set min≤d
(v) iff v′ is minimal

among v•; likewise, v′ ∈ v• is in the set max≤d
(v) iff v′ is maximal among v•.

Since ≤d is a preorder, min≤d
(v) and max≤d

(v) are non-empty sets.
An additional complication in defining a unique quotient structure is that a

single equivalence class may contain vertices owned by even and vertices owned
by odd . It turns out that the owner of such equivalence classes can be chosen
arbitrarily: we prove that such classes have a unique successor equivalence class.
For equivalence classes with exactly one successor, we can assign a unique owner;
we choose to assign such classes to player even.

Definition 18 (Direct simulation equivalence quotient). The direct simulation
equivalence quotient of (V,→,Ω,P) is the structure (V/≡d

,→′,Ω′,P ′), where,
for C, C′ ∈ V/≡d

:

• Ω′(C) = min{Ω(v) | v ∈ C},

• P ′(C) =

{

� if C ⊆ V� and for all u ∈ C, |[min≤d
(u)]≡d

| > 1

� otherwise

• C →′ C′ iff

{

∀v ∈ C : ∃v′ ∈ min≤d
(v) : v′ ∈ C′ if C ⊆ V�

∀v ∈ C ∩ V
�
: ∃v′ ∈ max≤d

(v) : v′ ∈ C′ otherwise

Observe that it is not obvious that →′ is a total edge relation. The lemma
below allows us to establish that this is the case.

Lemma 15. Let C ∈ V/≡d
. Then:
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• If C ⊆ V� then [min≤d
(v)]≡d

= [min≤d
(w)]≡d

for all v, w ∈ C,

• If C ⊆ V
�

then [max≤d
(v)]≡d

= [max≤d
(w)]≡d

for all v, w ∈ C,

• If C 6⊆ V� and C 6⊆ V
�

then for all v ∈ C ∩ V
�

and w ∈ C ∩ V� we have
[max≤d

(v)]≡d
= [min≤d

(w)]≡d
.

Proof. We prove the first and the third statement; the proof for the second
statement is analogous to that of the first.

• Suppose C ⊆ V�. Pick v, w ∈ C. Let v′ ∈ min≤d
(v). Since v′ ∈ v• and

w ≤d v, we have w′ ≤d v′ for some w′ ∈ w•. This implies that there is
some w′′ ∈ min≤d

(w) such that w′′ ≤d v′; for, if w′ /∈ min≤d
(w), then

there must be some w′′ ∈ min≤d
(w) such that w′′ ≤d w′. But then also

w′′ ≤d v
′.

We next show that also v′ ≤d w′′. Since v ≤d w and w′′ ∈ w• we have
v′′ ≤d w′′ for some v′′ ∈ v•. Since w′′ ≤d v′ and v′′ ≤d w′′, we have
v′′ ≤d v′. But since v′ ∈ min≤d

(v), this implies v′ ≡d v′′. But from
v′ ≤d v′′ and v′′ ≤d w′′ we obtain v′ ≤d w′′.

Hence, v′ ≡d w
′′ for some w′′ ∈ min≤d

(w).

• Suppose P(v) 6= P(w) for some v, w ∈ C. Pick v, w ∈ C such that v ∈ V
�

and w ∈ V�. Since w ≤d v, there must be w′ ∈ w• and v′ ∈ v• such that
w′ ≤d v′. Fix such v′ and w′. Since v ≤d w we find that for all v′′ ∈ v•

and w′′ ∈ w• we have v′′ ≤d w′′. In particular, v′ ≤d w′. So v′ ≡d w
′.

Next, since for all w′′ ∈ w• we have v′ ≤d w′′ and v′ ≡d w′, we also
have w′ ≤d w′′ for all w′′ ∈ w•. But this implies w′ ∈ min≤d

(w), and, in
particular, |[min≤d

(w)]≡d
| = 1. Likewise, we can deduce v′ ∈ max≤d

(v)
and |[max≤d

(v)]≡d
| = 1.

We thus find [max≤d
(v)]≡d

= {[v′]≡d
} = {[w′]≡d

} = [min≤d
(w)]≡d

.

As a consequence of the above lemma, we obtain the following two results:

Corollary 3. Let (V/≡d
,→′,Ω′,P ′) be a direct simulation equivalence quotient

of some parity game (V,→,Ω,P). Then for all C, C′ ∈ V/≡d
:

• if C ⊆ V� and for some v ∈ C, v′ ∈ C′ also v′ ∈ min≤d
(v), then C →′ C′.

• if C ∩ V
�
6= ∅ and for some v ∈ C ∩ V

�
, v′ ∈ C′ also v′ ∈ max≤d

(v), then
C →′ C′.

Corollary 4. The direct simulation reduced quotient structure associated to a
parity game (V,→ Ω,P) is again a parity game.

We next establish that the direct simulation quotient of a parity game is
equivalent to the original parity game.

Theorem 12. Let G = (V,→,Ω,P) be a parity game and Gq = (V/≡d
,→′

,Ω′,P ′) its direct simulation quotient. Then Gq ≡d G.

Proof. We first prove Gq ≤d G. Let H ⊆ V/≡d
× V be the relation H = {(C, v) |

∃w ∈ C : w ≤d v}. We prove H is a direct simulation relation. Let C, v be
arbitrary such that (C, v) ∈ H . By definition, there is some w ∈ C such that
w ≤d v. For the remainder of this proof, we fix such a w. Clearly, Ω′(C) = Ω(v)
follows directly from w ≤d v and the fact that for all u, u′ ∈ C we have Ω(u) =
Ω(u′). We next prove the transfer condition. For this, we distinguish four cases.
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• Case P(C) = � and P(v) = �. Let v′ ∈ v•. Since v′ ∈ v•, also w′ ≤d v′

for some w′ ∈ w•. Let w− ∈ min≤d
(w) such that w− ≤d w′. Then by

Corollary 3, C → [w−]≡d
. Moreover, by transitivity, w− ≤d v

′, so we have
([w−]≡d

, v′) ∈ H , as required.

• Case P(C) = � and P(v) = �. Note that P(C) = � implies C ⊆ V�; hence
P(w) = �. But then for some w′ ∈ w•, v′ ∈ v•, we have w′ ≤d v′. Let
v′, w′ be such. Then again for some w− ∈ min≤d

(w) satisfying w− ≤d w′

we have C → [w−]≡d
and by transitivity, we have ([w−]≡d

, v′) ∈ H .

• Case P(C) = � and P(v) = �. Pick C′ ∈ C•. We must show that
(C′, v′) ∈ H for some v′ ∈ v•. Since P(C) = �, there must be some
u ∈ C ∩ V

�
; pick such a u. Since u ≡d w ≤d v, for all u′ ∈ u• ∩ C′ there

is some v′ ∈ v• such that u′ ≤d v′. Hence, there is some v′ ∈ v• such that
(C′, v′) ∈ H .

• Case P(C) = � and P(v) = �. Pick C′ ∈ C•. We must show that
(C′, v′) ∈ H for all v′ ∈ v•. Then the argument is similar to the previous
case.

Next, to prove G ≤d Gq, we show that H ⊆ V × V/≡d
, given by H = {(v, C) |

∃w ∈ C : v ≤d w}, is a direct simulation relation. Let C, v be arbitrary such
that (v, C) ∈ H . By definition, there is some w ∈ C such that v ≤d w. We again
fix such a w. Following similar arguments as above, Ω′(C) = Ω(v). We again
prove the transfer condition by distinguishing four cases.

• Case P(C) = � and P(v) = �. Pick v′ ∈ v•. We must show that
(v′, C′) ∈ H for some C′ ∈ C•. We distinguish two cases.

– Case C ⊆ V
�
. Since v ≤d w, also v′ ≤d w′ for some w′ ∈ w•.

Consider w+ ∈ max≤d
(w) such that w′ ≤d w+. Then by Corollary 3,

C → [w+]≡d
. By transitivity v′ ≤d w′ ≤d w+; hence (v′, [w+]≡d

) ∈
H .

– Case C ∩ V� 6= ∅ and C ∩ V
�
6= ∅. Then, by Lemma 15, C → C′ for

some unique C′. Fix this C′. Let u ∈ C ∩ V�. Then u′ ∈ C′ for some
u′ ∈ u•. Pick such a u′. Since u ≡d w, also v ≤d u. As a result,
v′ ≤d u′. Therefore (v′, C′) ∈ H .

• Case P(C) = � and P(v) = �. We must show that (v′, C′) ∈ H for some
v′ ∈ v•, C′ ∈ C•. Then the argument is similar to the previous case.

• Case P(C) = � and P(v) = �. Let v′ ∈ v• and C′ ∈ C•. Since v ≤d w
and P(w) = �, we have v′ ≤d w′ for all w′ ∈ w• ∩ C′. Therefore also
(v′, C′) ∈ H .

• Case P(C) = � and P(v) = �. Let C′ ∈ C• and let w′ ∈ w• ∩ C′. Since
v ≤d w, there must be some v′ ∈ v• such that v′ ≤d w′. Fix this v′. Then
also (v′, C′) ∈ H .

We finally prove that the quotient is unique.

Theorem 13. Let G,G′ be two parity games and let Gq and G′
q be their direct

simulation equivalence quotients, respectively. Then G ≡d G′ iff the two struc-
tures Gq = (V/≡d

,→q,Ωq,Pq) and G′
q = (V ′

/≡d
,→′

q,Ω
′
q,P

′
q) are isomorphic.
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Proof. The proof that isomorphism of Gq and G′
q implies G ≡d G′ follows essen-

tially from Theorem 12 and that isomorphic structures are also direct simulation
equivalent.

The proof that G ≡d G′ implies that Gq and G′
q are isomorphic structures

follows the following steps. Assume that G ≡d G′. Let f ⊆ V ′
/≡d

× V/≡d

be defined as (C′, C) ∈ f iff C′ ≡d C. Note that for all (C′, C) ∈ f we have
Ω′
q(C

′) = Ωq(C).
We first show that f is a total bijective function from V ′

/≡d
to V/≡d

. For
injectivity and functionality of f we reason as follows. Suppose f is not func-
tional. Then there is some v′ ∈ V ′ and two v, v̄ ∈ V such that [v]≡d

6= [v̄]≡d
,

([v′]≡d
, [v]≡d

) ∈ f and ([v′]≡d
, [v̄]≡d

) ∈ f . Then by definition, v′ ≡d v and
v′ ≡d v̄. But then also v ≡d v̄, contradicting that [v]≡d

6= [v̄]≡d
. So f is func-

tional. The proof that f−1 is a function from V/≡d
to V ′

/≡d
is similar. We may

therefore conclude that f is an injective function.
For surjectivity of f , we observe that by definition of G ≡d G′, for each v ∈ V

there is some v′ ∈ V ′ such that v ≡d v
′. Hence, for each [v]≡d

∈ V/≡d
there is

some [v]≡d
∈ V ′

/≡d
such that ([v′]≡d

, [v]≡d
) ∈ f . Similarly, we can show that

f−1 is surjective and therefore f is total bijection.
We next prove that P ′

q(C) = Pq(f(C)). Towards the contrary, assume that
P ′
q(C) = � whereas Pq(f(C)) = � for some C. Then C ⊆ V ′

�
and for all v ∈ C

we have |min≤d
(v)| > 1, and there is some w ∈ f(C) satisfying either w ∈ V

�
,

or |min≤d
(w)| = 1. Let w ∈ f(C) be such and pick an arbitrary v ∈ C. We

distinguish two cases.

• Case w ∈ V
�
. Since w ≡d f(C) ≡d C ≡d v we have w ≤d v in particular.

Pick an arbitrary w′ ∈ w•. Then, since P(v) = �, we have w′ ≤d v
′

for all v′ ∈ v•; more specifically, we have w′ ≤d v′1 and w′ ≤d v′2 for
v′1, v

′
2 ∈ min≤d

(v) such that v′1 6≡d v
′
2. Since v′1, v

′
2 are minimal elements,

we thus also have v′1 ≤d w′ and v′2 ≤d w′ and hence v′1 ≡d w
′ and v′2 ≡d w

′.
But from this we obtain v′1 ≡d v

′
2. Contradiction.

• Case |min≤d
(w)| = 1. Without loss of generality we may assume that

w ∈ V�. Since w ≡d f(C) ≡d C ≡d v we also have w ≤d v. Let v′1, v
′
2 ∈

min≤d
(v) be such that v′1 6≡d v

′
2. Then there must be some w′

1, w
′
2 ∈ w•

such that w′
1 ≤d v′1 and w′

2 ≤d v′2. Let w′
1, w

′
2 be such; without loss of

generality, we may assume that w′
1 and w′

2 are minimal. Since v′1, v
′
2 are

minimal, we find that v′1 ≤d w′
1 and v′2 ≤d w′

2 and hence v′1 ≡d w′
1 and

v′2 ≡d w
′
2. But because v′1 6≡d v

′
2 we have w′

1 6≡d w
′
2. Since w′

1 and w′
2 are

minimal we have |[min≤d
(w)]≡d

| ≥ 2. Contradiction.

Hence, P ′
q(C) = Pq(f(C)).

Finally, we prove that C →′
q C′ iff f(C) →q f(C′). Suppose C →′

q C′ but
not f(C) →q f(C′). Assume P ′

q(C) = Pq(f(C)) = �. The case where P ′
q(C) =

Pq(f(C)) = � is similar. Since C ≡d f(C), there must be some D such that
f(C) →q D and C′ ≤d D. But then also C →′

q C′′ and D ≤d C′′ for some C′′.
Then C′ ≤d C′′. Distinguish two cases:

• Case C′ = C′′. Then f(C′) = f(C′′) = D, contradicting our assumption
that f(C) 6→q f(C′).

• Case C′ 6= C′′. Then we have C →′
q C′ and C →′

q C′′ and C′ ≤d C′′. But
this means that vertices in C′ are not maximal. Hence, G′

q does not have
a transition C →′

q C
′.
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Corollary 5. The direct simulation equivalence quotient of G is a unique (up-to
isomorphism) parity game direct simulation equivalent to G.

7.2 Governed Bisimulation and Governed Stuttering Bisim-

ulation Quotients

We first define the governed bisimilarity quotients and claim some elementary
results of these. We then define the governed stuttering bisimilarity quotient.

Definition 19 (Governed bisimulation quotient). The governed bisimulation
quotient of (V,→,Ω,P) is the structure (V/↔,→

′,Ω′,P ′), where, for C, C′ ∈ V/↔:

• Ω′(C) = min{Ω(v) | v ∈ C},

• P ′(C) =

{

� if C ⊆ V� and for all u ∈ C, |[u•]↔| > 1

� otherwise

• C →′ C′ if and only if ∀v ∈ C : ∃v′ ∈ v• : v′ ∈ C′

Theorem 14. Let G = (V,→,Ω,P) be a parity game and Gq = (V/↔,→
′,Ω′,P ′)

be its governed bisimulation quotient. Then G ↔ G′.

Proof. Follows from the fact that the relation R = {(v, C), (C, v) | v ∈ C}, is a
governed bisimulation relation.

Theorem 15. Let G,G′ be two parity games and let Gq and G′
q be their direct

simulation equivalence quotients, respectively. Then G ↔ G′ iff the two structures
Gq = (V/↔,→q,Ωq,Pq) and G′

q = (V ′
/↔,→

′
q,Ω

′
q,P

′
q) are isomorphic.

Proof. Similar to the proof of Theorem 13.

Corollary 6. The governed bisimulation quotient of G is a unique (up-to iso-
morphism) parity game that is governed bisimilar to G.

We next define the governed stuttering bisimulation quotient. It requires
some subtlety to properly deal with divergences and ensure that a unique player
is assigned to an equivalence class.

Definition 20 (Governed stuttering bisimulation quotient). The governed stut-
tering bisimulation quotient of (V,→,Ω,P) is the structure (V/∼,→

′,Ω′,P ′),
where, for C, C′ ∈ V/∼:

• Ω′(C) = min{Ω(v) | v ∈ C},

• P ′(C) =

{

� if for all v ∈ C, v
�
7→∼, or for some v ∈ C, C′ 6= C, v

�
→C′

� otherwise

• C →′ C′ if and only if

{

∃i ∈ { �,�} : ∀v ∈ C : v i 7→∼ if C = C′

∃i ∈ { �,�} : ∀v ∈ C : v i 7→∼ C′ if C 6= C′

Theorem 16. Let G = (V,→,Ω,P) be a parity game and Gq = (V/∼,→
′,Ω′,P ′)

be its governed stuttering bisimulation quotient. Then G ∼ Gq.
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Proof. Consider the relation R ⊆ (V ∪ V/∼)× (V ∪ V/∼), defined as follows:

R = {(v, C), (C, v), (v, w), (C, C) | v, w ∈ C}

Then R is a governed stuttering bisimulation relation. Note that R is an equi-
valence relation. It thus suffices to prove that R meets the remaining conditions
of governed stuttering bisimulation. We do so by proving that R is a governed
stuttering bisimulation for the following cases: v R w, C R C′, v R C and
C R v. Observe that for v, w ∈ V we have v R w iff in G we have v ∼ w, and
for C, C′ ∈ V/∼ we have C R C′ iff C = C′. As a result, for these cases R is
immediately a governed stuttering bisimulation relation. We therefore focus on
the cases v R C and C R v. Both cases are addressed separately.

Suppose that v R C. We reason as follows:

• By definition, Ω(v) = Ω′(C) as all w ∈ C are such that Ω(w) = Ω(v).

• Suppose v → C′ for some C′ ∈ V/R \ {[v]R}. Then by definition of ∼ we
have w P(v) 7→∼C′ for all w ∈ C and therefore C →′ C′.

– Case P(v) = �. Since for all w ∈ C we have w
�
7→∼ C′, there is some

w ∈ C such that w
�
→C′ and therefore P ′(C) = �. Because C →′ C′,

also C
�
7→R C′.

– Case P(v) = �. Suppose P ′(C) = �. Since C →′ C′, also C � 7→R C′.
Next, suppose P ′(C) = �. Then there must be some w ∈ C and some
C′′ 6= C such that w

�
→C′′, as w

�
7→∼ would conflict with w � 7→∼C′.

Let w be such. We also have w � 7→∼ C′. This can only be the case if
P(w) = � and w• ⊆ C′. But then C′ is the only successor of C, i.e.
C →′ C′′ implies C′′ = C′, and therefore C � 7→R C′.

• Suppose v i 7→R. Then w i 7→R for all w ∈ C. But then also C →′ C.

– Case i = �. Then also P ′(C) = � and since C →′ C, also C i 7→R.

– Case i = �. If P ′(C) = �, then, since C →′ C, also C i 7→R. If
P ′(C) = �, then also v

�
7→∼, since u

�
→C′ for some u ∈ C and

C′ 6= C contradicts u� 7→∼. But v
�
7→∼ and v � 7→∼ implies that for

all C′ such that C →′ C′, we have C′ = C. Hence, also C i 7→R.

Assume that C R v. We now reason as follows:

• Ω′(C) = Ω(v) follows from the same arguments as before.

• Suppose C →′ C′ for some C′ 6= C. Then there is some i ∈ { �,�} such
that for all w ∈ C, we have w i 7→∼ C′. We distinguish two cases.

– Assume P ′(C) = �.

∗ Case i = �. Then v
�
7→∼ follows immediately since v ∈ C.

∗ Case i = �. Hence, for all w ∈ C, we have w � 7→∼ C′. Since
P ′(C) = �, there must be some w ∈ C, C′′ 6= C, such that
w

�
→C′′, since w

�
7→∼ contradicts w � 7→∼C′.

Let w be such, and observe that w
�
7→∼C′′. This can only be

the case if C′′ = C′, and from w
�
7→∼C′′ and C′′ = C′ we obtain

v
�
7→∼ C′
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– Assume P ′(C) = �. Observe that this implies that i = �, since, if
i = �, then for all w ∈ C, we have w

�
7→∼ C′, which means there is

some w ∈ C for which w
�
→C′. This contradicts P ′(C) = �. So,

i = �. It then immediately follows that for all w ∈ C, we have
w � 7→∼C′, and in particular v � 7→∼C′.

• Assume that C i 7→R. We distinguish two cases.

– Case i = �. Observe that P ′(C) = �. Suppose that P ′(C) = �,
then C

�
7→R implies that for all C′ such that C →′ C′ we have C′ = C

and therefore, for all w ∈ C we have both w � 7→∼ and w
�
7→∼. This

contradicts P ′(C) = �, hence P ′(C) = �.

Now, towards a contradiction, assume that w
�
67→∼ for all w ∈ C.

Because P ′(C) = �, there must be some w ∈ C such that w
�
→C′

for some C′ 6= C. Let w be such. Since w
�
67→∼ but C →′ C, we

must have w � 7→∼. This contradicts w
�
→C′. So there must be

some w ∈ C such that w
�
7→∼. But then also v

�
7→∼ and therefore

v
�
7→R.

– Case i = �. Suppose P ′(C′) = �. Because C � 7→R we find that
C 6→′ C′ for C′ 6= C. Hence, for all w ∈ C we have w

�
7→∼ and

w � 7→∼; in particular, v � 7→R.

Next, assume that P ′(C′) = �. Then there must be some w ∈ C such
that w

�
67→∼. Consequently w

�
67→∼ for all w ∈ C. Then C →′ C can

only be because for all w ∈ C we have w � 7→∼. In particular, v � 7→∼

and therefore v � 7→R.

Theorem 17. Let G,G′ be two parity games and let Gq and G′
q be their direct

simulation equivalence quotients, respectively. Then G ∼ G′ iff the two structures
Gq = (V/∼,→q,Ωq,Pq) and G′

q = (V ′
/∼,→

′
q,Ω

′
q,P

′
q) are isomorphic.

Proof. Again similar to the proof of Theorem 13.

Corollary 7. The governed stuttering bisimulation quotient of G is a unique
(up-to isomorphism) parity game that is governed stuttering bisimilar to G.

8 A Comparison of Discriminating Power

In this section, we compare the discriminative power of each of the equivalences
discussed in the preceding sections, essentially justifying the lattice we illus-
trated in Section 4. This permits us to assess the reductive power of each of
the studied equivalences that admit (unique) quotienting. For each of the equi-
valences we show which other equivalences it strictly refines. Incomparability
results are described separately.

We first focus on proving the right-hand side of the lattice we presented
in Section 4. That is, we first compare isomorphism, strong bisimilarity and
governed bisimilarity and then focus on the various simulation equivalences.

Theorem 18. Isomorphism is strictly finer than strong bisimilarity.

Proof. Clearly, every pair of isomorphic parity games is a pair of strong bisimilar
parity games. Strictness follows from a standard example:
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v1

1

v2

1

v3

Figure 6: Parity game which is minimal with respect to strong bisimilarity.
Vertices v2 and v3 are governed bisimilar.

0 0 0

Clearly, both vertices in the left parity game are strongly bisimilar to the ver-
tex in the right parity game, and vice versa. However, these vertices are not
isomorphic.

The following theorem relates strong bisimilarity to stuttering equivalence,
governed bisimulation and strong direct simulation equivalence, and except for
the comparison to governed bisimulation it is essentially the counterpart of the
classical theorems in the setting of Kripke structures.

Theorem 19. Strong bisimilarity is strictly finer than strong direct simula-
tion equivalence, stuttering bisimulation equivalence and governed bisimulation
equivalence.

Proof. We sketch each of the refinements:

• Every strong bisimulation relation is a direct simulation relation. Since
such a relation is symmetric, every pair of parity games related via strong
bisimilarity is also related via strong direct simulation equivalence. Strict-
ness follows from the parity game in Figure 4, in which v0 and v1 are strong
direct simulation equivalent but not strongly bisimilar.

• Every strong bisimulation relation is a stuttering bisimulation relation,
this follows directly from the definitiions. Strictness follows from the parity
game in Figure 5, in which v3 and v4 are stuttering bisimilar, but not
strongly bisimilar.

• Every strong bisimulation relation is a governed bisimulation relation, this
follows directly from the definitions. Strictness follows from the parity
game in Figure 6, which is minimal modulo strong bisimilarity, but vertices
v2 and v3 are governed bisimilar.

We next state, without proof, a result that essentially follows by definition.

Theorem 20. Strong direct simulation equivalence strictly refines direct simu-
lation equivalence.

The following refinement results follow a line of reasoning similar to the ones
seen before.

Theorem 21. Governed bisimulation equivalence strictly refines direct simula-
tion equivalence and governed stuttering bisimulation equivalence.

Proof. We again sketch both refinements.
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• Refinement follows directly from the observation that a governed bisimu-
lation is a symmetric direct simulation. Strictness follows from examples
similar to those discriminating strong bisimilarity and simulation equival-
ence.

• It follows from the definitions that every governed bisimulation is also a
governed stuttering bisimulation. The strictness of the refinement follows
from the example in Figure 5 in which all vertices with priority 0 are
governed stuttering bisimilar, but none are governed bisimilar.

Theorem 22. Governed bisimulation equivalence and strong direct simulation
equivalence are incomparable.

Proof. This follows from the parity game in Figure 4 in which vertices v0 and
v6 are governed bisimilar, but not strong direct simulation equivalent. Fur-
thermore, v0 and v1 are strong direct simulation equivalent, but not governed
bisimilar.

To the best of our knowledge, the (elementary) result that direct simulation is
strictly finer than (biased) delayed simulation has not been formally established.
We therefore give a brief proof here.

Theorem 23. Direct simulation equivalences is strictly finer than even- and
odd-biased delayed simulation equivalence.

Proof. Let G = (V,→,Ω,P) be a parity game, with v, w ∈ V such that v ≡d w.
Observe that v ≤d w and w ≤d v. We prove that also v ⊑ede w; w ⊑ede v and
both cases for ⊑ode follow the exact same line of reasoning. As a result, we find
that v ≡ede w and v ≡ode .

Observe that D has a winning strategy in the direct simulation game from
(v, w). Therefore, in each round of the game, Duplicator was able to mimic
Spoiler ’s move by a move to a vertex with equal priority. If Duplicator plays
the same strategy in the delayed simulation game, this gives rise to plays with
obligation X in every configuration that is reached.

Strictness follows straightforwardly from the observation that the (biased)
delayed simulation relations can relate vertices with different priorities, whereas
direct simulation cannot.

The results relating (biased) delay simulations to each other and to winner
equivalence were proven by Fritz and Wilke [22].

Theorem 24. Even- and odd-biased delay simulation are incomparable, and
both are strictly finer than delay simulation equivalence. Delay simulation equi-
valence in turn is strictly finer than winner equivalence.

This completes the results underlying the right-hand side of the lattice we
presented in Section 4.

We next focus on the left-hand side of the lattice.

Theorem 25. Stuttering bisimilarity is incomparable to governed bisimilarity,
strong direct simulation, direct simulation and all delayed simulation variations.
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Proof. In the parity game in Figure 5, v3 and v4 are stuttering bisimilar but
they cannot be related under governed bisimilarity, (strong) direct simulation
equivalence, nor any of the delayed simulation equivalences. For the other dir-
ection, consider vertices v0, v1 and v6 from the parity game in Figure 4. None
of these vertices are stuttering bisimilar, whereas v0 and v6 are governed bisim-
ilar, v0 and v1 are strong direct simulation equivalent, and all three are direct
simulation equivalent, and therefore also delay simulation equivalent.

Theorem 26. Governed stuttering bisimilarity is incomparable to strong direct
simulation, direct simulation and all delayed simulation variations.

Proof. Along the same lines as the proof of Theorem 25.

Theorem 27. Stuttering bisimilarity strictly refines governed stuttering bisim-
ilarity.

Proof. It follows from the definitions that every stuttering bisimulation is also
a governed stuttering bisimulation. Strictness follows from the parity game in
Figure 5 in which v0 and v1 are governed stuttering bisimilar, but not stuttering
bisimilar.

To complete the lattice, we next move to showing that governed stuttering
bisimilarity is strictly finer than winner equivalence. In order to prove this result,
we must first lift the concept of governed stuttering bisimilarity to paths.

Paths of length 1 are equivalent if the vertices they consist of are equivalent.
If paths p and q are equivalent, then pv ∼ q iff v is equivalent to the last vertex
in q, and pv ∼ qw iff v ∼ w. An infinite path p is equivalent to a path q if for
all finite prefixes of p there is an equivalent prefix of q and vice versa.

Lemma 16. Let (V,→,P ,Ω) be a parity game, and let (V/∼,→
′,P ′,Ω′) be its

quotient. Let v ∈ V , and C ∈ V/∼ such that v ∈ C. For all players i, and all
σ ∈ Si there is some ψ ∈ S

∗
i such that for all q ∈ Πωψ(C) there is a p ∈ Πωσ(v)

such that p ∼ q.

Proof. Define an arbitrary complete ordering <· on vertices, and define the fol-
lowing for finite paths q starting in C, where min<· ∅ is defined to be ⊥:

next(q) = min
<·

{v′ ∈ V | ∃p ∈ Πσ(v) : p ∼ q ∧ p σ→ v′ ∧ pv′ 6∼ q}

div(q) = ∃p ∈ Πωσ (v) : p ∼ q

We next show that it is possible to define a strategy ψ ∈ S
∗
i for finite plays

q = C . . . C′ such that if q ∼ p for some p ∈ Πσ(v), then:

{

ψ(q) = C′ if div(q) and C′ →′ C′

ψ(q) = [next(q)]∼ otherwise.

Let p ∈ Πσ(v) be such that q ∼ p for q = C . . . C′ and assume P ′(C′) = i. In
case div(q) and C′ →′ C′, then obviously ψ(q) can be defined as C′. We proceed
to show that if ¬div(q) or C′ 6→′ C′, then 1) next(q) 6= ⊥, and 2) we can set
ψ(q) = [next(q)]∼. We show the first by distinguishing two cases:

Case ¬div(q), then it follows straightforwardly that next(q) 6= ⊥.
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Case C′ 6→′ C′. Because C′ is a vertex is a quotient graph, C′
i 67→∼. Consider

the path p ∈ Πσ(v) for which p ∼ q, and assume that p is of the form
p̄u. Since p̄u ∼ q, also u ∼ C′ and hence u i 67→∼. Then by Lemma 5,
u ¬i 7→∼V \ [u]∼. Let σ′ ∈ S¬i be such that u σ′ 7→∼V \ [u]∼ and consider
the unique path rv′ ∈ Πσ′(u) such that σ 
 rv′, σ′ 
 rv′, r ∼ u and
v′ ∈ V \ [u]∼. Then pr ∈ Πσ(v) is such that pr ∼ q, pr σ→ v′ and prv′ 6∼ q.
Hence, next(q) 6= ⊥.

Next, we show that we can set ψ(q) = [next(q)]∼. Since next(q) 6= ⊥, there must
be some v . . . v′v′′ ∈ Πσ(v) such that v′′ = next(q), v . . . v′ ∼ q and v′ 6∼ v′′. Since
v′ ∼ C′ and v′ → [v′′]∼, also C′

P(v′) 7→∼[v
′′]∼. As C′ is a vertex in a quotient

graph, this implies C′
P(v′)→[v′′]∼. Hence, we can set ψ(q) = [next(q)]∼.

Now we have shown that it is always possible to define a strategy adhering
to the restrictions above, let ψ be such a strategy. We show using induction on
n that for all n

∀q ∈ Πnψ(C) : ∃p ∈ Πσ(v) : p ∼ q.

For n = 0, this is trivial, because v ∼ C. For n = m+1, assume as the induction
hypothesis that ∀q̄ ∈ Πmψ (C) : ∃p̄ ∈ Πσ(v) : p̄ ∼ q̄. Let q ∈ Πnψ(C) and let
C′, C′′ ∈ V/∼ and q̄ ∈ Πmψ (C) such that q̄ = C . . .C′ and q = q̄C′′. Distinguish
cases on the player who owns C′.

Case P ′(C′) = i. Then C′′ = ψ(q̄). The induction hypothesis yields some p̄ ∈
Πσ(v) such that p̄ ∼ q̄, therefore C′′ = C′ if div(q̄) and C′ →′ C′, and
otherwise C′′ = [next(q̄)]∼.

If C′ = C′′, then div(q̄), so there must be some p ∈ Πωσ(v) such that p ∼ q
and therefore also some p ∈ Πσ(v) such that p ∼ q.

If C′′ = [next(q̄)]∼, there must be some p ∈ Πσ(v) such that p = p′v′ and
p′ ∼ q̄ and v′ ∼ C′′. By definition, p ∼ q for such p.

Case P ′(C′) 6= i. From the induction hypothesis, obtain a p̄ ∈ Πσ(v) such that
p̄ ∼ q̄. Without loss of generality we may assume that p̄ is finite. Note
that C′ → [C′′]∼. We distinguish two cases.

• Case C′ = C′′. Then we have p̄ ∼ q̄C′′.

• Case C′ 6= C′′. Let v′ be the last vertex in p̄. Because p̄ ∼ q̄, also
v′ ¬i 7→∼[C

′′]∼. So let σ′ ∈ S¬i be such that v′ σ′ 7→∼[C
′′]∼. Now

consider an infinite path p̄p such that σ 
 p̄p and σ′ 
 p̄p. For some
index k ≥ 0, it must be the case that pk ∼ C′′ and pl ∼ C′ for all
l < k. So p̄p0 . . . pk ∼ q.

Finally, we prove that for all q ∈ Πωψ(C) there is a p ∈ Πωσ(v) such that p ∼ q.
Let q ∈ Πωψ(C). Then by the above, we find that there is some p ∈ Πσ(v).
Suppose p is finite and p = p̄v′ for some vertex v′. Since q is a path through the
quotient graph, q must be of the form q̄Cω for some C ∼ v′.

• Case P ′(C) = i. Then ψ(q̄C) = C, and thus div(q̄C) by definition of ψ. But
then there must be some p′ ∈ Πωσ(v) such that p′ ∼ q̄C ∼ q.

• Case P ′(C) 6= i. Since C →′ C we have C ¬i 7→∼ and since v′ ∼ C, also
v′ ¬i 7→∼. Let σ′ ∈ S¬i be such that v′ ¬i 7→∼. Then there is an infinite
path p′ ∈ Πωσ′ (v′) such that σ 
 p′ and p′ ∼ v′. But then σp̄p′ and
q ∼ p̄p′.
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Theorem 28. Governed stuttering bisimularity strictly refines winner equival-
ence.

Proof. Let G = (V,→,P ,Ω) be a parity game, and let v, w ∈ V such that v ∼w.
Let (V/∼,→

′,P ′,Ω′) be the governed stuttering bisimulation quotient of G, and
let C ∈ V/∼ be such that w ∼ C . By transitivity of ∼, also v ∼ C . Now suppose
that player i has a winning strategy σ from v. Then by Lemma 16, i has a
strategy ψ from C such that for every play q ∈ Πψ(C) there is a play p ∈ Πσ(v)
such that p ∼ q. Because the priorities occurring infinitely often on such p and
q are the same, ψ is also winning for i. If ¬i had a winning strategy σ′ from w,
then we could repeat this argument to construct a winning strategy for ¬i from
C, but this would be contrary to the fact that parity games are determined.
Therefore, w must also be won by player i.

9 Conclusion

Preorders and equivalences for parity games have been studied on a number of
occasions, see [12, 14, 15, 21, 22, 32, 37]. A major motivation for some of these
is that they provide the prospect of simplifying games prior to solving them.
In this paper, we reconsidered several of the parity game relations previously
defined by us, viz. (governed) bisimulation and (governed) stuttering bisim-
ulation. More specifically, we gave detailed proofs showing that our relations
are equivalences, they have unique parity game quotients and they approximate
the winning regions of parity games. Furthermore, we showed that our coin-
ductively defined equivalence relations admit game-based definitions; the latter
facilitated the comparison of our equivalences to the game-based definitions of
relations for parity games found in the literature. For the latter relations, we
additionally gave coinductive definitions. Finally, we showed that, unlike e.g.
delayed simulation or any of its biased versions, our equivalence relations give
rise to unique quotients.

There are several natural continuations of this research. First, the exper-
iments that were conducted in [15, 37] showed that parity games that could
not be solved become solvable by preprocessing the games using an O(mn)
stuttering bisimulation minimisation algorithm or an O(mn2) governed stut-
tering bisimulation minimisation algorithm; the overall gain in speed otherwise
was not significant. It would be worthwhile to establish whether this is still
true when using the O(m logn) stuttering equivalence minimisation algorithm
of [29]. Moreover, it would be interesting to see whether the O(mn2) time com-
plexity of governed stuttering bisimulation can be reduced using ideas from [29].
Similarly, we believe that our coinductive rephrasing of delayed simulation will
help to devise a more efficient algorithm for computing it, using a partition
refinement approach.

Finally, an interesting line of investigation is to see whether the incomparable
notions of governed stuttering bisimulation and delayed simulation equivalence
can be married. Given that we have established game-based and coinductive
definitions for both relations, defining such a relation now seems within reach.
The resulting relation would be closer to winning equivalence and perhaps even
shed light on ways to efficiently solve parity games in general.
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A Detailed proofs of Propositions 3 and 4

Before we address Propositions 3 and 4, we first repeat the definition of the
variant function we will use in the proof of Proposition 3 and we state three
lemmata that characterise properties of this variant function.

Definition 21 (Governed stuttering bisimulation game measure). We define
a measure with respect to ∼ for a configuration ((u0, u1), c) in the governed
stuttering bisimulation game as follows:

m(u0, u1, c)
∆
=



















(0, 0) if c = X

(∞, 0) if c = † ∧ ∃v0 ∈ u•0, v1 ∈ u•1 : v0 ∼ u0 ∧ v1 ∼ u1

(expel(uj, u1−j), 0) if c = † ∧ ∀v ∈ u•j : uj 6∼ v

(0, exit(uj, u1−j , t)) if c = (j, t)

where expel(u0, u1) denotes the number of steps before P(u0)’s opponent is
forced from [u0]∼ and exit(u0, u1, u2) denotes the number of steps it takes for
P(u0) to force play to [u2]∼ from u1. Formally, we have:

expel(u0, u1)
∆
= dist¬P(u0),[u0]∼(u1, V \ [u0]∼)

exit(u0, u1, u2)
∆
= distP(u0),[u0]∼(u1, [u2]∼)

where for U, T ⊆ V and v ∈ U :

dist i,U (v, T )
∆
=

{

min{n | v ∈ UAttr
n
i (T )} if v i 7→U T

∞ otherwise

Measures are ordered lexicographically, i.e. (m0,m1) < (n0, n1) iff m0 < n0 ∨
(m0 = n0 ∧ m1 < n1).

We first prove some basic properties for the function m.

Lemma 17. For u, v ∈ V , (u ∼ v ∧ m(u, v, †) = (m0,m1)) =⇒ m0 > 0.
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Proof. First, observe that (apart from c = †), the conditions in the second and
third clause of the definition of m are complementary. Furthermore observe that,
for all u0, u1 such that u0 ∼ u1, we have expel(u0, u1) > 0 since u1 6∈ V \ [u0]∼.
The result then immediately follows.

Lemma 18. Let U, T ⊆ V , such that U ∩ T = ∅ and let u ∈ U . For all players
i, if u i 7→U T then dist i,U (u, T ) > min{dist i,U (v, T ) | u→ v ∧ v ∈ U ∪ T }.

Proof. Assume u i 7→U T and let n = dist i,U (u, T ). Hence u ∈ UAttr
n
i (T ) and

u 6∈ UAttr
n−1
i (T ). Observe that n > 0 since u ∈ U and U ∩ T = ∅. We proceed

by a case distinction on P(u).

• P(u) = i. Since n is such that u /∈ UAttr
n−1
i (T ), we have ∃v ∈ u• : v ∈

UAttr
n−1
i (T ). Let v be such, and observe that dist i,U (v, T ) ≤ n− 1 < n.

The result then follows immediately.

• P(u) 6= i. As n is such that u /∈ UAttr
n−1
i (T ), we have ∀v ∈ u• : v ∈

UAttr
n−1
i (T ). Hence ∀v ∈ V : u → v =⇒ dist i,U (v, T ) ≤ n − 1 < n.

Again the result follows immediately.

We also prove the following stronger result in case u is owned by the oppon-
ent.

Lemma 19. Let U, T ⊆ V , such that U∩T = ∅ and u ∈ U∩V¬i . Then u i 7→U T
implies dist i,U (u, T ) > max{dist i,U (v, T ) | u→ v ∧ v ∈ U ∪ T }.

Proof. Let u ∈ U ∩ V¬i such that u i 7→U T . Suppose n = dist i,U (u, T ). Then
u ∈ UAttr

n
i (T ) and u 6∈ UAttr

n−1
i (T ). Since u /∈ Vi , ∀v ∈ u• : v ∈ UAttr

n−1
i (T ),

hence ∀v ∈ u• : dist i,U (v, T ) ≤ n− 1 < n; furthermore, such v are in U ∪T , and
the result follows immediately.

Proposition 5. For all v, w ∈ V if v ∼w then v ≡g,st w.

Proof. We prove for all governed stuttering bisimilar vertices v ∼ w that there
is a Duplicator winning strategy in the governed stuttering bisimulation game
from configuration ((v, w),X).

We show this by constructing a Duplicator -strategy that moves between
governed stuttering bisimilar vertices, and that makes sure that from every
configuration ((v, w), c), within a finite number of steps another configuration
((v′, w′),X) is reached. As a consequence, the Duplicator -strategy is such that
it passes through configurations with reward X infinitely often, hence the Du-
plicator strategy is winning.

Formally, we preserve the invariant Φ which is the conjunction of the follow-
ing for configurations ((u0, u1), c):

• u0 ∼ u1,

• c = (j, t) implies uj 6∼ t,

• c = (0, u) implies (u0, u1) ∈ V
�
× V ,

• c = (1, u) implies (u0, u1) ∈ V × V�.
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In addition, we prove that from every configuration ((u0, u1), c), a config-
uration ((u′0, u

′
1),X) is reached within a finite number of steps by showing

that m is a variant function. That is, if, in a round, we move from config-
uration ((u0, u1), c) to configuration ((u′0, u

′
1), c

′) with c 6= X and c′ 6= X, then
m(u0, u1, c) > m(u′0, u

′
1, c

′).
From these two observations, the result immediately follows. Note that ini-

tially we are in a configuration ((v, w),X); hence Φ is satisfied trivially. Suppose
the game has reached a configuration ((u0, u1), c) satisfying Φ. In step 1 of the
round, Spoiler chooses to play from (t0, t1), taken from (u0, u1) or (u1, u0). We
remark that if Spoiler decides to play from (u1, u0), then, regardless of step 2,
any pending challenge or † will be replaced by a X at the end of step 3. For
this case, we therefore do not need to argue that m decreases.

We distinguish cases based on which player can force a divergence in the coin-
ductive definition and consider Duplicator ’s options in step 2 and 3 of the round,
and prove that Duplicator can always arrive in a new configuration ((t′0, t

′
1), c

′)
that satisfies Φ and for which, if c′ 6= X and c 6= X, m(t0, t1, c) > m(t′0, t

′
1, c

′).

• t0 �
7→∼ and t0 � 7→∼. This case is trivial, as in that case exactly one

(reachable) equivalence class exists.

• t0 �
7→∼ and t0 � 67→∼. Since t0 ∼ t1 also t1 �

7→∼. We distinguish cases
based on the owners of the vertices.

– P(t0) = P(t1) = �. Spoiler plays t0 → w0.

∗ Case there is some w1 ∈ t•1 such that w0 ∼w1. Then Duplicator
plays to such a w1. The new configuration is ((w0, w1),X).

∗ Case there is no w1 ∈ t•1 such that w0 ∼ w1. Then Duplicator
plays to a w1 ∈ t•1 for which w1 ∼ t1 with minimal m(t0, w1, (0, w0));
the existence of a w1 ∼ t1 follows from t1 �

7→∼.
New configuration: if c ∈ {X, †, (0, w0)} and u0 = t0 then the
new configuration is ((t0, w1), (0, w0)), and else ((t0, w1),X).
Progress: we demonstrate m(t0, w1, (0, w0)) < m(t0, t1, c) for c ∈
{†, (0, w0)}. In case c = † this follows from Lemma 17. In case
c = (0, w0), this follows from Lemmata 18 and 19.

– P(t0) = P(t1) = �. Spoiler plays t1 → w1. Since t1 �
7→∼, all w1 ∈ t•1

satisfy t1 ∼w1. The same holds for all w0 ∈ t•0. Duplicator can thus
play arbitrary t0 → w0.

New configuration: ((w0, w1),X)

– P(t0) = �, P(t1) = �. Spoiler plays t0 → w0 and t1 → w1. Since
t1 �

7→∼, also w1 ∼ t1. We distinguish two further cases.

∗ Case w0 ∼w1.
New configuration: ((w0, w1),X).

∗ Case w0 6∼ t0.
New configuration: if c ∈ {X, †, (0, w0)} and u0 = t0 then the
new configuration is ((t0, w1), (0, w0)); else the new configuration
is ((t0, w1),X). Observe that t0 ∼w1.
Progress: we demonstrate m(t0, w1, (0, w0)) < m(t0, t1, c) for c ∈
{†, (0, w0)}. In case c = † this follows from Lemma 17. In case
c = (0, w0), this follows from Lemmata 18 and 19.
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– P(t0) = �, P(t1) = �. Duplicator plays t1 → w1 such that w1 ∼ t1
and t0 → w0. Such a w1 exists because t1 �

7→∼.

New configuration: ((w0, w1),X).

• t0 � 7→∼ and t0 �
67→∼. So, as before, t1 � 7→∼. This case is dual to the

previous one.

• t0 �
67→∼ and t0 � 67→∼. We consider the owners of t0 and t1.

– P(t0) = P(t1) = �. Spoiler plays t0 → w0. We distinguish two cases.

∗ Case there is some w1 ∈ t•1 for which w0 ∼w1. Duplicator plays
t1 → w1 such that w0 ∼w1.
New configuration: ((w0, w1),X).

∗ Case there is no w1 ∈ t•1 for which w0 ∼w1.

· Case t0 ∼w0. Then for all w1 ∈ t•1, w1 6∼ t1.
New configuration: ((w0, t1), †) if c ∈ {X, †} and u0 = t0;
otherwise ((w0, t1),X).
Progress: we must show m(t0, w1, †) < m(t0, t1, †). This
follows from Lemma 19.

· Case t0 6∼ w0. Duplicator plays t1 → w1 such that t1 ∼ w1

and m(t0, w0, (0, w0)) is minimal.
New configuration: if c ∈ {X, †, (0, w0)} and u0 = t0 then
configuration ((t0, w1), (0, w0)) and else ((t0, w1),X).
Progress: we must show m(t0, w1, (0, w0)) < m(t0, t1, †) for
c ∈ {†, (0, w0)}. In case c = † this follows from Lemma 17.
In case c = (0, w0), this follows from Lemmata 18 and 19.

– P(t0) = P(t1) = �. Spoiler plays t1 → w1.

∗ Case there is some w0 ∈ t•0 for which w0 ∼w1. Duplicator plays
t0 → w0 such that w0 ∼w1.
New configuration: ((w0, w1),X).

∗ Case there is no w0 ∈ t•0 for which w0 ∼w1.

· Case t1 ∼ w1. Then for all w0 ∈ t•0, w0 6∼ t0. Duplicator
plays some arbitrary t0 → w0.
New configuration: ((t0, w1), †) if c ∈ {X, †} and u1 = t1;
otherwise ((t0, w1),X).
Progress: we must show m(w0, t1, †) < m(t0, t1, †). This
follows from Lemma 19.

· Case t1 6∼ w1. Duplicator plays t0 → w0 such that t0 ∼ w0

and m(w0, t0, (1, w1)) is minimal.
New configuration: if c ∈ {X, †, (1, w1)} and u1 = t1 then
configuration ((w0, t1), (1, w1)) and else ((w0, t1),X).
Progress: we must show m(w0, t1, (1, w1)) < m(t0, t1, c) for
c ∈ {†, (1, w1)}. In case c = † this follows from Lemma 17.
In case c = (1, w1), this follows from Lemmata 18 and 19.

– P(t0) = �,P(t1) = �. Spoiler plays t0 → w0 and t1 → w1. In case
w0 6∼w1 then either t0 ∼w0 or t1 ∼w1. We distinguish three cases:

∗ Case w0 ∼w1.
New configuration: ((w0, w1),X).
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∗ Case w0 6∼w1 and t0 ∼w0.
New configuration: ((w0, t1), (1, w1)) if c ∈ {X, †, (1, w1)} and
u1 = t1; otherwise ((w0, t1),X).
Progress: we must show m(w0, t1, (1, w1)) < m(t0, t1, c) for c ∈
{†, (1, w1)}. In case c = † this follows from Lemma 17. In case
c = (1, w1) this follows from Lemmata 18 and 19.

∗ Case w0 6∼w1 and t1 ∼w1.
New configuration: ((t0, w1), (0, w0)) if c ∈ {X, †, (0, w0)} and
u0 = t0; otherwise ((t0, w1),X).
Progress: we must show m(t0, w1, (0, w0)) < m(t0, t1, c) for c ∈
{†, (0, w0)}. In case c = † this follows from Lemma 17. In case
c = (0, w0) this follows from Lemmata 18 and 19.

– P(t0) = �,P(t1) = �.

∗ Case there are w0 ∈ t•0 and w1 ∈ t•1 such that w0 ∼ w1. Then
Duplicator plays to such w0 and w1.
New configuration: ((w0, w1),X).

∗ Case there are no w0 ∈ t•0 and w1 ∈ t•1 such that w0 ∼w1.

· case there is some w0 ∈ t•0 such that w0 ∼ t0. Then Duplic-
ator plays to w0 that is such while minimising m(w0, t1, †).
New configuration: ((w0, t1), †) if u1 = t1; else ((w0, t1),X).
Progress: we first show that u1 = t1 implies c ∈ {†,X}.
Towards a contradiction, assume c = (0, t) for some t. By
our invariant, this implies (t0, t1) ∈ V

�
×V . Since (u0, u1) ∈

{(t0, t1), (t1, t0)} and u1 = t1 we have u0 = t0. But then
both u0 ∈ V� and u0 ∈ V

�
. Contradiction. Towards another

contradiction, assume c = (1, t) for some t. By our invariant,
this implies (t0, t1) ∈ V ×V�. This contradicts u1 = t1 since
P(u1) = �.
It therefore suffices to show m(w0, t1, †) < m(t0, t1, †). This
follows from the fact that we minimised m(w0, t1, †) and
Lemmata 18 and 19.

· case there is some w1 ∈ t•1 such that w1 ∼ t1. Then Duplic-
ator plays to w1 that is such while minimising m(t0, w1, †).
New configuration: ((t0, w1), †) if u0 = t0; else ((t0, w1),X).
Progress: using arguments, similar to those in the previous
case, it follows that c ∈ {†,X}.
It therefore suffices to show m(t0, w1, †) < m(t0, t1, †). This
follows from the fact that we minimised m(t0, w1, †) and
Lemmata 18 and 19.

We next focus on proving that every pair of vertices related through the
governed stuttering bisimulation game are in fact governed stuttering bisimilar.

Proposition 6. For all v, w ∈ V if v ≡g,st w then v ∼w.

Proof. We prove the contrapositive of the statement, i.e. for all v, w ∈ V ,
if v 6∼ w, then also v 6≡g,st w. Let v 6∼ w. By Corollary 2, then also
(v, w) /∈ νF . By the Tarski-Kleene fixpoint approximation theorem, we thus
have (v, w) /∈

⋂

k≥1

Fk(V × V ). Let Rk denote the relation Fk(V × V ); i.e., Rk
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is the relation obtained by applying the operator F k-times. Note that because
of monotonicity, Rk =

⋂

l≤k R
l. We next prove, using induction, that for all

k ≥ 1:

Spoiler wins the governed stuttering bisimulation game
for all configurations ((u0, u1), c) for which (u0, u1) /∈ Rk

(IH)

• Base case k = 1. Observe that R1 = {(v, w) ∈ V × V | Ω(v) = Ω(w)}.
Spoiler wins the governed stuttering bisimulation game for all configur-
ations ((u0, u1), c) satisfying (u0, u1) /∈ R1: all plays starting in such a
configuration trivially violate Duplicator ’s winning condition.

• Inductive step. Assume that the statement holds for some k ≥ 1. Pick
an arbitrary position (u0, u1) for which (u0, u1) /∈ Rk+1 and let c be an
arbitrary challenge/reward. We must show that Spoiler wins the governed
stuttering bisimulation game for these. Recall that we have Rk+1 ⊆ Rk.

If (u0, u1) /∈ Rk, then by the induction hypothesis, Spoiler wins the gov-
erned stuttering bisimulation game from configuration ((u0, u1), c).

Observe that by definition of F , we have for all (v, w) ∈ Rk \ Rk+1 that
there are i ∈ { �,�} and U , T ⊆ V/Rk for which

[v]Rk ∈ U \ T but not v i 7→U T ⇔ w i 7→U T . (*)

Let i,U , T be such that (*). We focus on the case i = �; the case that
i = � is fully dual. Assume that v i 7→U T and not w i 7→U T ; the case in
which not v i 7→U T but w i 7→U T is symmetric. Note that we can assume
that T ∩U = ∅, as v i 7→U T iff v i 7→U\T T for any U , T . We may therefore

also simplify U \ T to U .

Let σ ∈ Si be the (memoryless) strategy underlying v i 7→U T . Using σ,
we construct a winning strategy for Spoiler for configuration ((v, w), c).
We first show that Spoiler can invariantly move between configurations
((t0, t1), c) that satisfy the following property Φ:

If [t0]Rk = [t1]Rk then










t0 σ 7→U T but not t1 i 7→U T

c = (0, t) implies t0 ∈ V
�

and t0 σ→ t

c = (1, t) implies t1 ∈ V�, t ∈ t•1 and not t i 7→U T

Let ((t0, t1), c) be a configuration for which Φ holds. For all such config-
urations Spoiler ’s move in step 1 of a round is to play from (t0, t1); i.e.
Spoiler does not switch positions. We distinguish three main cases, show-
ing that Duplicator has no other option than to choose a new configuration
that satisfies Φ.

1. Case c ∈ {†,X}. We furthermore distinguish cases based on the
players of t0 and t1.

– Case P(t0) = P(t1) = �. Since t0 σ 7→U T , Spoiler proposes to
move from t0 to σ(t0). Duplicator proposes u1 ∈ t•1. Observe
that not u1 i 7→U T . Duplicator then can propose to continue in:
((σ(t0), u1),X), ((t0, u1), (0, σ(t0))), or ((σ(t0), t1), †). Clearly,
all new configurations satisfy Φ.
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– Case P(t0) = P(t1) = �. Spoiler proposes to move from t1 to
u1 such that not u1 i 7→U T . Such u1 exists. Duplicator proposes
u0 ∈ t•0. Observe that t0 σ→u0. Duplicator then proposes to
continue in: ((u0, u1),X), ((t0, u1), †), or ((u0, t1), (1, u1)). All
new configurations satisfy Φ.

– Case P(t0) = �, P(t1) = �. Since t0 σ 7→U T Spoiler proposes to
move from t0 to σ(t0) and from t1 to u1 such that not u1 i 7→U T .
Note that such u1 exists. Duplicator then proposes to continue
in: ((σ(t0), u1),X), ((t0, u1), (0, σ(t0))), or ((σ(t0), t1), (1, u1)).
Again, all new configurations satisfy Φ.

– Case P(t0) = �, P(t1) = �. Duplicator proposes to move from
t1 to u1 and from t0 to u0. Since i = �, we have t0 σ→u0 and
because of Φ, we have not u1 i 7→U T . Duplicator then proposes
to continue in: ((u0, u1),X), ((t0, u1), †), or ((u0, t1), †). All new
configurations satisfy Φ.

2. Case c = (0, t). Because of Φ, we have t0 σ 7→U T and P(t0) = �.
Then Spoiler plays from configuration (t0, t1). We furthermore dis-
tinguish cases based on the owner of t1.

– Case P(t1) = �. Spoiler proposes to move from t0 to t. Du-
plicator proposes u1 ∈ t•1. Observe that not u1 i 7→U T . Duplic-
ator then proposes to continue in: ((t, u1),X), ((t0, u1), (0, t)),
or ((t, t1), †)

– Case P(t1) = �. Spoiler proposes to move from t0 to t and
from t1 to u1 such that not u1 i 7→U T . Such u1 exists. Duplic-
ator then proposes to continue in: ((t, u1),X), ((t0, u1), (0, t)),
or ((t, t1),X)

In both cases, the new rounds satisfy Φ

3. Case c = (1, t). Because of Φ, we have not t1 σ 7→U T and P(t1) =
�. Then Spoiler plays from configuration (t0, t1). We furthermore
distinguish cases based on the owner of t0.

– Case P(t0) = �. Spoiler proposes to move from t0 to σ(t0)
and from t1 to t. Duplicator then proposes to continue in:
((σ(t0), t),X), ((t0, t),X), or ((σ(t0), t1), (1, t)).

– Case P(t0) = �. Spoiler proposes to move from t1 to t. Du-
plicator proposes u0 ∈ t•0. Observe that t0 σ→u0. Duplic-
ator then proposes to continue in: ((u0, t),X), ((t0, t), †), or
((u0, t1), (1, t)).

We next observe that for any (t0, t1) for which t0, t1 meet the premiss
of Φ, but not the conclusion, Spoiler can, in a single round, move to a
configuration that either does not meet Φ’s premiss or to one that meets
Φ’s conclusion. More specifically, suppose that [t0]Rk = [t1]Rk but one of
the following holds:

1. t1 σ 7→U T but not t0 i 7→U T ;

2. c = (0, t) implies t0 /∈ V
�

or not t0 σ→ t;

3. c = (1, t) implies t1 /∈ V�, t /∈ t•1, or t i 7→U T .

51



Whenever we are in case 1, Spoiler switches positions in step 1 of a round
and follows the strategy outlined above. Whenever we are in case 2 or 3,
Spoiler drops challenge c in step 1 and plays as if c ∈ {†,X}. In all three
cases, Duplicator is rewarded a X as the new challenge at the end of the
round and Φ holds trivially.

Summarising, we find that for configurations ((t0, t1), c) for which both (*)
and Φ hold, Spoiler can move to another configuration that either meets
Φ or is such that Φ’s premiss is violated. For configurations ((t0, t1), c)
for which (*) but not Φ holds, Spoiler can move in a single round to a
configuration for which she can henceforth maintain Φ as an invariant or
for which Φ’s premiss is violated.

We finally argue that when Spoiler plays according to the above strategy,
she wins all plays. Observe that we only need to show this for all infinite
plays that pass only through positions (u, t) for which (u, t) ∈ Rk; for those
plays that at some point pass along a position (u, t) /∈ Rk, our induction
hypothesis yields a winning strategy for Spoiler .

Let (v0, w0) (v1, w1) (v2, w2) . . . be an infinite sequence of positions on an
infinite play π that is allowed by Spoiler ’s strategy, such that for all l,
[vl]Rk = [wl]Rk . Towards a contradiction, assume that Duplicator wins π.
Observe that [vl]Rk = [wl]Rk implies that Ω(vl) = Ω(wl) for all (vl, wl) ∈
Rk \Rk+1; therefore we can only arrive at a contradiction by showing that
Duplicator earns a finite number of X rewards along π.

By invariant Φ, for all positions (vl, wl), for l ≥ 1, we have vl σ 7→U T .
Let δ(vl, wl) denote the length of the longest path from vl to reach T
when playing according to σ. Note that δ is finite and decreases along
the positions in π, but never reaches 0, as all vertices remain in U . This
means that for some m, we have δ(vm, wm) = δ(vn, wn) for all n ≥ m. Fix
this m. Moreover, there must be some u such that:

u σ 7→U T ∧ ∀n ≥ m : ∀(vn, wn) ∈ π : vn = u

But this means that, once Spoiler ’s strategy reaches the position contain-
ing u, all remaining X’s earned by Duplicator must be due to Spoiler
switching positions or discarding a challenge in step 1 of each new round.
As we explained, Spoiler switches positions and/or drops a challenge only
in the first round when starting in a configuration that does not satisfy Φ;
she never does so afterwards. Therefore, Duplicator earns no X rewards
when π reaches a configuration containing a position with u. But then
Duplicator earns only a finite number of X rewards along π, contradicting
the assumption that Duplicator wins π.

Therefore, Spoiler has a strategy to win any configuration ((u0, u1), c) for
which (u0, u1) /∈ Rk.
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