171 research outputs found

    Microencapsulated foods as a functional delivery vehicle for omega-3 fatty acids: a pilot study

    Get PDF
    It is well established that the ingestion of the omega-3 (N3) fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) positively benefit a variety of health indices. Despite these benefits the actual intake of fish derived N3 is relatively small in the United States. The primary aim of our study was to examine a technology capable of delivering omega-3 fatty acids in common foods via microencapsulation (MicroN3) in young, healthy, active participants who are at low risk for cardiovascular disease. Accordingly, we randomized 20 participants (25.4 ± 6.2 y; 73.4 ± 5.1 kg) to receive the double blind delivery of a placebo-matched breakfast meal (~2093 kJ) containing MicroN3 (450–550 mg EPA/DHA) during a 2-week pilot trial. Overall, we observed no differences in overall dietary macronutrient intake other than the N3 delivery during our treatment regimen. Post-test ANOVA analysis showed a significant elevation in mean (SE) plasma DHA (91.18 ± 9.3 vs. 125.58 ± 11.3 umol/L; P < 0.05) and a reduction in triacylglycerols (89.89 ± 12.8 vs. 80.78 ± 10.4 mg/dL; P < 0.05) accompanying the MicroN3 treatment that was significantly different from placebo (P < 0.05). In post study interviews, participants reported that the ingested food was well-tolerated, contained no fish taste, odor or gastrointestinal distress accompanying treatment. The use of MicroN3 foods provides a novel delivery system for the delivery of essential fatty acids. Our study demonstrates that MicroN3 foods promote the absorption of essential N3, demonstrate bioactivity within 2 weeks of ingestion and are well tolerated in young, active participants who are at low risk for cardiovascular disease

    A Hydrophobic Gate in an Ion Channel: The Closed State of the Nicotinic Acetylcholine Receptor

    Full text link
    The nicotinic acetylcholine receptor (nAChR) is the prototypic member of the `Cys-loop' superfamily of ligand-gated ion channels which mediate synaptic neurotransmission, and whose other members include receptors for glycine, gamma-aminobutyric acid, and serotonin. Cryo-electron microscopy has yielded a three dimensional structure of the nAChR in its closed state. However, the exact nature and location of the channel gate remains uncertain. Although the transmembrane pore is constricted close to its center, it is not completely occluded. Rather, the pore has a central hydrophobic zone of radius about 3 A. Model calculations suggest that such a constriction may form a hydrophobic gate, preventing movement of ions through a channel. We present a detailed and quantitative simulation study of the hydrophobic gating model of the nicotinic receptor, in order to fully evaluate this hypothesis. We demonstrate that the hydrophobic constriction of the nAChR pore indeed forms a closed gate. Potential of mean force (PMF) calculations reveal that the constriction presents a barrier of height ca. 10 kT to the permeation of sodium ions, placing an upper bound on the closed channel conductance of 0.3 pS. Thus, a 3 A radius hydrophobic pore can form a functional barrier to the permeation of a 1 A radius Na+ ion. Using a united atom force field for the protein instead of an all atom one retains the qualitative features but results in differing conductances, showing that the PMF is sensitive to the detailed molecular interactions.Comment: Accepted by Physical Biology; includes a supplement and a supplementary mpeg movie can be found at http://sbcb.bioch.ox.ac.uk/oliver/download/Movies/watergate.mp

    Nutrition education in medical school: a time of opportunity

    Get PDF
    Undergraduate medical education has undergone significant changes in development of new curricula, new pedagogies, and new forms of assessment since the Nutrition Academic Award was launched more than a decade ago. With an emphasis on a competency-based curriculum, integrated learning, longitudinal clinical experiences, and implementation of new technology, nutrition educators have an opportunity to introduce nutrition and diet behavior–related learning experiences across the continuum of medical education. Innovative learning opportunities include bridging personal health and nutrition to community, public, and global health concerns; integrating nutrition into lifestyle medicine training; and using nutrition as a model for teaching the continuum of care and promoting interprofessional team-based care. Faculty development and identification of leaders to serve as champions for nutrition education continue to be a challenge

    Age and Disability Employment Discrimination: Occupational Rehabilitation Implications

    Get PDF
    Introduction As concerns grow that a thinning labor force due to retirement will lead to worker shortages, it becomes critical to support positive employment outcomes of groups who have been underutilized, specifically older workers and workers with disabilities. Better understanding perceived age and disability discrimination and their intersection can help rehabilitation specialists and employers address challenges expected as a result of the evolving workforce. Methods Using U.S. Equal Employment Opportunity Commission Integrated Mission System data, we investigate the nature of employment discrimination charges that cite the Americans with Disabilities Act or Age Discrimination in Employment Act individually or jointly. We focus on trends in joint filings over time and across categories of age, types of disabilities, and alleged discriminatory behavior. Results We find that employment discrimination claims that originate from older or disabled workers are concentrated within a subset of issues that include reasonable accommodation, retaliation, and termination. Age-related disabilities are more frequently referenced in joint cases than in the overall pool of ADA filings, while the psychiatric disorders are less often referenced in joint cases. When examining charges made by those protected under both the ADA and ADEA, results from a logit model indicate that in comparison to charges filed under the ADA alone, jointly-filed ADA/ADEA charges are more likely to be filed by older individuals, by those who perceive discrimination in hiring and termination, and to originate from within the smallest firms. Conclusion In light of these findings, rehabilitation and workplace practices to maximize the hiring and retention of older workers and those with disabilities are discussed

    State-Dependent Accessibility of the P-S6 Linker of Pacemaker (HCN) Channels Supports a Dynamic Pore-to-Gate Coupling Model

    Get PDF
    The hyperpolarization-activated cyclic nucleotide-modulated channel gene family (HCN1-4) encodes the membrane depolarizing current that underlies pacemaking. Although the topology of HCN resembles Kv channels, much less is known about their structure-function correlation. Previously, we identified several pore residues in the S5-P linker and P-loop that are externally accessible and/or influence HCN gating, and proposed an evolutionarily conserved pore-to-gate mechanism. Here we sought dynamic evidence by assessing the functional consequences of Cys-scanning substitutions in the unexplored P-S6 linker (residues 352–359), the HCN1-R background (that is, resistant to sulfhydryl-reactive agents). None of A352C, Q353C, A354C, P355C, V356C, S357C, M358C, or S359C produced functional currents; the loss-of-function of Q353C, A354C, S357C, and M358C could be rescued by the reducing agent dithiothreitol. Q353C, A354C, and S357C, but not M358C and HCN1-R, were sensitive to Cd2+ blockade (IC50 = 3–12 μM vs. >1 mM). External application of the positively charged covalent sulfhydryl modifier MTSET irreversibly reduced I−140mV of Q353C and A354C to 27.9 ± 3.4% and 58.2 ± 13.1% of the control, respectively, and caused significant steady-state activation shifts (∆V1/2 = –21.1 ± 1.6 for Q353C and −10.0 ± 2.9 mV for A354C). Interestingly, MTSET reactivity was also state dependent. MTSET, however, affected neither S357C nor M358C, indicating site specificity. Collectively, we have identified novel P-S6 residues whose extracellular accessibility was sterically and state dependent and have provided the first functional evidence consistent with a dynamic HCN pore-to-gate model

    The effects of exercise-induced muscle damage on endurance performance

    Get PDF
    It is well documented that engaging in resistance exercise can lead to further improvements in endurance performance. Whilst, not fully understood, it is speculated that increased motor unit recruitment, improved muscle coordination and enhanced utilisation of stored elastic energy after resistance-based exercise improves exercise economy. Nevertheless, while prolonged exposure to resistance training improves endurance performance in the long-term, a consequence of such training when unaccustomed is the appearance of exercise-induced muscle damage (EIMD). Exercise-induced muscle damage is well known to affect athletic performance requiring muscular strength and power; however, its effects on markers of endurance exercise are unclear. Therefore, the aim of this thesis was to investigate the effects of EIMD on endurance performance, with an emphasis on the physiological (oxygen uptake; , minute ventilation; ), metabolic (blood lactate; [La]), perceptual (rating of perceived exertion; RPE) and kinematic (stride length; SL, stride frequency; SF) responses during sub-maximal endurance exercise

    Eicosapentaenoic acid is more effective than docosahexaenoic acid in inhibiting proinflammatory mediator production and transcription from LPS-induced human asthmatic alveolar macrophage cells

    Get PDF
    This paper was published in the journal, Clinical Nutrition [© Elsevier Ltd and European Society for Clinical Nutrition and Metabolism] and the definitive version is available at: http://dx.doi.org/10.1016/j.clnu.2008.10.012Background & aims: The purpose of the study was to determine which of the active constituents of fish oil, eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA), is most effective in suppressing proinflammatory mediator generation and cytokine expression from LPS-stimulated human asthmatic alveolar macrophages (AMΦ). Methods: The AMΦ were obtained from twenty-one asthmatic adults using fiberoptic bronchoscopy. Cells were pretreated with DMEM, pure EPA, an EPA-rich media (45% EPA/10% DHA), pure DHA, a DHArich media (10% EPA/50% DHA) or Lipovenos® (n-6 PUFA), and then exposed to Dulbecco’s Modified Eagle’s Medium (DMEM) (-) or LPS (+). Supernatants were analyzed for leukotriene (LT)B4, prostaglandin (PG)D2, tumor necrosis factor (TNF)-α and interleukin (IL)-1β production. Detection of TNF-α and IL-1β mRNA expression levels was quantified by reverse transcriptase polymerase chain reaction. Results: 120 μM pure EPA and EPA-rich media significantly (p < 0.05) suppressed TNF-a and IL-1b mRNA expression and the production of LTB4, PGD2 and TNF-a and IL-1b in LPS-stimulated primary AMφ cells obtained from asthmatic patients to a much greater extent than 120 mM pure DHA and DHA-rich media respectively. Conclusions: This study has shown for the first time that EPA is a more potent inhibitor than DHA of inflammatory responses in human asthmatic AMΦ cells
    corecore