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Abstract 

It is well documented that engaging in resistance exercise can lead to further 

improvements in endurance performance. Whilst, not fully understood, it is 

speculated that increased motor unit recruitment, improved muscle coordination and 

enhanced utilisation of stored elastic energy after resistance-based exercise 

improves exercise economy. Nevertheless, while prolonged exposure to resistance 

training improves endurance performance in the long-term, a consequence of such 

training when unaccustomed is the appearance of exercise-induced muscle damage 

(EIMD). Exercise-induced muscle damage is well known to affect athletic 

performance requiring muscular strength and power; however, its effects on markers 

of endurance exercise are unclear. Therefore, the aim of this thesis was to 

investigate the effects of EIMD on endurance performance, with an emphasis on the 

physiological (oxygen uptake; 2OV , minute ventilation; EV ), metabolic (blood lactate; 

[La]), perceptual (rating of perceived exertion; RPE) and kinematic (stride length; SL, 

stride frequency; SF) responses during sub-maximal endurance exercise.  

 

STUDY 1 (CHAPTER 3) 

INTRODUCTION: A possible explanation for the equivocal findings of EIMD on 

endurance performance is that responses appear to be sensitive to the mode of 

endurance exercise adopted. Research examining the effects of EIMD on cycling 

have observed no change in sub-maximal oxygen cost, conversely, research 

investigating running responses to EIMD have reported increases. Study 1 examined 

the influence of exercise mode (cycling versus running) on physiological, metabolic, 

perceptual and kinematic responses after EIMD. METHODS: Ten male participants 

performed counter-balanced incremental cycling and running trials to exhaustion to 
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establish lactate threshold (LT) for each mode. Participants then completed two 

counter-balanced 10 min cycling and running bouts at LT before, 24 h and 48 h after 

muscle-damaging exercise. 2OV , EV , RPE, running SL and SF and cycling 

revolutions per minute (RPM) were measured throughout each exercise bout, whilst 

[La] was recorded before and at the end of each exercise bout. Perceived levels of 

muscle soreness, peak isokinetic knee extensor torque at 60 deg.s-1 and creatine 

kinase (CK) activity measured at baseline, 24 h and 48 h were used to indicate the 

presence of muscle damage. RESULTS: The squatting exercise was effective (P < 

0.05) in causing increased muscle soreness (Baseline: 0.4 ± 0.5; 24 h: 5.4 ± 1.5; 48 

h: 6.7 ± 1.3), elevated CK activity (Baseline: 78.1 ± 30.4 U.l-1; 24 h:  238.9 ± 181.6 

U.l-1; 48 h: 143.1 ± 83.9 U.l-1) and decreased knee extensor strength (by 13.6 – 

14.9%) at 24 and 48 h. Increases in 2OV and EV  were observed during both cycling 

and running after EIMD. However, the time course of these appeared to be mode 

specific, with increases in 2OV  (by 3.5 – 3.7%) and EV  (by 9 – 11.3%) during running 

occurring at 24 and 48 h after EIMD, while responses during cycling were only 

elevated at 48 h ( 2OV  and EV  increased by 5.3% and 12.3% respectively). RPE was 

increased during both modes after EIMD, [La] responses remained unchanged, SL 

and SF were altered during running, whilst cycling RPM was unchanged. 

CONCLUSIONS: This is the first study to examine the same bout of EIMD on 

responses to sub-maximal running and cycling exercise. The results demonstrate 

that physiological responses are increased during both cycling and running after 

EIMD. Nevertheless, it was demonstrated that the time course of these responses 

are mode specific. The increased 2OV response during running is attributed to 

changes in stride pattern, while the unexpected increased 2OV  cycling response 
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might be due to the recruitment of auxiliary muscles after EIMD. It is postulated that 

the differences in ventilation between exercise modes are due to different stimuli 

activating afferent fibres post-EIMD. Individuals considering resistance training to aid 

endurance performance should be aware of the consequences that unaccustomed 

resistance exercise has on endurance exercise performed in the ensuing days. 

 

STUDY 2 (CHAPTER 4) 

INTRODUCTION: Findings from Study 1 confirm that EIMD increases oxygen 

uptake during endurance exercise. Furthermore, previous research has shown 

muscle-damaging exercise to increase oxidative metabolism at rest. Despite this, it is 

not known whether oxygen uptake during recovery from endurance exercise is 

increased when experiencing EIMD. Therefore, the aim of Study 2 was to investigate 

the effects of EIMD on 2OV before, during and after sub-maximal running. 

METHODS: Eight healthy male participants performed an incremental running test to 

volitional exhaustion to determine lactate turn-point (LTP) and peakOV 2
 . After a 12 h 

fast, participants completed baseline measurements comprising resting metabolic 

rate (RMR), indirect markers of EIMD, 10 minutes of sub-maximal running and 30 

minutes of recovery to ascertain their excess post-exercise oxygen consumption 

(EPOC). Measurements were then repeated at 24 and 48 h after 100 Smith-machine 

squats. RESULTS: Data analysis revealed significant increases in ratings of muscle 

soreness (Baseline: 0.2 ± 0.5; 24 h: 6 ± 1.6; 48 h: 6.6 ± 2.1) and CK (Baseline: 37.3 

± 47.1 U.l-1; 24 h: 125.7 ± 69 U.l-1; 48 h: 78.9 ± 36.4 U.l-1) and decreases in peak 

knee extensor torque (by 20 – 22%) at 24 and 48 h after squatting exercise. 

Moreover, RMR (by 11.8 – 13.2%), 2OV  during sub-maximal running (by 4 – 5%) 

and EPOC (by 4 – 6%) were increased in the two days after squatting exercise. 
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CONCLUSIONS: This is the first study to demonstrate that in the presence of EIMD, 

oxygen uptake is increased at rest, during and after sub-maximal running. It is 

suggested that the elevated RMR was a consequence of a raised energy 

requirement for the degradation and resynthesis of damaged muscle fibres. The 

increased oxygen demand during sub-maximal running after muscle damage was 

responsible for the increase in EPOC. Individuals engaging in unaccustomed 

resistance exercise that results in muscle damage should be mindful of the increases 

in resting energy expenditure and increased metabolic demand to exercise in the 

days that follow.  

 

STUDY 3 (CHAPTER 5) 

INTRODUCTION: The results from Studies 1 and 2 inform that EIMD has a 

detrimental effect on endurance exercise performed in the days that follow. However, 

it is unknown whether such effects remain after a repeated bout of EIMD. Therefore, 

the purpose of Study 3 was to examine the effects of repeated bouts of muscle-

damaging exercise on sub-maximal running exercise. METHODS: Nine male 

participants performed an exhaustive incremental running trial to establish LTP and 

peakOV 2
 . Participants then completed baseline measurements of perceived muscle 

soreness, peak isokinetic knee extensor torque, CK and vertical jump performance. 

Additionally, a 10 min running bout at individual LTP was performed, with 2OV , EV , 

[La], RPE, SL and SF recorded throughout. These measurements were then 

repeated 24 and 48 h after squatting muscle-damaging exercise. Two weeks later, 

when the symptoms associated with the initial bout of EIMD had dissipated, baseline 

procedures, the same muscle-damaging exercise and follow-up testing were 

repeated. RESULTS: Data analysis revealed significant changes in the indirect 
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markers of muscle damage at 24 and 48 h after the initial bout of EIMD, but after the 

repeated bout, the symptoms of EIMD were attenuated. Moreover, the significant 

changes (relative to baseline) in 2OV , EV ,[La], RPE, SL and SF evident at 24 and 48 

h after the initial bout of EIMD were absent after the repeated bout of EIMD. 

CONCLUSIONS: In agreement with findings from Studies 1 and 2, this study 

demonstrated that the physiological, metabolic, perceptual and kinematic responses 

during endurance exercise were altered after an initial bout EIMD. However, for the 

first time, Study 3 shows that the detrimental effects of EIMD on endurance exercise 

are negated after a repeated bout of EIMD. This protective adaptation is known as 

the repeated bout effect (RBE) and is attributed to an interaction of various neural 

and peripheral mechanisms. Individuals should be aware of the negative effects 

unaccustomed resistance exercise has on endurance exercise performed in the days 

that follow. Thereafter, as this study informs, less recovery will be required in the 

days after a repeated bout of resistance exercise. 

 

STUDY 4 (CHAPTER 6) 

INTRODUCTION: As shown in Study 3, the effects of EIMD on fixed-intensity 

endurance exercise are attenuated after a repeated bout of muscle-damaging 

exercise performed two weeks later. Accordingly, Study 4 examined if a low volume 

bout of muscle-damaging exercise performed two weeks prior to a high volume bout 

of the same exercise provided the same protective effect on endurance running 

exercise. METHODS: Sixteen male participants were randomly assigned to a low 

volume (n = 8) or high volume (n = 8) muscle damage group and completed baseline 

measurements associated with fixed-intensity and 3 km time-trial running. 

Measurements were repeated 24 and 48 h (except the time-trial at 24 h) after EIMD, 
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comprising low volume (50) or high (100) volume squats. Two weeks later, 

participants repeated the baseline measurements, high volume squats and the same 

follow-up testing. RESULTS: Analysis revealed increases in muscle soreness and 

creatine kinase and decreases in peak knee extensor torque (by 10.4 – 17.1%) 24 

and 48 h after the initial bouts of EIMD. Alterations in 2OV (by 3.8 – 5.5%), EV  (by 9.4 

– 12.8%), [La] (by 6.3 – 15.8%), RPE (by 9.5 – 13.8%), SL (by 2.5 – 4.1%) and SF 

(by 2.8 – 4.1%) were found during fixed-intensity running at 24 and 48 h after EIMD. 

Likewise, time increased (by 7 – 9%) and speed (by 5.4 – 8.3%), 2OV (by 7.2 – 9.8%) 

and [La] (by 19.6 – 21%) all decreased during a 3 km running time-trial 48 h after 

muscle-damaging exercise. However, symptoms of muscle damage, responses 

during fixed-intensity running and time-trial performance were attenuated in the days 

after the repeated bout of high volume EIMD. Furthermore, this adaptation was 

independent of whether the RBE was preceded by an initial bout of low or high 

volume EIMD. CONCLUSIONS: In agreement with Study 3, this study reaffirms that 

a single bout of EIMD protects the muscle against the effects of muscle damage on 

fixed-intensity running. Moreover, for this first time, this study demonstrates that the 

protective effect of low volume muscle-damaging exercise against high volume EIMD 

is transferable to endurance running. Furthermore, time-trial performance is found to 

be preserved after a repeated bout of EIMD. Individuals contemplating concurrent 

resistance and endurance exercise to improve performance should perform low 

volume resistance exercise two weeks before engaging in concurrent training to 

precondition the muscle to tolerate higher volumes of EIMD and its negative effects 

on endurance performance.      
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bouts of EIMD 
 
Table 6.3: Three-way ANOVA results during time trial running after repeated 

bouts of EIMD 

Table 6.4: Mean (± SD) physiological, metabolic and perceptual responses during 
fixed-intensity running after repeated bouts of muscle-damaging 
exercise. ‡ significant effect for Bout; Bout 1 > Bout 2 (P < 0.05). # 
significant Bout x Time interaction; values 24 – 48 h after Bout 1 > 
values 24 – 48 h after Bout 2 (P < 0.05). 

Table 6.5: Mean (± SD) stride length and frequency responses during fixed-
intensity running after repeated bouts of muscle-damaging exercise. ‡ 
significant effect for Bout; Bout 1 > Bout 2 (P < 0.05). # significant Bout 
x Time interaction; values 24 – 48 h after Bout 1 > values 24 – 48 h 
after Bout 2 (P < 0.05). 

Table 6.6: Mean (± SD) median frequency and peak EMG amplitude responses 
during fixed-intensity running after repeated bouts of muscle-damaging 
exercise. ‡ significant effect for Bout; Bout 1 > Bout 2 (P < 0.05). # 
significant Bout x Time interaction; values 24 – 48 h after Bout 1 > 
values 24 – 48 h after Bout 2 (P < 0.05). 
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IGF2  Insulin-like growth factor II 

IL  Interleukin 
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EV   Minute ventilation 

EV / 2COV  Ventilatory equivalent for carbon dioxide 

EV / 2OV  Ventilatory equivalent for oxygen 

2OV   Oxygen uptake 

max2OV  Maximal oxygen uptake 

peakOV 2
  Peak oxygen uptake 
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CHAPTER 1 

INTRODUCTION 

1.1 Characteristics of eccentric muscle actions 

Muscular contraction is achieved when force is applied against a surface or object. 

When this force is equal to a load exerted on the muscle, the muscle length remains 

stationary and an isometric contraction is executed. However, when muscular force 

is greater than the load exerted, the muscle shortens and a concentric action is 

performed.  Conversely, when this force is lower than that exerted load, the muscle 

lengthens and an eccentric contraction occurs (Enoka, 1996; Lindstedt et al., 2001).  

Eccentric muscle actions possess a number of unique physiological and mechanical 

attributes compared to concentric actions (Brughelli & Cronin, 2007; Roig et al., 

2008a). For example, due to a greater utilisation of type II fibres (McHugh et al., 

2002) and greater force production for a given velocity (Allen, 2001), the muscle is 

capable of producing higher forces during eccentric compared to concentric 

contractions (LaStayo et al., 1999). These characteristics have implications for 

strength development, with several studies reporting greater increases in strength 

after eccentric training compared to concentric resistance training (Komi & Buskirk, 

1972; Johnson et al., 1976; Hather et al., 1991; Hortobagyi et al., 1996a; LaStayo et 

al., 1999; Roig et al., 2008a; Mueller et al., 2009). 

Electromyography (EMG) has also shown that for a given force, less motor unit 

activation is required during eccentric actions when compared against concentric 

actions (Enoka, 1996; Kellis & Baltzopoulos, 1998; McHugh et al., 2000). This 

explains why, when eccentric and concentric activity is performed at the same 

workload, the metabolic cost of eccentric exercise is considerably lower (LaStayo et 
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al., 1999; Vallejo et al., 2006; Roig et al., 2008b). Bigland-Ritchie and Woods (1976) 

reported that the oxygen cost of eccentric cycling was ~15% lower than that required 

during concentric cycling at the same workload. The lower metabolic cost makes 

eccentric exercise attractive to individuals with a low exercise tolerance or at risk of 

cardiovascular disease (Lindstedt et al., 2001). In addition, studies have also shown 

that eccentric exercise increases muscular strength in the elderly (LaStayo et al., 

2003) and in patients with chronic conditions, such as obstructive pulmonary disease 

and heart failure (Roig et al., 2008b).  

However, eccentric activity rarely occurs in isolation. During normal human 

movements, such as running, jumping, throwing and lifting, the muscle contracts in a 

repeated sequence of eccentric and concentric muscle actions known as the stretch-

shortening cycle (SSC) (Komi, 1984; Enoka, 1996). During the SSC, concentric 

contractions provide the force necessary for propulsive movements to occur. 

However, it is during the eccentric action that the stretched components of the 

muscle-tendon system absorb elastic energy that can be used to enhance the force 

and power produced during the subsequent concentric action (Enoka, 1996; Komi, 

2000; LaStayo et al., 2003; Roig et al, 2008a). It is posited that the stiffness of the 

muscle-tendon system determines the body’s ability to utilise elastic energy (Bonacci 

et al., 2009). Increasing muscle-tendon stiffness has the potential to enhance the 

storage and utilisation of elastic energy and has been shown to increase power 

production during vertical jump performance (Lindstedt et al., 2001; 2002; LaStayo et 

al., 2003). Likewise, running economy, defined as the volume of oxygen required for 

a given exercise intensity (Jung, 2003), is improved by increasing the stiffness of the 

muscle-tendon unit (Spurrs et al., 2003). The greater storage of elastic energy during 

the eccentric component of running increases the force production of the muscle 
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without reliance on energy from oxidative or glycolytic sources (Saunders et al., 

2006; see section 2.1).  

 

1.2 Exercise-induced muscle damage  

Eccentric actions are characterised by a ‘loading profile’ that combines high force 

with low muscle fibre recruitment (Enoka, 1996; Byrne et al., 2004; Falvo & Bloomer, 

2006). The number of actin and myosin cross-bridges within the sarcomere also 

decrease as the muscle fibre is forced to lengthen, thus resulting in an increased 

force per cross-bridge (Stauber, 1989; Armstrong et al., 1991; Tee et al., 2007). 

Furthermore, during eccentric contractions cross-bridges are forcibly detached 

without requiring adenosine tri-phosphate (ATP) (Enoka, 1996; Byrne et al., 2004). 

These characteristics impose substantial mechanical stress on the muscle that when 

repeated during an activity with a high eccentric component can result in EIMD 

(Byrne et al., 2004; Eston et al., 2004). Exercise-induced muscle damage is a 

phenomenon that commonly occurs after participation in strenuous, novel or 

unaccustomed activity. Indeed, eccentric contractions are known to cause symptoms 

of EIMD with a greater magnitude than those exhibited after isometric or concentric 

contractions (Komi & Viitasalo, 1977; Newham et al., 1983; Jones et al., 1989). Many 

activities involve eccentric muscle actions, with symptoms associated with EIMD 

commonly reported after distance running (Sherman et al., 1984; Kyrolainen et al., 

2000), downhill running (Braun & Dutto, 2003; Chen et al., 2009), plyometrics (Nicol 

et al., 1996; Twist & Eston, 2005; Burt & Twist, 2011), resistance training (Paul et al., 

1989; Byrne & Eston, 2002a), bench stepping (Gleeson et al., 1995; Schneider et al., 

2007), intermittent shuttle running (Thompson et al., 1999; Magalhaes et al., 2010; 

Howatson & Milak, 2009) isokinetic knee extensor exercise (McHugh et al., 2001; 
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Paschalis et al., 2005), team sports (Takarada, 2003; Twist et al., 2012) and 

occupational and domestic activities (such as lifting tools or the laundry basket; 

(Paschalis et al., 2011).  

The symptoms of EIMD are well documented and include disruption to the 

intracellular muscular structure and extracellular matrix, delayed onset muscle 

soreness (DOMS), acute inflammation, muscle stiffness, decreases in range of 

motion, appearance of myofibre proteins in the bloodstream and the impairment of 

muscle function (Kendall & Eston, 2002; Byrne et al., 2004; Eston et al., 2004). 

Typically, these symptoms are exacerbated immediately after a bout of muscle-

damaging exercise and can last for several days, depending on the intensity and 

duration of the exercise adopted (Howatson & van Someren, 2008). Nevertheless, it 

should be recognised that after unaccustomed muscle-damaging exercise, the 

muscle undergoes an adaptation that enables it to be more resistant to repeated 

bouts of EIMD. This protective mechanism is commonly known as the ‘repeated bout 

effect (RBE)’ and is typically characterised through a smaller deficit in muscle 

strength, a lowered perception of DOMS and a reduction of CK in the bloodstream 

(McHugh et al., 1999a; McHugh, 2003). 

 

1.3 The effects of exercise-induced muscle damage on athletic performance    

The detrimental effects of EIMD on measures of athletic performance requiring 

muscular strength and power are well documented. Studies have shown immediate 

and prolonged impairments in isometric and isokinetic strength (Byrne et al., 2001; 

Sayers & Clarkson, 2001; Michaut et al., 2002), peak power output and time to 

achieve peak power (Sargeant & Dolan, 1987; Byrne & Eston, 2002b; Twist & Eston, 

2007), vertical jump performance (Avela et al., 1999; Horita et al., 1999; Byrne & 
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Eston, 2002a), single and repeated sprint performance during cycling and running 

(Twist & Eston, 2005; Highton et al., 2009) and agility (Highton et al., 2009) in the 

days after muscle-damaging exercise. Exercise-induced muscle damage has also 

been shown to impair endurance performance (Braun & Dutto, 2003; Twist & Eston, 

2009; Burt & Twist, 2011), however, the findings appear to be influenced by the 

methods used to cause muscle damage, the mode of endurance exercise adopted, 

the exercise intensity and the training status of participants. 

 

1.4 Aims of the current research 

The main objective of this thesis was to investigate the effects of EIMD on the 

physiological, metabolic, perceptual and kinematic responses during endurance 

performance in recreationally active males.  

 

Aims of Study 1 (Chapter 3) 

Changes in the physiological responses during endurance exercise after EIMD 

appear equivocal. While studies using cycling have observed no change in the sub-

maximal oxygen cost after EIMD (Davies et al., 2009; Twist & Eston, 2009), studies 

using running have tended to report increases (Braun & Dutto, 2003; Chen et al., 

2007b). It is suggested that alterations in stride pattern are responsible for the 

increase in 2OV  during running after EIMD (Braun & Dutto, 2003). However, to date, 

no study has examined the physiological responses to the same initial muscle-

damage bout on both cycling and running exercise. Therefore, the aim of Study 1 

was to evaluate the effects of the same bout of muscle-damaging exercise on the 

physiological, metabolic and perceptual responses to sub-maximal running and 

cycling exercise.  



 

 

28 
 

Aims of Study 2 (Chapter 4) 

Exercise-induced muscle damage is shown to increase oxidative metabolsim at rest 

and during endurance exercise. However, it is not known whether oxygen uptake 

during recovery from endurance exercise is increased when experiencing symptoms 

of EIMD. Prolonged increases in oxygen uptake are evident hours after exercise 

(Gaesser & Brooks, 1984; Bahr, 1992). Coined the ‘excess post-exercise oxygen 

consumption (EPOC)’, the magnitude of EPOC is dependent upon the intensity the 

exercise (Bahr & Sejersted, 1991; Bahr, 1992). Therefore, the observed increases in 

oxygen cost during rest and sub-maximal running when muscle is damaged could 

cause further increases in EPOC. Furthermore, endurance athletes often engage in 

repeated bouts of endurance exercise on the same day or in the days after, and, if 

2OV  is still elevated after exercising with muscle damage, reductions in exercise 

efficiency during subsequent endurance training sessions could occur (Bahr et al., 

1991; Borsheim & Bahr, 2003). Therefore, the aims of Study 2 were to investigate 

the effects of EIMD on resting metabolic rate, sub-maximal endurance exercise and 

post-exercise oxygen consumption. 

 

Aims of Study 3 (Chapter 5) 

As described above, the RBE describes how an initial bout of muscle damaging 

exercise protects against a subsequent bout of the same exercise. While several 

studies have documented the RBE in the markers of EIMD, to date no study has 

examined whether the RBE can reduce the observed effects of EIMD on sub-

maximal endurance exercise. Given that individuals take part in numerous resistance 

training sessions, rather than a single bout, it is pertinent to investigate if alterations 

to sub-maximal endurance performance are still evident after a repeated bout of 
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resistance exercise. Therefore, the aims of Study 3 were to investigate the effects of 

repeated bouts of muscle-damaging exercise on the physiological, metabolic, 

perceptual and kinematic responses during sub-maximal running exercise. 

 

Aims of Study 4 (Chapter 6) 

A low volume of EIMD protects the muscle against damage in the days after a high 

volume of muscle-damaging exercise (Howatson et al., 2007). However, whether the 

protective adaptation against a high volume of EIMD after a low volume of EIMD is 

transferable to endurance performance is yet to be elucidated. Such a study would 

be useful to endurance athletes considering periodized resistance training for the 

first time. For instance, performing a low volume of resistance exercise two weeks 

before engaging in concurrent training might precondition the muscle to withstand 

higher bouts of muscle-damaging exercise and its detrimental effects on endurance 

performance. Thus, the aims of Study 4 were to investigate whether a low volume of 

muscle-damaging exercise protects against a higher volume of muscle-damaging 

exercise and its negative impact on endurance exercise performance. 
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CHAPTER 2 

 

REVIEW OF LITERATURE 

 

2.1 The application of resistance training methods for improving endurance 
performance 

Whilst traditional views advocate that aerobic training is the most effective method to 

enhance endurance performance (Temple, 1990), there are an increasing number of 

endurance athletes engaging in resistance training (Jung, 2003; Yamamoto et al., 

2008). This is surprising given the distinctly contrasting adaptations to each modality 

when performed independently (Hoffman, 2002). However, given that endurance 

athletes are often required to sustain attacks, climb hills, or sprint in the final part of a 

competitive race (Tanaka & Swenson, 1998), the role of the neuromuscular system 

in producing muscular strength and power is arguably fundamental to success in 

endurance events (Noakes, 1988).  

Several studies have found that maximal oxygen uptake ( max2OV ) remains 

unchanged after resistance training, dispelling the view that such training impairs 

aerobic performance (Jung, 2003). Moreover, resistance training is reported to 

enhance running economy, which is viewed as a key determinant of distance running 

performance (see Saunders et al., 2004) and defined as the oxygen cost required for 

a given running speed (Jung, 2003). Storen et al. (2008) reported that eight weeks of 

heavy resistance training in trained distance runners significantly improved running 

economy by 5% without any change in max2OV . Furthermore, three additional studies 

examining trained triathletes (Millet et al., 2002) and distance runners (Johnston et 
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al., 1997; Guglielmo et al., 2009) reported a 4 – 7% improvement in running 

economy after 4 – 14 weeks of heavy resistance training.    

In all of these studies significant improvements in maximal strength were reported 

without concomitant changes in body mass, implying that neuromuscular adaptations 

were responsible for the initial strength gains as opposed to muscle hypertrophy 

(Sale, 1991). Moreover, neuromuscular characteristics, such as improved muscle 

coordination, increased motor unit activation and increased motor unit 

synchronization, are also attributed to the improved running economy after heavy 

resistance training. However, a direct measure of neuromuscular function (such as 

electromyography; EMG) has yet been employed to confirm this (Bonacci et al., 

2009).   

Neural adaptations are also known to be more prominent than muscle hypertrophy 

after explosive resistance training or plyometrics (Sale, 1991). Plyometrics improve 

the ability of the muscles to generate power through utilising the SSC (Turner et al., 

2003). It has been suggested that plyometric training has the potential to enhance 

the ‘stiffness’ of the musculotendinous system, allowing the muscle to absorb and 

utilise elastic energy more effectively during SSC activities (such as distance 

running) (Spurrs et al., 2003). Indeed, it is postulated that adaptations from 

plyometric exercise enhance running economy by increasing the force generating 

capability of the muscle without relying on additional energy from oxidative or 

glycolytic sources (Saunders et al., 2004). Paavolainen et al. (1999) observed that 

nine weeks of explosive resistance training improved running economy by 8% and 5 

km running performance by 3% in moderately trained cross-country runners. 

Improvements in indirect neuromuscular characteristics, such as 20 m sprint velocity, 

distance covered during five alternate forward jumps, and stance phase contact 
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times during fixed-intensity running, were all attributed to the improvements in 

endurance performance. Similarly, other studies have shown improvements in 

running economy and running performance after 6 – 9 weeks of plyometric training in 

moderately (Spurrs et al., 2003; Turner et al., 2003) and highly trained distance 

runners (Saunders et al., 2006). Improvements in running economy were linked to 

increased stiffness of the lower limb musculotendinous system, enhanced muscular 

power, and increased elastic energy return. (For a detailed review on the 

neuromuscular adaptations to resistance training and their implications, see Bonacci 

et al. (2009)) Contrary to previous evidence that has advocated the inclusion of 

resistance training in running-based endurance training programmes; the effects of 

resistance training on cycling endurance performance appear equivocal (Laursen et 

al., 2005). Whilst some studies report significant increases in maximal leg strength 

following heavy resistance training, this improvement was not met with concomitant 

enhancements in cycling endurance performance (Bishop et al., 1999; Jackson et 

al., 2007; Levin et al., 2009). In contrast, other studies have shown improvements in 

cycling performance after resistance training (Hickson et al., 1988; Bastiaans et al., 

2001; Paton & Hopkins, 2005). However, the inclusion of high-intensity interval 

training in conjunction with resistance training (Paton & Hopkins, 2005) and the 

recruitment of inexperienced cyclists (Hickson et al., 1988) undermine the 

significance of these findings.   

Finally, it appears that the majority of the literature strongly advocates for endurance 

athletes, particularly distance runners, to include resistance training in their normal 

training regime. However, while early strength gains are attributed to neuromuscular 

adaptation (without change in muscle size), long-term interventions might increase 

body mass and subsequently lessen endurance performance (Jung, 2003). 
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Furthermore, given the incidence of EIMD after unaccustomed and strenuous bouts 

of resistance training, the need to investigate the effects of muscle-damaging 

exercise on endurance performance is paramount for the athlete and coach (Byrne 

et al., 2004). 

 

2.2 Proposed mechanisms of exercise-induced muscle damage 

Despite a plethora of literature detailing the effects of muscle-damaging exercise on 

measures of athletic performance, the exact mechanisms responsible for EIMD are 

still the subject of debate (Pyne, 1994; Howatson & van Someren, 2008). Several 

authors have attempted to explain the series of physiological events associated with 

the initiation of skeletal muscle damage and the recovery process thereafter  

(Armstrong, 1984; 1986; 1990; Ebbeling & Clarkson, 1989; Armstrong et al., 1991; 

Pyne, 1994; Morgan & Allen, 1999; Warren et al., 2001; Kendall & Eston, 2002; 

Byrne et al., 2004), and it is the intention of this review to adopt the model of 

exercise-induced injury in skeletal muscle first suggested by Armstrong (1990). 

Armstrong’s model proposes that exercise-induced muscle damage occurs in four 

key phases: 

(i) the initial phase – the event that triggers the injury process; 

(ii) the autogenic phase – when proteolytic systems begin to degrade cellular 
structures within the muscle fibre; 
  

(iii) the phagocytic phase – the inflammatory process responsible for the 
removal of cellular debris and the regeneration of damaged fibres; 

 
(iv) the regenerative phase – whereby the muscle fibre is repaired and 

restored to its normal state. 
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2.3 Initial events in muscle damage   

The mechanism responsible for initiating muscle damage after eccentric exercise is 

thought to involve two possible pathways: metabolic and / or mechanical (Ebbeling & 

Clarkson, 1989; Armstrong, 1990; Armstrong et al., 1991; Pyne, 1994).  

 

2.3.1 Metabolic pathway 

The metabolic muscle damage paradigm hypothesises that the initial event of EIMD 

is caused by metabolic deficiencies within the exercising muscle (Tee et al., 2007). 

Metabolic events such as insufficient mitochondrial respiration, lowered pH, elevated 

intramuscular temperature and increased oxygen free radical production have all 

been attributed to the appearance of muscle damage (Armstrong, 1990; Kendall & 

Eston, 2002). 

During exercise, mitochondrial respiration is increased to match the rate of 

adenosine triphosphate (ATP) synthesis to ATP hydrolysis (Armstrong et al., 1991; 

Pyne, 1994; Tee et al., 2007). However, during physical activity there is a point at 

which the demand for ATP within the muscle fibre exceeds ATP production 

(Krisanda et al., 1988). When this attenuation of ATP occurs in the vicinity of the 

calcium (Ca2+) adenosine triphosphatase (ATPase) in the sarcoplasmic reticulum 

(SR) or sarcolemma, the removal of Ca2+ is compromised, causing an elevation in 

cytosolic Ca2+, triggering muscle cell degradation (Armstrong, 1984; 1990; 

Armstrong et al., 1991; Tee et al., 2007). However, if insufficient mitochondrial 

respiration was primarily responsible for EIMD, then muscles which contract 

concentrically would show more damage than muscles which contract eccentrically 

(Ebbeling & Clarkson, 1989). This is because during equivalent force production 
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concentric actions exert a higher metabolic cost than eccentric actions (Bigland-

Richie & Woods, 1976). However, that eccentric exercise requires less energy, yet 

yields a greater level of muscle damage, demonstrates that depleted ATP 

concentrations are unlikely to initiate EIMD (Armstrong, 1984).  

A decrease in pH after muscle-damaging exercise is hypothesised to have a 

profound negative effect on the ability of the SR to uptake Ca2+ following muscular 

contraction (Kendall & Eston, 2002). Schwane et al. (1983) compared blood lactate 

concentrations and DOMS after level and downhill running, and reported significant 

elevations in blood lactate response during level running with no incidence of DOMS. 

Conversely, following downhill running participants reported increased DOMS 

despite no increase in blood lactate concentration. Thus, lowered pH is also unlikely 

to be the initiating metabolic mechanism responsible for muscle damage (Ebbeling & 

Clarkson, 1989; Armstrong, 1990; Armstrong et al., 1991). 

Elevated intramuscular temperature resulting from EIMD could damage the structural 

integrity of the muscle, causing muscle fibre necrosis and breakdown of the 

connective tissue (Armstrong, 1984). Eccentric exercise is postulated to generate a 

higher local temperature than concentric actions (Armstrong, 1984; 1990). However, 

this hypothesis is not consistent across the literature (Abbot & Aubert, 1951; Nadel et 

al., 1972) and it is speculated that a reduced rate of heat removal rather than 

increased heat production within the muscle occurs after eccentric exercise 

(Armstrong et al., 1991).  

Another mediator of metabolic muscle damage is the increased production of oxygen 

free radicals (Armstrong et al., 1991). Free radicals are molecules containing an 

unpaired electron in their outer valence shell, making them extremely exchangeable. 
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They have a strong oxidising effect, which is the basis for their destructive influence 

against the muscle cell (Kendall & Eston, 2002). Free radicals are thought to be 

produced through electron leakage within the mitochondria, membrane bound 

oxidases, and infiltrating phagocytic cells (Armstrong et al., 1991; Pyne, 1994; 

Kendall & Eston, 2002). After intense exercise, it is postulated that the generation of 

free radicals initiates membrane damage leading to muscle cell death (Armstrong, 

1990; Pyne, 1994). However, whilst there is evidence that free radicals are produced 

as a result of EIMD (Ashton et al., 1999; Thompson et al., 2001), it is possible that 

free radicals are secondary to the initial muscle-damaging mechanism. Close et al. 

(2004) measured the amount of free radicals after 30 minutes of downhill running 

and observed that circulating markers of free radicals did not appear until 72 h after 

muscle-damaging exercise. Such observations indicate that the production of free 

radicals is not responsible for initiating muscle damage, but could be involved in 

mediating the recovery from EIMD (Close et al., 2004). 

The metabolic muscle damage model proposes that the initial event of EIMD is 

caused by a disturbance in metabolic function. However, the contrasting argument 

behind each metabolic event implies that metabolic factors seem unlikely candidates 

for the initiation of EIMD (Howatson & van Someren, 2008). 

 

2.3.2 Mechanical pathway 

The mechanical hypothesis describes the initial event of EIMD as a direct 

consequence of mechanical loading on the muscle (Howatson & van Someren, 

2008). Enoka (1996) explains that there is a significant reduction in the recruitment 

of motor units during eccentric activity, despite such muscle actions being able to 

generate more force compared to isometric or concentric contractions. This ‘loading 
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profile’ (high force with low muscle fibre recruitment) is postulated to place 

substantial mechanical stress on the muscle, and when repeated during an activity 

with a high eccentric component places sufficient stress on the muscle to induce 

failure and inevitable damage in some fibres (Byrne et al., 2004; Eston et al., 2004; 

Falvo & Bloomer, 2006; Tee et al., 2007). 

The ‘popping sarcomere’ hypothesis explains that when the muscle is actively 

lengthened during eccentric activity, most of the length change is taken up by the 

weakest sarcomeres (Morgan, 1990). When this occurs on the descending limb of 

the length-tension curve, these sarcomeres progressively over-extend until they are 

beyond myofilament overlap (Morgan & Allen, 1999; Proske & Morgan, 2001). Upon 

relaxation of the muscle fibre, most of the over-extended sarcomeres re-interdigitate 

and are able to resume normal function. However, some sarcomeres fail to do so 

and remain over-extended (Morgan, 1990; Morgan & Allen, 1999; Proske & Morgan, 

2001). Consequently, this leads to a rightward shift in the length-tension relationship, 

as a longer muscle length is required to achieve the same myofilament overlap 

observed prior to the eccentric activity (Proske & Morgan, 2001; Byrne et al., 2004; 

Eston et al., 2004).  

Furthermore, during repeated eccentric exercise, broadening, smearing or total 

disruption occurs at the Z-line of the sarcomere. The over-extending sarcomere 

eventually disrupts, and it is proposed that as the Z-lines weaken the number of 

disrupted sarcomeres increases (Friden et al., 1983; Hortobagyi et al., 1998). 

Moreover, due to their non-uniform lengthening during eccentric contractions, once 

one or more sarcomeres become disrupted, the damage is thought to spread across 

to neighbouring functional sarcomeres, causing them to disrupt during subsequent 

contractions (Morgan & Allen, 1999; Morgan & Proske, 2004; Proske & Allen, 2005). 
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It is hypothesised that the extension of disrupted sarcomeres continues to increase, 

until a point at which membrane damage, including membranes of the SR, t-tubules, 

or the sarcolemma occurs (Morgan & Allen, 1999; Allen, 2001; Proske & Morgan, 

2001; Proske & Allen, 2005). The uncontrolled movement of Ca2+ in the cytoplasm 

then ensues, triggering the autogenic stage of muscle damage (Morgan &  

Allen, 1999; Proske & Allen, 2005). 

   

Whilst it is generally agreed that the initial phase of EIMD stems from the over-

extension of sarcomeres, this theory is not universally accepted (Proske & Allen, 

2005). An alternative view postulates that initial muscle damage is due to the failure 

to the excitation-contraction (E-C) coupling process (Warren et al., 2001). The E-C 

coupling process is a sequence of events that begins with the passage of the action 

potential along the plasmalemma and ends with the release of Ca2+ from the SR 

(Ingalls et al., 1998; Warren et al., 2001; Byrne et al., 2004; Eston et al., 2004). 

Evidence that the initiation of EIMD lies within the E-C coupling system has been 

shown through exposing injured mouse muscle to caffeine (Warren et al., 1993; 

Balnave & Allen, 1996). Caffeine promotes the release of Ca2+ from the SR, leading 

to the development of contracture within the muscle (Proske & Morgan, 2001; 

Warren et al., 2001). Thus, after muscle-damaging exercise, any reduction in 

caffeine-induced tension could be attributed to structural damage. However, 

caffeine-elicited force in mouse fibres is unchanged after EIMD, suggesting that 

alterations in Ca2+ release are accountable for most of the early tension deficit 

(Warren et al., 1993). Nevertheless, in amphibian muscle, the reduction in force as a 

result of EIMD is not recoverable through increasing Ca2+ release; therefore E-C 
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coupling dysfunction appears to be different between species (Morgan et al., 1996; 

Allen, 2001). 

In humans, failure of the E-C coupling mechanism after EIMD has been shown 

through the force-frequency relationship (Byrne et al., 2004). The relationship, 

represented graphically as generated force (y-axis) against when a muscle is 

stimulated across a range of frequencies (x-axis), demonstrates exacerbated force 

losses at low frequencies (10 – 20 Hz) when compared to high frequencies (50 – 100 

Hz) (Jones, 1996; Hill et al., 2001; Clarkson & Hubal, 2002; Byrne et al., 2004). 

  
This phenomenon, termed low-frequency fatigue (LFF), is thought to be caused by 

reductions in SR Ca2+ release after EIMD (Edwards et al., 1977; Jones, 1996; Byrne 

et al., 2004; Nielsen et al., 2005; Dundon et al., 2008). However, increased muscular 

compliance as a result of over-extended sarcomeres can also reduce force at low 

frequencies (Allen, 2001). Therefore, LFF might be the direct result of structural 

damage to the myofibril and not necessarily evidence of E-C coupling failure (Jones, 

1996; Allen, 2001; Clarkson & Hubal, 2002). Furthermore, if the initial cause for the 

early tension deficit after EIMD was due to E-C coupling failure, the shift in the 

length-tension curve could be interpreted as a reduction in activation, so that the 

muscle has to be stretched further in order to achieve maximal activation (Proske & 

Morgan, 2001). However, when tension is increased at long lengths (Katz, 1939; 

Morgan et al., 1996), reductions in activation or E-C coupling are unable to explain 

the change in the length-tension relation of the muscle (Morgan & Allen, 1999; 

Proske & Morgan, 2001). Therefore, it would appear more plausible to assume that 

E-C coupling failure is secondary to mechanical changes in the myofibril (Proske & 

Allen, 2005). Adopting the view of Proske and Morgan (2001), the initial events of 
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mechanical muscle damage would commence with the disruption of sarcomeres, 

leading to membrane damage and subsequent inference with the E-C coupling 

system. 

 

2.4 Autogenic events during exercise-induced muscle damage    

Regardless of the initiating event of EIMD (metabolic or mechanical), a common 

hypothesis that follows is the uncontrolled movement of Ca2+ into the cytoplasm, 

triggering the autogenic processes (Kendall & Eston, 2002). Calcium plays a vital 

role in the structure and function of the myofibril (Byrd, 1992). Following the 

movement of the action potential across the plasmalemma, Ca2+ release from the 

SR is necessary for the attachment of myosin to actin to produce muscular 

contracture. Furthermore, when released Ca2+ is re-accumulated into the SR by 

Ca2+-ATPase muscular contraction is halted (Gissel, 2005).  

Since extracellular Ca2+ concentration is considerably higher than that contained 

within the muscle cell, structural damage to the muscle membrane, after EIMD, could 

allow an influx of Ca2+ into the cell down its concentration gradient (Armstrong, 1984; 

1986; 1990; Armstrong et al., 1991). When abnormally high concentrations of Ca2+ 

exist in the cytoplasm, several detrimental events occur to cause further damage to 

the muscle cell (Armstrong, 1984; 1986; Ebbeling & Clarkson, 1989; Howatson & 

van Someren, 2008). For example, high intracellular Ca2+ concentration activates 

Ca2+-dependent proteolytic (calpains) and lipolytic (phospholipase A2) pathways that 

result in the degradation of structural proteins within the muscle cell and subsequent 

cell death (Armstrong et al., 1991; Gissel & Clausen, 2001; Kendall & Eston, 2002; 

Gissel, 2005; Howatson & van Someren, 2008). The mitochondria are capable of 

accumulating large amounts of Ca2+; therefore in attempting to maintain cell 
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homeostasis, the mitochondria will sequester excess Ca2+ levels present in the 

muscle cell (Ebbeling & Clarkson, 1989; Gissel, 2005). However, if this storage 

capacity is exceeded, increased Ca2+ load will lead to the increased production of 

reactive oxygen species (ROS) and subsequent membrane damage (Gissel, 2005). 

Mitochondrial Ca2+ overload has also been suggested to impair cellular respiration 

and ATP production, which would have a detrimental effect on several cellular 

processes, including muscular contraction (Armstrong, 1984; 1986; Ebbeling & 

Clarkson, 1989; Gissel & Clausen, 2001; Gissel, 2005). Since Ca2+ is an initiating 

factor for muscular contraction, elevated intracellular Ca2+ could result in the 

uncontrolled contracture of a muscle fibre and may explain the increase in passive 

tension observed following muscle-damaging exercise (Armstrong, 1986; Morgan & 

Allen, 1999; Allen, 2001; Proske & Morgan, 2001; Proske & Allen, 2005). 

 

2.5 The phagocytic phase of exercise-induced muscle damage 

Exercise-induced muscle damage is associated with a well-documented 

inflammatory response that promotes the clearance of damaged tissue, eradicates 

microbial invaders, and initiates tissue repair (MacIntyre et al., 1995). It is postulated 

that this response is activated by the initial mechanical damage and is characterised 

by the infiltration of fluid and white blood cells (WBC) into the affected area (Pyne, 

1994; Cannon & St. Pierre, 1998; Clarkson & Sayers, 1999; Clarkson & Hubal, 2002; 

Kendall & Eston, 2002; Butterfield et al., 2006). Tidball (1995) identified that at least 

two WBC populations respond to muscular injury; inflammatory cells responsible for 

the removal of cellular debris (neutrophils) and myogenic cells involved in the 

replacement of damaged tissue (macrophages). 
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Whilst it is still an area of much debate (see St. Pierre Schneider & Tiidus, 2007 for a 

review), it is generally believed that neutrophils are the first group of WBCs to 

infiltrate muscle tissue at the site of injury (Smith, 1991; MacIntyre et al., 1995; 

Cannon & St. Pierre, 1998; Peake et al., 2005; Butterfield et al., 2006). The exact 

mechanism responsible for neutrophil cell invasion is yet to be fully elucidated 

(Peake et al., 2005; Butterfield et al., 2006). The activation of calpain following 

muscle cell Ca2+ overload may be associated with neutrophil chemotaxis (Clarkson & 

Sayers, 1999; Gissel & Clausen, 2001; Kendall & Eston, 2002). Raj et al. (1998) 

found a relationship between Ca2+-stimulated proteolysis and neutrophil 

accumulation, suggesting that calpains are involved in promoting neutrophil invasion 

(Clarkson & Sayers, 1999; Gissel & Clausen, 2001). Alternatively, elevated 

intracellular Ca2+ following EIMD could provide the signalling molecule responsible 

for the release of pro-inflammatory cytokines (Butterfield et al., 2006). Chin (2005) 

demonstrated that decreasing intracellular Ca2+ concentrations through blocking 

Ca2+ channels resulted in diminished cytokine production.  

Cytokines are small polypeptides that act on the surface of target cells principally to 

alter cellular function (MacIntyre et al., 1995; Kendall & Eston, 2002; Butterfield et 

al., 2006). Following muscle-damaging exercise, myocytes release a number of 

cytokines, including interleukin (IL)-1β and tumour necrosis factor-α (TNFα). These 

cytokines up-regulate endothelium-leukocyte adhesion molecules within the 

endothelial cells that line the walls of blood vessels. Activated endothelial cells then 

release additional IL-1β, as well as IL-6 and IL-8, which have been demonstrated to 

attract neutrophils to the site of injury (Cannon & St Pierre, 1998; Kendall & Eston, 

2002; Butterfield et al., 2006; Smith et al., 2008). Once infiltrated into the muscle 

tissue, the primary function of neutrophils is to attack and breakdown necrotic 
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myofibres and cellular debris. However, neutrophils can also produce high 

concentrations of cytolytic and cytotoxic molecules (including ROS) via a ‘respiratory 

burst’ that can aggravate existing damage from the mechanical insult. It is postulated 

that neutrophils are unable to distinguish between foreign and host antigens, 

therefore damage to the surrounding healthy tissue can also occur and may explain 

the so-called secondary inflammatory response (MacIntyre et al., 1995; Cannon & 

St. Pierre, 1998; Clarkson & Sayers, 1999; Clarkson & Hubal, 2002; Kendall & 

Eston, 2002; Tidall, 2005; Butterfield et al., 2006; St. Pierre Schneider & Tiidus, 

2007; Smith et al., 2008). 

 

After the accumulation of neutrophils, there is a subsequent infiltration of 

macrophages into the damaged tissue (Clarkson & Hubal, 2002). The mechanism 

responsible for the recruitment of macrophages remains unknown, however it is 

possible that damaged tissue releases similar signalling molecules to those used for 

recruiting neutrophils (Kendall & Eston, 2002; Butterfield et al., 2006). At present, 

there is much confusion within the literature regarding the function of macrophages 

once they invade the muscle tissue (Tidball, 2005; Butterfield et al., 2006). MacIntyre 

et al. (1995) postulated that macrophages, like neutrophils, are capable of producing 

cytotoxic enzymes and ROS leading to further tissue degradation. However in 

contrast, Arnold et al. (2007) demonstrated that macrophages once recruited by 

damaged tissue convert into anti-inflammatory phenotypes responsible for releasing 

growth factors. Therefore, it is possible that macrophages do not contribute to 

membrane disruption during the inflammatory response, but have a role in facilitating 

recovery (Butterfield et al., 2006; Smith et al., 2008). 
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Macrophages have also been shown to divide into two separate cell populations that 

perform contrasting functions at different phases of the inflammatory process. ED1+ 

macrophages infiltrate necrotic fibres within 24 h of neutrophil invasion and function 

as phagocytes to remove cellular debris from necrotic tissue. ED2+ macrophages are 

evident when muscle necrosis is complete and muscle regeneration commences. 

Therefore, these ‘non-phagocytic’ macrophages might serve as sources for growth 

factors and cytokines responsible for muscle cell proliferation (Tidball, 1995; Cannon 

& St. Pierre, 1998; Clarkson & Sayers, 1999; Butterfield et al., 2006; Smith et al., 

2008). However, these findings have only been observed in animals and currently 

remain to be validated in human studies (Butterfield et al., 2006).  

 

 2.6 The regenerative phase of exercise-induced muscle damage 

Muscle fibres are unable to perform cell division, thus during regeneration skeletal 

muscle requires the recruitment and activation of specialised precursor cells known 

as satellite cells. Satellite cells normally lie dormant outside muscle tissue, however 

upon stimulation after EIMD they migrate to the site of injury and commence 

proliferation (Cannon & St. Pierre, 1998). A crucial, but poorly understood stage, it is 

postulated that there is an associated division of satellite cells, which fuse into new 

established myotubes to form mature myofibrils (Jones & Round, 1990; Cannon & 

St. Pierre, 1998; Kendall & Eston, 2002). Furthermore, there is growing evidence 

that macrophage invasion is an essential pre-requisite for satellite cell stimulation. 

Macrophages, particularly ED2+, release a number of growth factors and cytokines 

that have been shown to promote satellite cell proliferation (Cannon & St. Pierre, 

1998; Kendall & Eston, 2002; Butterfield et al., 2006; Smith et al., 2008).  

 



 

 

45 
 

2.7 Symptoms of exercise-induced muscle damage 

The symptoms associated with EIMD are well documented and are used as markers 

to provide evidence of the magnitude and time course of muscle injury (Warren et 

al., 1999). Symptoms are exacerbated immediately after the bout of muscle 

damaging exercise and can last for several days, depending on the intensity and 

duration of the exercise adopted (Howatson & van Someren, 2008). Histological 

observation (light or electron microscopy) and changes in muscle function appear to 

be the most valid markers of EIMD (Paulsen et al., 2012). However, other symptoms 

such as the delayed onset muscle soreness (DOMS), swelling, muscle stiffness, 

decreases in range of motion and leakage of myofibre proteins into circulation (such 

as CK and myoglobin) have been used to provide indirect confirmation of EIMD 

(Kendall & Eston, 2002; Byrne et al., 2004; Eston et al., 2004).   

Histological observations involve taking small biopsy samples (5 – 20 mg) from 

exercised and / or control muscle. The advantage of histological examinations is that 

they allow for the identification of abnormalities in the muscle, such as myofibrillar 

disruptions and the presence of inflammatory cells. Myofibrillar disruptions are 

evident immediately after exercise, can still be seen one week after EIMD, with the 

greatest disturbance found 1 – 4 days post-EIMD (Friden et al., 1983; Hikida et al., 

1983; Newham et al., 1983; Hortobagyi et al., 1998; Raastad et al., 2010). However, 

despite histological evidence providing the ultimate sign of EIMD, questions are 

raised as to whether a small biopsy sample is representative of the whole muscle 

(Warren et al., 1999). Furthermore, there is also a risk of bias when taking repeated 

biopsy samples from the same muscle (Malm, 2001). Malm et al. (2000) observed no 

differences in inflammatory response in muscle samples taken from eccentrically-

exercised and control muscle. This led them to suggest that the biopsy procedure 
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causes more damage and inflammation than muscle-damaging exercise. However, 

the findings from Malm et al. (2000) are undermined by the mild loss in muscle 

function (15% in the first 24 h post-EIMD), that had returned to normal within 48 h. It 

is possible that the eccentric exercise adopted did not result in appreciable damage 

to induce fibre necrosis and the ensuing inflammatory response. Prior and 

subsequent research that used greater intensity muscle-damaging exercise have 

shown evidence of myofibril disruption and fibre necrosis (Jones et al., 1986; Child et 

al., 1999; Beaton et al., 2002; Lauritzen et al., 2009; Paulsen et al., 2010). It should 

be noted that the cost, the expertise required and the discomfort experienced by 

participants may lead investigators to examine more indirect markers of EIMD. The 

most popular indirect markers of EIMD amongst human research are DOMS, CK 

activity and muscle function (Warren et al., 1999). 

 

2.7.1 Delayed onset muscle soreness 

Delayed onset muscle soreness is the most frequently reported marker of EIMD 

(Warren et al., 1999) and is classified by sensations of pain, tenderness, and 

stiffness upon palpation or movement of the damaged muscle (Armstrong, 1984; 

Ebbeling & Clarkson, 1989; Jones & Round, 1990; Miles & Clarkson, 1994; Cheung 

et al., 2003). Delayed onset muscle soreness normally appears between 8 and 24 h 

after cessation of muscle-damaging exercise, and peaks 24 – 48 h later. All 

discomfort eventually subsides within 96 h and participants are usually pain-free 

after 5 to 10 days, depending on the intensity and/or duration of the muscle-

damaging exercise performed (Jones et al., 1986; Ebbeling & Clarkson, 1989; 

Clarkson et al., 1992; Cleak & Eston, 1992a).   
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Whilst DOMS is an appropriate term to describe the time course of the sensations of 

pain, tenderness and stiffness, it conveys no information about aetiology (Byrne et 

al., 2004). The sensation of pain in skeletal muscle is believed to be signalled by 

myelinated group III and unmyelinated group IV afferent fibres located in the 

musculotendinous junctions and fascial sheaths (Armstrong, 1984; Ebbeling & 

Clarkson, 1989; Jones & Round, 1990; Cleak & Eston, 1992a; Kendall & Eston, 

2002). It is hypothesised that the stimulation of group III fibres results in the 

transmission of a brief, sharp pain whereas the activation of group IV fibres yields a 

duller, longer-term pain response that is more indicative of DOMS (Ebbeling & 

Clarkson, 1989; Jones & Round, 1990; Kendall & Eston, 2002).  

Several theories have been postulated to explain the underlying mechanisms of the 

sensitisation of pain receptors after EIMD. For example, the accumulation of noxious 

chemicals (such as prostaglandin, bradykinin, and histamine), increased muscle 

temperature, and elevated pressure from tissue oedema have all been implicated in 

activating afferent fibres to produce DOMS. To date, the initiating stimulus 

responsible for DOMS has still to be elucidated. However, whilst it appears that no 

single theory can explain muscle soreness, it has been suggested that the onset of 

DOMS might occur due to a complex interaction of numerous events. For a more 

detailed account of the possible causes of DOMS, the reader is referred to the 

reviews by Armstrong (1984), Cleak and Eston (1992a), MacIntyre et al. (1995) and 

Cheung et al. (2003).   

Numerous methods have been adopted to quantify the magnitude of DOMS 

following EIMD. Subjective measures of muscle soreness are obtained from visual 

analogue scales where a numerical value is selected to represent a corresponding 

adjective. Objective measures of muscle soreness have also been established and 
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are gained by recording the amount of force required to elicit a painful response 

(Jones & Round, 1990; Byrne et al., 2004). However, such measurements have 

been criticised due to the one-dimensional approach quantifying muscle soreness. 

Pain is multi-faceted, comprising a sensory dimension that includes temporal, spatial 

and pressure aspects; an affective dimension that incorporates emotional responses 

to pain; and an evaluative dimension that encompasses cognitive facets of pain 

(MacIntyre et al., 1995; Cleather & Guthrie, 2007). The McGill Pain Questionnaire, 

which incorporates  numerous aspects of pain, is suggested to provide a more 

appropriate assessment of DOMS. However, in a study by Cleather and Guthrie 

(2007), which measured DOMS following eccentric exercise using both a one-

dimensional measurement of pain and a more complex multi-dimensional tool, it was 

observed that the time course of DOMS was the same for each method. 

Despite the popularity of DOMS amongst the battery of tests to measure EIMD, it 

should not be used as an indicator of functional impairment or the magnitude of 

muscle damage (Byrne et al., 2004). After EIMD, muscle function has been shown to 

be impaired before muscle soreness arises. Moreover, decrements in muscle 

function are still evident after muscle soreness has dissipated (Jones et al., 1986; 

Warren et al., 1999; Nosaka et al., 2002a; Byrne et al., 2004). Muscle soreness 

responses to a bout of muscle-damaging exercise vary greatly between individuals. 

For example, participants might rate muscle soreness at 40 cm on a 100 cm VAS 

even though their perceived level of pain is medium, whilst, others might rate 

soreness at 10 cm despite their level of pain being severe. Due to its subjective and 

individual nature, questions are raised as to whether it is possible to compare 

perceptions of DOMS amongst participants (Nosaka et al., 2002a). Jones and Round 

(1990) also documented that perceptions of noxious stimuli differ between 
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individuals and vary depending upon a person’s mood, health and hormonal status. 

Melzack (1982) suggested that pain is not a measure of the amount of bodily 

damage and can be influenced by attention, anxiety, suggestions and other 

psychological determinants. For example, previous memories of DOMS might 

influence future sensations of muscle soreness following EIMD.   

 

2.7.2 Effects of exercise-induced muscle damage on myofibre proteins 

The increased appearance of myofibre proteins in the blood is widely used to provide 

indirect evidence of muscle damage (Armstrong, 1986; Clarkson & Ebbeling, 1988; 

Hortobagyi & Denahan, 1989; Clarkson & Hubal, 2002; Brancaccio et al., 2007). In 

particular, CK, lactate dehydrogenase, aspartate aminotransferase, and myoglobin 

have been measured frequently as indicators of muscle damage (Pyne, 1994; 

Sorichter et al., 1999; Warren et al., 1999; Clarkson & Hubal, 2002). Although all 

these proteins have been shown to be elevated following EIMD, the measurement of 

CK is the most prevalent within the literature (Clarkson & Hubal, 2002).  

Creatine kinase is an intramuscular enzyme responsible for maintaining adequate 

ATP levels during muscular contraction by catalysing the reversible exchange of 

high-energy phosphate bonds between phosphocreatine and adenosine diphosphate 

(Hortobagyi & Denahan, 1989; Friden & Lieber, 2001; Brancaccio et al., 2007). 

Following muscle-damaging exercise, the release of CK from the muscle tissue into 

the circulating blood stream is interpreted as evidence of breakdown or increased 

permeability of the muscle cell membrane (Armstrong, 1986; Hortobagyi & Denahan, 

1989; Friden & Lieber, 2001).  The time course of this release appears to be 

dependent on the type of muscle-damaging exercise adopted. For example, 

following ecologically valid modes of EIMD, such as resistance training, plyometrics, 
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downhill running and intermittent team sports, CK values peak after approximately 

24 h  (Byrne & Eston, 2002a; Twist & Eston, 2005; Chen et al., 2007; Magalhaes et 

al., 2010; McLellan et al., 2010). In contrast, studies that have adopted high force 

eccentric contractions using isokinetic dynamometry have shown CK to increase 

gradually, with peak activity occurring 4 – 7 days post-exercise (Clarkson et al., 

1992; Nosaka & Clarkson 1992; 1997; Byrne et al., 2001). The mechanism behind 

this exercise-dependent CK response appears to be unknown. Jones et al. (1986) 

did postulate that the intensity of the muscle-damaging exercise might determine the 

rate of muscle breakdown and subsequent CK release, though this has remained 

unconfirmed. 

Changes in the blood levels of CK following EIMD are often assumed to reflect the 

magnitude of muscle damage (Friden & Lieber, 2001). However, Warren et al. 

(1999) undermine the use of myofibre proteins as a marker of muscle damage by 

suggesting that alterations in CK are not concomitant with decreases in muscle 

function following EIMD. This is supported by research that has shown a poor 

temporal relationship between serum CK leakage and the force-generating capacity 

of skeletal muscle after EIMD (Margaritis et al., 1999; Friden & Lieber, 2001).  

Several studies have also demonstrated that CK activity shows a large inter-

participant variability. For example, peak CK values have been reported to range 

from 96 – 34,500 U.l-1 after a bout of muscle-damaging exercise (Newham et al., 

1983; Clarkson et al., 1992; Nosaka & Clarkson, 1996). Various factors have been 

hypothesised to explain this phenomenon, including sex, race, genetics, muscle 

mass, muscle fibre distribution and the training status of recruited participants 

(Nosaka & Clarkson, 1992; Vincent & Vincent, 1997; Clarkson & Hubal, 2002; 

Clarkson et al., 2005; Brancaccio et al., 2007; Magal et al., 2010). However, there is 
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still no clear explanation for the large variability in CK after a single bout of EIMD 

(Ebbeling & Clarkson, 1989; Clarkson & Hubal, 2002; Chen, 2006).  

Whilst CK provides an indirect marker of disruption to the muscle cell membrane, it 

lacks muscle fibre-type specificity and is unable to confirm disruption to the myofibril 

after EIMD (Sorichter et al., 1999). Alternatively, studies have examined plasma 

levels of myosin heavy chains (MHC) (Mair et al., 1992) and skeletal troponin I (sTnI) 

(Sorichter et al., 1997) after EIMD. Myosin heavy chains and sTnI are structurally 

bound contractile proteins of the thick and thin filaments within the sarcomere 

(Sorichter et al., 2001), thus, their appearance in plasma after EIMD confirms 

structural breakdown of the muscle. Mair et al. (1992) observed that MHC were 

evident in circulation within 1 – 3 days and were still detectable until 10 days after 

EIMD induced from downhill running. Similarly, Sorichter et al. (1997) reported that 

plasma concentrations of MHC were evident within 24 h, peaked at 48 h and were 

still increased 9 days after EIMD. In contrast, increases in plasma sTnI were found to 

peak at 6 h and remained elevated for 1 – 2 days after EIMD. This led Sorichter et al. 

(1997) to suggest that sTnI is an early marker of EIMD and is able to reflect the rapid 

disruption to the myofibril after EIMD. It is suggested that sTni is more susceptible to 

calpain digestion than MHC, which might explain its earlier release from the muscle 

after EIMD (Sorichter et al., 1999).                       

 
2.7.3  Effects of exercise-induced muscle damage on muscle function 
 
The most effective indirect method of determining the magnitude and time course of 

EIMD is the measurement of the force generating capacity of skeletal muscle 

(Warren et al., 1999; Byrne et al., 2004). Reductions in muscle function, which relate 

to reductions in muscle strength and power, occur immediately after EIMD and 



 

 

52 
 

continue to be evident whilst other markers, such as perceived muscle soreness, 

subside (Byrne et al., 2004). Measuring isometric strength appears to be the most 

widely used method to assess muscle function after muscle-damaging exercise 

(Clarkson et al., 1992; Howell et al., 1993; Warren et al., 1999; Byrne et al., 2001; 

Sayers & Clarkson, 2001; Byrne & Eston, 2002b; Byrne et al., 2004). The method 

requires subjects to perform maximal voluntary contractions (MVC) on the damaged 

muscle group against an immovable object without a change in joint angle 

(Abernethy et al., 1995). When muscle damage is present, isometric strength will 

reduce immediately and research has shown that recovery (of strength) is generally 

slow and prolonged. For example, elbow flexor isometric strength has been reported 

to decrease by 50 – 60% in the hours immediately following EIMD, whilst recovery 

periods have taken up to two weeks (Cleak & Eston, 1992b; Sayers & Clarkson, 

2001; Byrne et al., 2004). Isometric strength within the knee and ankle extensors has 

also been shown to incur immediate and prolonged reductions; though the loss is not 

as extensive (35% loss) as the elbow flexors and recovery is quicker (4 – 7 days) 

(Byrne & Eston 2002a; 2002b; Eston et al., 2004). This is attributed to the relative 

inactivity of the elbow flexors in comparison to the knee and ankle extensors (Byrne 

et al., 2004; Eston et al., 2004). 

Several studies have demonstrated that the optimal angle for isometric torque 

generation is shifted to the right after muscle-damaging exercise (Jones et al., 1997; 

Whitehead et al., 1998; Brockett et al., 2001; Byrne et al., 2001; McHugh & Tetro, 

2003; Bowers et al., 2004; Chen et al., 2007a). Jones et al. (1997) reported a 3.9o 

shift in optimal angle for torque production after downhill running; however optimal 

angles returned to baseline values by 2 days post-EIMD. Rightward shifts in optimal 

angle of 3.4 – 15.6o have been shown in the quadriceps for up to 8 days after 
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stepping exercise (Bowers et al., 2004) and a 4o shift was still evident in the elbow 

flexors 2 – 3 weeks after eccentric exercise (Chen et al., 2007a). Discrepancies 

between studies might be due to different modes of muscle-damaging exercise; 

however, they do provide evidence that the length-tension relationship is shifted to 

the right after EIMD. Consequently, a longer muscle is required to achieve the same 

myofilament overlap and maximal torque as a result of overextended sarcomeres 

following eccentric exercise (Proske & Morgan, 2001; Byrne et al., 2004; Eston et al., 

2004).               

Due to the fixed nature of assessing isometric strength, the method fails to resemble 

the dynamic nature of most sporting tasks (Abernethy et al., 1995; Baltzopoulos & 

Gleeson, 2009). Alternatively, isokinetic dynamometry has also been adopted to 

assess dynamic muscle function after muscle-damaging exercise. However, the 

research findings appear equivocal, particularly with respect to the losses in muscle 

strength at differing contraction speeds.  Several studies have observed that strength 

loss is greater at slow angular velocities than at faster contractions (Gibala et al., 

1995; Deschenes et al., 2000; Michaut et al., 2002; Twist & Eston, 2007; Twist et al., 

2008; Highton et al., 2009). Michaut et al. (2002) reported that isokinetric concentric 

strength in the elbow flexors was reduced to lesser extent at 4.19 rad.s-1 than at 1.05 

rad.s-1 after EIMD. Similar findings were observed by Deschenes et al. (2000), who 

found that isokinetic concentric strength in the knee extensors was not significantly 

reduced at 3.14 rad.s-1; however, strength at 1.09 rad.s-1 was reduced for 48 h post-

EIMD. Conversely, studies have found strength to recover more slowly after high 

velocities of movement than slow velocities (Friden et al., 1983; Golden & Dudley, 

1992; Eston et al., 1996). Golden and Dudley (1992) demonstrated that concentric 

strength at 3.14 rad.s-1 was slower to return to pre-damage values than strength loss 
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at 1.05 rad.s-1. Likewise, Eston et al. (1996) observed that strength loss at 0.52 rad.s-

1 returned to pre-EIMD values within 4 days, while losses at 2.79 rad.s-1 took 7 days 

to return to baseline. In contrast to both of these responses, Byrne et al. (2001) 

reported no velocity-dependent losses in isokinetic muscle force following eccentric 

exercise. 

Studies that show losses in isokinetic strength are greatest at higher angles of 

velocity support the theory that type II fibres are predominately damaged as a result 

of eccentric exercise. Observations that strength decrements are less at higher 

angular velocities than lower velocities contradict this view (Byrne et al., 2004). It is 

posited that slower movement velocities require a higher effort to produce force 

(Deschenes et al., 2000; Michaut et al., 2002); therefore neural inhibition after EIMD 

might have reduced force at slower velocities to protect the muscle against further 

damage (Westing et al., 1991). However, it should be noted that comparisons 

between contrasting studies are made difficult by different protocols used to induce 

muscle damage (Byrne et al., 2004). 

 

2.7.3.1 Sensory perception of force, limb position and joint reaction angle after 
exercise-induced muscle damage 

In addition to decrements in isometric and isokinetic muscle function, several studies 

have shown that EIMD disturbs proprioception (namely sense of force production 

and limb position sense) (Saxton et al., 1995; Brockett et al., 1997; Carson et al., 

2002; Proske et al., 2003; 2004; Weerakkody et al., 2003; Walsh et al., 2004; 2006; 

Allen et al., 2007; Paschalis et al., 2007a; 2008a). Saxton et al. (1995) observed that 

participants’ ability to match force produced in the elbow flexors was prone to large 

errors as a result of EIMD. In a force-matching task, the elbow flexors of one arm 
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(the reference arm) generated a specified level of isometric force using visual 

feedback. Participants were then instructed to match the same level of force using 

their other arm (the indicator arm) without any visual aid. After inducing muscle 

damage in the indicator arm, participants were found to significantly undershoot the 

target force (35% isometric MVC) generated in the undamaged arm. Moreover, when 

the muscle-damaged arm acted as the reference arm, force-matching errors occur in 

the opposite direction. For example, when the damaged arm was required to sustain 

30% of isometric MVC it was met with significantly higher matching torques in the 

undamaged arm (Weerakkody et al., 2003; Proske et al., 2003; 2004). 

Brockett et al. (1997) speculated that damage to the Golgi tendon organ (GTO) as a 

result of eccentric exercise was responsible for the altered sense of force. Gregory et 

al. (2002) tested this hypothesis in cat gastrocnemius muscle and found that despite 

the loss of muscle function, the ability of the GTO to signal changes in muscle 

tension was not affected by EIMD. They concluded that the alteration in sense of 

force after EIMD was due to the centrally derived sense of effort, with any peripheral 

contribution likely to be small.  

The sense of effort is thought to be informed by a perceived central motor command 

that is directed to the muscle (Carson et al., 2002; Gregory et al., 2002; Proske et al., 

2004). However, Carson et al. (2002) and Weerakkody et al. (2003) reported that 

despite participants estimating the force applied by both the damaged and 

undamaged arm to be the same, the motor command was consistently higher in the 

damaged arm. This implied that the sense of effort was not based upon a corollary 

discharge of the central motor command. Instead, Carson et al. (2002) proposed that 

the relationship between the sense of effort and the central motor command is 

altered as a result of EIMD, and suggested that the sense of effort is associated with 
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activity in the neural centres upstream of the motor cortex. Proske et al. (2003) 

argued that the central motor command undergoes a complex series of excitability 

changes after exercise, and whilst it appears that motor command is increased 

immediately after muscle-damaging exercise it subsides after 24 h. They suggested 

that disturbances in sense of force were due to muscle soreness reducing motor 

cortical excitability, which reduced motor output to protect the muscle from further 

damage. 

In addition to the changes in sense of force, it has also been shown that positional 

limb sense is disturbed after EIMD (Saxton et al., 1995; Brockett et al., 1997; Walsh 

et al., 2004; 2006; Allen et al., 2007; Paschalis et al., 2007a; 2008a). In a limb 

position-matching study, whereby a reference arm was placed at a pre-determined 

angle and participants were asked to match the angle with the opposite arm, Saxton 

et al., (1995) reported that a muscle-damaged forearm adopted a more flexed 

position when attempting to match an undamaged reference arm. Brockett et al. 

(1997) observed the opposite, with the damaged arm adopting a more extended 

position after EIMD. However, subsequent findings from Walsh et al. (2004) reaffirm 

those of Saxton et al (1995) that the muscle-damaged arm matched the undamaged 

arm with a more flexed position. The discrepancy between the studies were 

attributed to Brockett et al. (1997) using a milder bout of muscle-damaging exercise 

(Gregory et al., 2004). Paschalis et al. (2007a; 2008a) examined positional sense in 

the lower limb and observed that both the knee extensors and knee flexors adopted 

a more extended position after EIMD. Despite the contrasting findings between 

upper and lower limbs, position sense is a necessity for human movement. 

Therefore, any alteration to limb position sense as a result of EIMD could have 
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implications for future exercise and heighten the risk of further injury (Paschalis et 

al., 2007a).  

The sense of position is thought to be provided by signals from the muscle spindles 

(McCloskey, 1978; Gandevia, 1996). Brockett et al. (1997) proposed that damage to 

the muscle fibres after EIMD could also damage the intrafusal fibres of the muscle 

spindles, leading to disturbances in muscle spindle function and errors in positional 

sense. It was suggested that an increase in passive tension after EIMD could 

mechanically unload the muscle spindles, which could lower their passive discharge 

rates, enabling greater muscle extension (Paschalis et al., 2007a). However, the 

responsiveness of the muscle spindles in anaesthetised cats was not altered after 

EIMD, which implies that changes in limb-position sense following EIMD are not due 

to disturbances to the muscle spindles (Gregory et al., 2004). Alternatively, Paschalis 

et al. (2008a) postulated limb position sense is changed to reduce the pressure on 

cutaneous receptors as a result of the inflammatory response associated with EIMD. 

Moreover, Walsh et al. (2004) observed that the errors in matching limb-position 

between the damaged and undamaged arm correlated with the drop in force. They 

suggested that the damaged limb required more effort to maintain a position against 

the force of gravity. Therefore, in order to reduce the effort, the damaged limb 

adopted a more flexed position, whereby less force was needed to maintain that 

position against gravity (Walsh et al., 2004; Gregory et al., 2004).      

Alongside alterations to limb position sense, Paschalis et al. (2007a; 2008b) reported 

disturbances to knee joint reaction angle following EIMD. To ascertain the reaction 

angle, participants were required to stop the fall of their limb as soon as it was 

released from a pre-determined angle. The corresponding angle from which the limb 
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moved before participants managed to halt the fall was accepted as the knee joint 

reaction angle (Paschalis et al., 2007a; 2008b). Reaction angle in both the knee 

extensors and flexors was increased for up to 3 days after muscle-damaging 

exercise. Paschalis et al. (2007a; 2008a) posited that sarcomere disruption as a 

result of EIMD prevented the muscle from achieving the same pre-damage tension 

required to halt the fall of the limb. Alternatively, the altered knee joint reaction angle 

was attributed to an increase in knee extensor and flexor compliance following 

eccentric exercise. If compliance had increased after EIMD, the knee extensors and 

flexors would have been stretched further during the release test before the muscle 

spindles were able to signal the fall of the limb (Paschalis et al., 2007a; 2008a). That, 

EIMD is shown to alter reaction time, individuals should be considerate of the 

consequences of exercise requiring quick reactions in the days following EIMD.  

 

2.7.3.2 Effects of exercise-induced muscle damage on neural control 

Using EMG to examine motor unit activity, several studies have shown that 

neuromuscular control during sub-maximal contractions is disturbed as a result of 

EIMD (Komi & Viitasalo, 1977; Newham et al., 1983; Nicol et al., 1991; Carson et al., 

2002; Weerakkody et al., 2003; Semmler et al., 2007; Dartnall et al., 2008; Turner et 

al., 2008; Plattner et al., 2011). Komi and Viitasalo (1977) reported that EMG activity 

in the eccentrically exercised knee extensors was elevated for up to 48 h after 

exercise, whilst in the control concentrically-exercised knee extensors recovery was 

complete within 48 h. They suggested that the muscle soreness associated with the 

eccentric exercise was responsible for the increase in central activation. However, 

studies have observed that EMG activity returns to baseline when muscle soreness 

increases (Berry et al., 1990; Hamlin & Quigley, 2001; Carson et al., 2002; 
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Weerakkody et al., 2003), which suggests that muscle soreness is not responsible 

for an elevation in EMG activity, but might contribute to a down-regulation in EMG 

after EIMD to protect the muscle against further damage (Proske et al., 2003). Peak 

EMG activity during maximal contractions is shown to decrease after EIMD and is 

also attributed to a decline in neural drive to protect the muscle (Komi & Rusko, 

1974; Nicol et al., 1991; Plattner et al., 2011; Zhou et al., 2011).           

There are numerous postulated explanations for the increase in sub-maximal EMG 

activity post-EIMD. The most popular hypothesis contends that when the muscle is 

damaged or fatigued, motor unit recruitment is increased in order for the muscle to 

achieve the same required force as before EIMD (Weerakkody et al., 2003; Proske 

et al., 2003; Semmler et al., 2007; Dartnall et al., 2008; Turner et al., 2008; Plattner 

et al., 2011). Nevertheless, a reduction in force after fatiguing concentric exercise 

would also be expected to increase motor unit recruitment during subsequent sub-

maximal contractions; however, no change in EMG activity has been observed 

(Weerakkody et al., 2003; Semmler et al., 2007). Alternatively, Turner et al., (2008) 

observed an increase in antagonist muscle activity after EIMD. They speculated that 

this was a motor strategy to increase joint stability to maintain movement as a result 

of muscle weakness following EIMD. Dartnall et al. (2008) reported evidence of an 

increase in motor unit synchronisation, which might have contributed to the 

increased EMG activity during sub-maximal isometric contractions after EIMD. The 

alteration in the length-tension relationship has also been posited to explain the 

disturbance in EMG (Weerakkody et al., 2003; Turner et al., 2008). After eccentric 

exercise, the remaining functioning sarcomeres adopt a shorter length to 

compensate for the overstretched sarcomeres. At shorter lengths a higher level of 

activation is required to achieve a given level of force (Turner et al., 2008). 
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Therefore, the increase in EMG at sub-maximal contractions could be the result of 

individuals trying to attain a given force, but operating at a shorter muscle length 

(Weerakkody et al., 2003; Turner et al., 2008). It is probable that the disturbance in 

sub-maximal EMG is due to a combination of all factors mentioned. Whilst, research 

has shown that sub-maximal EMG activity is increased during isometric and 

isokinetric strength post-EIMD, it remains to be seen if EIMD affects neuromuscular 

control during endurance exercise.            

 

2.7.3.3 Effects of exercise-induced muscle damage on electromechanical delay 

In a recent study, Howatson (2010) reported that the negative effects of EIMD on 

measures of muscle function were extended to electromechanical delay (EMD). 

Electromechanical delay is the time lag between the onset of muscle activation and 

force production (Cavanagh & Komi, 1979). It was found that after muscle-damaging 

exercise, comprising 45 maximal eccentric contractions of the elbow flexors, EMD 

during isometric and isokinetic contractions was increased for up to 96 h. Howatson 

(2010) suggested that the increase in EMD was due to the loss of cell membrane 

and sarcolemma integrity following EIMD, which subsequently could impact action 

potential propagation, E-C coupling and force transmission along the series elastic 

component. Interestingly, alterations to EMD after EIMD were still evident when MVC 

showed signs of full recovery. This led Howatson (2010) to suggest that despite 

MVC returning to pre-EIMD levels, caution should still be instilled when prescribing 

exercise in the days after muscle damage, particularly if the activity requires a 

combination of high force with a high degree of motor control.      
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2.7.4 Individual susceptibility to exercise-induced muscle damage 

Whilst, the symptoms associated with EIMD are well documented, the extent of 

muscle damage amongst individuals is notably variable (Sayers et al., 1999; Sayers 

& Clarkson, 2001; Sewright et al., 2008; Hubal et al., 2010). For example, Hubal et 

al. (2010) observed that muscle soreness 12 h after 50 maximal eccentric 

contractions in the elbow flexors ranged from 0 to 94 mm on a 100 mm VAS. 

Likewise, MVC strength immediately after the muscle-damaging exercise ranged 

from +29% to -91% and was still highly variable 7 days later (ranging from +36% to –

86%). Creatine kinase activity was found to be the most variable symptom, with 

values 4 days post-EIMD ranging from 85 to 80550 U.l-1. Why some individuals have 

a greater pre-disposition to EIMD than others is still not fully understood. However, 

several potential mechanisms have been suggested, including sexual dimorphism, 

statin use, nutritional supplement use and pre-existing muscle disease (Hyldahl & 

Hubal, 2013). There is also increasing evidence that genetics are responsible for 

inter-individual responses to EIMD (Clarkson et al., 2005; Devaney et al., 2007; 

Yamin et al., 2007; Hubal et al., 2010). Indeed, studies have recently identified a 

number of genetic polymorphisms that are associated with muscle damage 

variability. Clarkson et al. (2005) observed that rare alleles of myosin light chain 

kinase (MLCK; a gene involved in muscle contraction) are associated with increases 

in CK and strength loss after EIMD. Likewise, Devaney et al. (2007) found that rare 

alleles of insulin-like growth factor II (IGF2; a gene contributing to muscle growth) are 

associated with increases in muscle soreness, CK activity and strength loss after 

muscle-damaging exercise. Several other genes have also been shown to harbour 

polymorphisms that can increase an individual’s susceptibility to EIMD, such as 

alpha-actinin 3 (ACTN3; Clarkson et al., 2005), angiotensin converting enzyme 
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(ACE; Yamin et al., 2007), IL-6 (Yamin et al., 2008), chemokine ligand 2 (CCL2; 

Hubal et al., 2010) and creatine kinase-muscle isoform (CKMM; Heled et al., 2007).                        

 

2.8 Adaptation and the repeated bout effect 

A morphological adaptation after an initial bout of EIMD demonstrates that when 

eccentric exercise is repeated, myofibrils are more resistant to future bouts of 

muscle-damaging exercise (Friden & Lieber, 2001). Indeed, it has been shown that 

after recovery from an episode of eccentric-biased exercise, performance of a 

repeated bout of the same muscle-damaging exercise yields muscle damage of a 

lower magnitude (McHugh et al., 1999a; McHugh, 2003; Howatson & van Someren, 

2008). Referred to as the ‘repeated bout effect’ (RBE), this protective adaptation is 

characterised by a reduced deficit in muscle function, a lowered perception of 

muscle soreness, a reduction in the appearance of intramuscular proteins in blood 

circulation and an attenuated inflammatory response (Byrnes et al., 1985; Newham 

et al., 1987; Nosaka & Clarkson, 1995; Pizza et al., 1996; Hortobagyi et al., 1998; 

Howatson et al., 2007; Smith et al., 2007). The RBE can occur within 2 – 3 days of a 

single episode of EIMD (Paddon-Jones et al., 2000; Nosaka & Newton, 2002; Chen, 

2003; Lavender & Nosaka, 2008) and last for up to 6 months (Nosaka et al., 2001a). 

Furthermore, the muscle-damaging exercise does not have to result in symptoms of 

EIMD in order to infer a protective effect (Clarkson & Tremblay, 1988; Brown et al., 

1997; McHugh, 2003). Nosaka et al. (2001b) demonstrated that two maximal 

eccentric contractions were sufficient to protect the elbow flexors against 24 maximal 

contractions performed two weeks later. Likewise, Chen et al. (2007a) confirmed that 

sub-maximal eccentric exercise (30 repetitions at 40% MVC) protected against 
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muscle damage after maximal eccentric exercise (30 repetitions at 100% MVC) 

performed two weeks later.   

The underlying mechanism responsible for the RBE remains unknown; however 

several studies posit that the protective adpatation is due to neural and peripheral 

mechanisms, that work in combination or independently of one another (McHugh, 

2003; McHugh et al., 1999a). The neural theory proposes that the RBE is due to an 

alteration in motor unit recruitment. Golden and Dudley (1992) suggested that the 

muscle is resistant to a second bout of EIMD due to a more efficient recruitment of 

motor units. Using surface EMG to monitor muscle recruitment, Warren et al. (2000) 

and Chen (2003) demonstrated a 20-30% reduction in the frequency content (MF) of 

the EMG signal during the second of two bouts of EIMD. However, both studies did 

not allow for a full recovery before the repeated bout of EIMD was performed, 

speculating that the changes in MF may have been due to muscle damage still 

evident from the first bout (Howatson et al., 2007). In attempts to address this 

limitation, Howatson et al. (2007) ensured symptoms of muscle damage had 

returned to baseline before the second bout of EIMD, and still found MF was 

decreased by 10% during Bout 2. More recently, Starbuck and Eston (2012) reported 

a 31% reduction in MF in the elbow flexors during the second of two bouts of 

eccentric exercise, separated by two weeks. It is believed that a reduction in MF 

indicates a higher reliance on slow twitch muscle fibres (Warren et al., 2000). Given 

that slow twitch fibres are more resistant to muscle damage (Friden et al., 1983), it is 

plausible that a greater recruitment decreases the stress on suscepitble fast twitch 

fibres and protects the muscle against a repeated bout of EIMD (McHugh et al., 

2001). Alternatively, a decrease in MF could be attributed to an increase in motor 

unit synchronisation (Pierrynowski et al., 1987). Motor unit synchronisation is the 
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tendency for two or more motor units to fire simultaneously during muscular 

contraction. Therefore, an increase in synchronisation during a repeated bout of 

EIMD might provide a greater distribution of workload among active muscle fibres 

(Pierrynowski et al., 1987; Nosaka & Clarkson, 1995; McHugh et al., 2001). 

Numerous studies have observed that EMG amplitude is greatly increased after 

eccentric training when compared against concentric training (Komi & Buskirk, 1972; 

Hortobagyi et al., 1996a; 1996b). Hortobagyi et al. (1996b) reported that 12 weeks of 

eccentric strength training in the knee extensors resulted in a 188% increase in EMG 

activity, compared with a 28% increase in EMG activity after 12 weeks of concentric 

strength training. An increase in EMG amplitude during a repeated bout of EIMD 

would also reflect a redistribution of contractile stresses over a greater number of 

muscle fibres (McHugh et al., 1999a; McHugh, 2003). However, several studies have 

demonstrated that EMG amplitude is unchanged after repeated bouts of muscle-

damaging exercise (Warren et al., 2000; McHugh et al., 2001; Chen, 2003; 

Howatson et al., 2007; Starbuck & Eston, 2012), suggesting that an increase in 

motor unit recruitment during a second bout of EIMD does not contribute to the 

attenuation of muscle damage.  

Whilst the aforementioned studies confer evidence of a neural adaptation, research 

has shown that the RBE can occur independently of a neural mechanism (McHugh 

et al., 1999a; McHugh, 2003). Nosaka et al. (2002b) demonstrated that a single bout 

of electrically stimulated eccentric contractions attenuated the symptoms of muscle 

damage after a repeated bout of the same stimulation protocol. Since electrical 

stimulation bypasses the involvement of the central nervous system (CNS), the 

authors concluded that the mechanism responsible for the RBE is peripherally 
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mediated, with the involvement of the CNS being minimal. The findings of Black and 

McCully (2008) and Kamandulis et al. (2010) lend further support to the theory that 

the RBE is related to structural changes within the muscle and not changes in 

muscle recruitment. Furthermore, McHugh et al. (2001) were unable to find evidence 

of a neural adaptation after repeated bouts of sub-maximal eccentric exercise. 

Despite these findings, a neural mechanism responsible for the RBE cannot be 

dismissed, particularly during maximal eccentric exercise that does not require 

electrical stimulation.  

The peripheral theory contends that the RBE is due to mechanical and/or cellular 

adaptations that reside within the muscle. Mechanical adaptations to EIMD suggest 

that remodelling of the intermediate filaments and/or an increase in intramuscular 

connective tissue provides protection against future bouts of muscle-damaging 

exercise. Friden et al. (1983) first proposed that an increase in cytoskeletal proteins 

or a structural reorganisation of the intermediate filament system might strengthen 

myofibrils to resist subsequent eccentric exercise. Cytoskeletal proteins, such as 

desmin and titin, are responsible for maintaining the structure and function of the 

sarcomere (Friden & Lieber, 1992). Studies have shown that considerable disruption 

and degradation occurs to desmin and titin proteins after EIMD (Friden & Lieber, 

1998; 2001; Yu et al., 2003). Lieber et al. (1996) noted a loss in muscle fibre desmin 

content within 15 minutes of eccentric exercise in rabbits. Likewise, Trappe et al. 

(2002) reported a 30% reduction in titin content in human muscle after a single bout 

of muscle damage. However, there is evidence that an increase in cytoskeletal 

proteins can occur after initial EIMD (Friden et al., 1984; Baresh et al., 2002; Yu & 

Thornell, 2002; Yu et al., 2002; 2003; 2004; Lehti et al., 2007). Indeed, Yu and 

Thornell (2002) reported increased staining for both actin and desmin 2-8 days after 
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unaccustomed downstairs running. The authors suggested that this finding reflected 

an increase in protein synthesis, which might serve to withstand future muscle-

damaging exercise. Similarly, Lehti et al. (2007) demonstrated that a single bout of 

eccentric exercise altered the staining patterns of titin, desmin and dystrophin. 

Increases in the mRNA levels of cytoskeletal proteins after acute eccentric exercise 

were suggested to provide protection against repeated bouts. Paulsen et al. (2009) 

observed an increase in desmin content in the cytoskeleton after initial and repeated 

bouts of EIMD. They speculated that rather than it being a one-time response to 

muscle damage, the upregulation of cytoskeletal proteins is a continuing adaptation 

to protect the muscle against repeated bouts of EIMD. Contradictory findings from 

Sam et al. (2000) posited that an increase in desmin content might lead to further 

muscle damage. When investigating the effects of muscle damage in mice with 

normal muscle and muscle lacking desmin, less damage was found in those mice 

lacking desmin. It was suggested that the absence of desmin made the muscle more 

compliant, enabling greater sarcomere shortening and lessening the strain along the 

myofibre. However, given that differences appear to occur to desmin content 

between species after EIMD (see Lieber et al., 1996; Yu et al., 2002), it is unknown if 

the absence of desmin prevents damage in human muscle. 

Newham et al. (1987) suggested that the mechanism responsible for the RBE is 

associated with increased intramuscular connective tissue. It was proposed that any 

damage caused as a result of unaccustomed eccentric exercise might stimulate the 

synthesis of connective tissue, which acts to protect against further muscle damage. 

Clarkson and Tremblay (1988) also suggested that a strengthening of connective 

tissue explained the attenuation of muscle damage after repeated bouts of maximal 

eccentric exercise; however no supporting evidence was offered. Lapier et al. (1995) 



 

 

67 
 

provided indirect evidence that increased connective tissue enabled protection 

against muscle-damaging exercise. They examined intramuscular connective tissue 

in rat muscle immobilised for 3 weeks in either a shortened or lengthened position. 

Using tissue samples that were stained for collagen as an indicator of connective 

tissue, results indicated that muscles immobilised in the lengthened position had 

63% more collagen, whilst muscle immobilised in the shortened position had 47% 

more connective tissue. Furthermore, eccentric exercise resulted in a 40% force loss 

in shortened muscle, whilst only an 8% decrement in force was observed in 

lengthened muscle. The protective effect was attributed to the increase in connective 

tissue being able to reduce myofibrillar stress during eccentric exercise. However, 

this finding could also reflect a cellular adaptation within the muscle fibre. That an 

effect was found when the muscle was immobilised in a lengthened position 

suggests that sarcomereogenesis occurred, which might have reduced sarcomere 

strain during the damaging bout (McHugh et al., 1999a; McHugh, 2003). 

An increase in intramuscular connective tissue is also suggested to reflect an 

increase in passive muscle stiffness (McHugh et al., 1999a; McHugh, 2003). Indeed, 

it has been shown that eccentric training increases passive muscle stiffness, 

postulating that stiffness might also protect against EIMD (Reich et al., 2000; 

Brughelli & Cronin, 2007). However, contradictory research suggests that less 

muscle stiffness decreases the susceptibility to muscle damage (Nosaka & Clarkson, 

1997; McHugh et al., 1999b). McHugh et al. (1999b) observed that those individuals 

categorised with stiffer hamstrings experienced greater symptoms of muscle damage 

in comparison to those with compliant hamstrings. More recently, Janecki et al. 

(2011) demonstrated a reduction in passive muscle stiffness after a second bout of 



 

 

68 
 

eccentric exercise, providing further evidence that an increase in passive muscle 

stiffness might not be responsible for the RBE.  

The cellular theory proposes that the RBE is due to adaptations that occur at the site 

of the muscle fibre, the myofibril or the sarcomere (McHugh et al., 1999a). Armstrong 

(1984) proposed that the RBE was explained by the removal of weak muscle fibres 

that following recovery were replaced by stronger fibres; that were more resistant to 

repeated bouts of muscle damage. McHugh et al. (1999a) contended that the 

removal of ‘susceptible’ myofibrils or sarcomeres, as opposed to whole fibres, would 

be more consistent with the evidence of EIMD from biopsies. However, a limitation to 

the Armstrong et al. (1984) theory is that the initial bout of eccentric exercise does 

not have to result in EIMD to protect against a repeated bout. If weak sarcomeres 

were still intact after unaccustomed exercise, they should be disrupted by a repeated 

bout and result in EIMD (McHugh et al., 1999a). However, as aforementioned, 

studies have shown initial sub-maximal or low volume eccentric exercise that does 

not incur muscle damage protects against a subsequent maximal or high volume 

bout of EIMD (Brown et al., 1997; Chen et al., 2007a). 

As mentioned earlier, strength loss post-EIMD is attributed to a combination of 

mechanical disruption to the myofibril and impairment in E-C coupling (Proske & 

Morgan, 2001). An adaptation in E-C coupling has been suggested to explain the 

attenuation in strength loss after a repeated bout of EIMD (McHugh et al., 1999a; 

McHugh, 2003). Clarkson and Tremblay (1988) speculated that strengthening of the 

sarcolemma or SR after initial EIMD could prevent the Ca2+ influx to the muscle cell 

and the ensuing E-C coupling failure following a repeated bout. However, the 

impairment of the E-C coupling is greatest immediately after EIMD (Ingalls et al., 
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1998). Therefore, if the RBE was due to an adaptation in the E-C coupling, the 

reduction in strength immediately post-EIMD should be attenuated immediately after 

a repeated bout (McHugh, 2003). However, the loss in strength immediately post-

eccentric exercise is shown to be similar between the initial and repeated bout of 

EIMD (Newham et al., 1987; Brown et al., 1997; McHugh, 2003). 

Alternatively, Morgan (1990) hypothesised that after an initial bout of EIMD there is a 

longitudinal addition of sarcomeres, which allows the muscle to operate at longer 

lengths and reduces sarcomere strain during a repeated bout. The reduced strain 

then enables the myofilaments to maintain overlap, limits over-extending sarcomeres 

and avoids mechanical disruption (McHugh et al., 1999a). Lynn and Morgan (1994) 

and Lynn et al., (1998) provided evidence of an increase in sarcomereogenesis in rat 

muscle after eccentric exercise. Furthermore, the rightward shift in the length-tension 

relationship after unaccustomed eccentric exercise (see section 2.7.3) is also 

suggested to provide indirect evidence of a longitudinal addition of sarcomeres in 

humans. However, the rightward shift in optimum angle is only evident for 2 – 21 

days after EIMD (Jones et al., 1997; Brockett et al., 2001; Bowers et al., 2004), 

which suggests that an increase in sarcomeregenesis is unable to explain the RBE 

that can last for 6 months after initial EIMD (Nosaka et al., 2001a).  

Finally, alterations in the inflammatory response associated with EIMD have been 

attributed to the RBE. Studies have observed that inflammation in blood circulation is 

attenuated after a repeated bout of EIMD. Pizza et al. (1996; 2001) reported a 

significantly decreased neutrophil and monocyte response after a second bout of 

eccentric exercise. Smith et al. (2007) found a 50% decrease in IL-6 and a 10% 

reduction in monocyte chemoattractant protein-1 in circulation after repeated 

downhill running. They also reported a 95% increase in circulating anti-inflammatory 
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factor IL-10. Hirose et al., (2004) also observed a significant increase in IL-10 after 

repeated muscle-damaging exercise in the elbow flexors. An attenuated 

inflammatory response to repeated bouts of EIMD could reflect an adaptation to 

avoid the breakdown and removal of muscle tissue. Furthermore, an increase in anti-

inflammatory response might serve to protect the muscle against pro-inflammatory 

cells following a repeated bout. However, the aforementioned studies investigated 

the effects of repeated bouts of EIMD on inflammatory factors in circulation and fail 

to examine inflammatory responses within the muscle. Stupka et al. (2001) observed 

that muscle counts of neutrophils and macrophages were significantly increased 24 

h after a repeated bout of eccentric leg exercise. Similarly, Hubal et al. (2008) 

demonstrated that a number of inflammatory genes were up-regulated following a 

repeated bout of EIMD. However, CK response in the Stupka et al. (2001) study was 

significantly elevated 24 h after the repeated bout, which suggests that muscle 

damage was still evident after the second bout. The time span between bouts (5.5 

weeks) might have also attenuated the level of protection conferred from the initial 

bout of EIMD (Byrnes et al., 1985). Although, indirect markers of EIMD were 

attenuated after Bout 2 in the Hubal et al. (2008) study, muscle biopsies were only 

taken 6 h after each bout of eccentric exercise.  

In addition to inflammatory responses, several studies have examined the role in 

which heat shock proteins (HSP) can protect the muscle against EIMD (Thompson et 

al., 2001; 2002; Koh, 2002; Paulsen et al., 2007; 2009; Vissing et al., 2009). HSPs 

are up-regulated in response to stress and function to restore cellular homeostasis 

and protect against future insults (Morton et al., 2009). It is thought HSPs promote 

cellular recovery by binding with denatured proteins, before they irreversibly 

aggregate, and re-fold them to their original form (Paulson et al., 2007; Morton et al., 
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2009). In response to muscle damage, HSP27, HSP70, αB-crystallin and ubiquitin 

have all been found to increase after initial and repeated bouts of eccentric exercise 

(Thompson et al., 2001; 2002; Stupka et al., 2001; Paulsen 2007; 2009).  It is 

speculated that HSPs function to rescue disrupted sarcomeres and damaged 

proteins after unaccustomed exercise and function to protect and stabilise the 

muscle after a repeated bout (Paulsen et al., 2009). However, interpretation of 

studies undertaking repeated biopsies from the same muscle is difficult due to the 

risk of obtaining tissue that might have been affected by a previous biopsy. It is 

argued that the biopsy procedure itself may initiate a HSP response (Malm et al., 

2001; McHugh, 2003).              

It is unlikely that one underlying theory can explain the RBE due to the conflicting 

eivdence against each theory (see McHugh et al., 1999a; McHugh, 2003). Instead, it 

is probable that the RBE occurs through an interaction of various neural and 

peripheral adaptations that are dependent on the mode and intensity of eccentric 

exercise adopted (McHugh et al., 1999a).  

 

2.9 Physiological, metabolic and perceptual consequences of exercise-
induced muscle damage during endurance performance 

The effects of EIMD on markers of endurance performance remain equivocal and 

appear to be influenced by the method used to cause muscle damage, the mode of 

exercise adopted (i.e., cycling versus running), the exercise intensity, and the 

training status of participants (i.e., trained versus recreationally active). 

 

 

 



 

 

72 
 

2.9.1 The effects of exercise-induced muscle damage on oxygen uptake 

Maximal oxygen uptake ( max2OV ) appears to be unaltered after muscle-damaging 

exercise. Gleeson et al. (1998) reported no change in max2OV  during incremental 

cycling following eccentric bench stepping. However, it remains to be seen if different 

modes of muscle-damaging exercise affect max2OV  and/or whether max2OV  is 

influenced by the mode of endurance exercise after EIMD.  

 

Exercise-induced muscle damage does appear to affect oxidative metabolism via 

two contrasting pathways; either sub-maximal 2OV  for a given exercise intensity is 

unaltered (Gleeson et al., 1995; Walsh et al., 2001; Moysi et al., 2005; Davies et al., 

2009; Twist & Eston, 2009), or it increases after muscle-damaging exercise 

(Kyrolainen et al., 2000; Calbet et al., 2001; Braun & Dutto, 2003; Chen et al., 2007b; 

2009). Gleeson et al. (1995) found no significant difference in sub-maximal 2OV  

during fixed-intensity cycling at 80% max2OV after eccentric bench stepping, despite 

significant increases in muscle soreness and serum CK activity. More recently, Twist 

and Eston (2009) reported no change in 2OV  during fixed-intensity cycling bouts at 

60 and 80% max2OV  after muscle-damaging plyometrics. These findings were 

supported by Davies et al. (2009), who reported the 2OV  response during sub-

maximal cycling at 80% of the gas exchange threshold (GET) to be unchanged after 

EIMD caused by resistance exercise (100 squats at 70% body mass). Conversely, 

Kyrolainen et al. (2000) demonstrated that after marathon running (which generated 

symptoms of EIMD) there was a significant increase in 2OV  response during 

subsequent sub-maximal running performance. Likewise, Braun and Dutto (2003) 
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also reported an elevation in 2OV  across three sub-maximal running intensities (65, 

75 and 85% max2OV ) after a bout of downhill running. The contrasting findings have 

led to speculations that after muscle damage the 2OV  response is dependent on the 

mode of endurance exercise selected. As highlighted above, studies showing no 

change in sub-maximal 2OV  have typically utilised cycling. Therefore, it is postulated 

that alterations in limb kinematics (stride pattern) after EIMD will impose a greater 

impact on running compared to cycling, especially given that limb kinematics would 

be expected to show minimal, if any deviation during cycling. Therefore, it is unlikely 

that oxygen cost will increase after muscle damaging exercise (Jones & Burnley, 

2005). One study has observed an increase (3%) in sub-maximal 2OV  during cycling 

after muscle-damaging exercise (Burt & Twist, 2011); however this finding was 

probably due to the participants being unfamiliar with cycling exercise.  

Several studies have shown that EIMD provokes significant changes to running 

kinematics (Hamill et al., 1991; Kyrolainen et al., 2000; Braun & Dutto, 2003; 

Paschalis et al., 2007a; Chen et al., 2007b; 2009). Chen et al. (2007b) reported 

significant reductions in stride length, ranges of motion of the ankle and knee joints, 

and a significant increase in stride frequency during sub-maximal running at 85% 

max2OV  following eccentric exercise. Moreover, researchers have associated these 

alterations in gait kinematics to increases in 2OV  (Braun & Dutto, 2003; Chen et al., 

2007b; 2009). For example, Braun and Dutto (2003) reported a negative correlation 

(r = -0.535, P < 0.05) between the change in 2OV  during running after muscle 

damage with the change in stride length. Furthermore, Cavanagh and Williams 

(1982) have shown that when a runner deviates (reduces or increases) from their 

optimal stride length, subsequent increases in oxygen cost occur. Concomitant 
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increases in muscle soreness as a result of eccentric exercise make it possible to 

speculate that participants may change their running pattern in order to limit their 

discomfort.  

Kyrolainen et al. (2000) attributed increased 2OV  responses during sub-maximal 

running to alterations in neuromuscular function. They suggested that impaired 

neuromuscular control after muscle-damaging exercise required additional motor unit 

activation in order to produce the same resultant force during fixed-intensity 

endurance exercise. Semmler et al. (2007) recently supported this hypothesis, 

observing that reductions in MVC force after EIMD coincided with increases in EMG 

activity during sub-maximal exercise. Previously, Bigland-Ritchie and Woods (1974) 

had demonstrated a linear relationship between EMG activity and oxygen 

consumption, providing indirect evidence that alterations in oxygen metabolism 

during sub-maximal endurance exercise after EIMD might be due to an increase in 

motor unit activity. However, this explanation has remained uncorroborated and 

requires further investigation.                    

The difference in 2OV  response between running and cycling exercise after muscle 

damage could also be due to alterations in the SSC. In contrast to cycling, running 

utilises the SSC to provide elastic energy during repeated eccentric and concentric 

actions (Komi, 2000; Jones & Burnley, 2005), and whilst long-term SSC exercise 

increases muscle stiffness and subsequent running economy (see Section 2.1), 

unaccustomed SSC activity has been shown to reduce muscle stiffness (Nicol et al., 

1996; Horita et al., 1996; 1999). Avela and Komi (1998) reported that decreased 

muscle performance after marathon running was associated with a decline in muscle 

stiffness and subsequent inability to utilise elastic energy. Adopting this explanation, 
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Chen et al. (2007b; 2009) attributed decrements in running economy to an impaired 

ability to absorb and utilise elastic energy caused by muscle-damaging exercise. 

However, whilst this appears to be a credible explanation to explain increases in  

2OV , no changes in musculotendious stiffness during running after muscle damage 

were reported. 

Not all of the studies investigating the effects of EIMD on running performance have 

observed an increase in 2OV  (Scott et al., 2003; Paschalis et al., 2005; 2008b; 

Marcora & Bosio, 2007). Despite evidence of muscle damage after eccentric 

exercise, Paschalis et al. (2005) failed to report concomitant changes in 2OV  during 

selected sub-maximal running intensities. Similarly, a further study by Paschalis et 

al. (2008b) reiterated that eccentric exercise did not affect 2OV  response during sub-

maximal running performance. Interestingly though, both of these studies recruited 

only recreational athletes. Research that has recruited well-trained runners and 

observed alterations in oxygen metabolism postulate that 2OV  response to EIMD is 

due to trained runners’ having a more refined gait pattern (Braun & Dutto, 2003). 

Whilst this is an interesting argument, no study has yet to examine responses to 

muscle damage during running between trained and untrained athletes to identify if 

differences in gait pattern occur. Moreover, there are studies using trained runners 

that have reported no change in running 2OV  response after muscle-damaging 

exercise. For instance, Scott et al. (2003) observed no alteration in 2OV  responses 

to sub-maximal running after a bout of lower body resistance exercises designed to 

elicit symptoms of muscle damage. Similarly, Marcora and Bosio (2007) also 

reported no significant increase in 2OV  during running in a mixed group of runners 

and triathletes after muscle-damaging plyometrics. However, it is noteworthy that in 
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both of these studies, the sub-maximal running intensity used to examine 2OV  

response to EIMD was equal to or below 70% max2OV , leading the researchers to 

suggest that the effects of EIMD on running 2OV  response is also dependent on the 

exercise intensity selected. To examine this hypothesis, Chen et al. (2009) examined 

2OV  responses to running at 70, 80, and 90% max2OV  after a period of downhill 

running. Significant changes in 2OV  from baseline were evident at 48 h and 120 h 

after eccentric exercise at 80 and 90% max2OV . However, 2OV  remained unchanged 

during running at 70% max2OV , confirming that 2OV  during high intensity running is 

more affected than at low intensity after muscle damage.  

While exercise modality, exercise intensity and training status are important 

determinants of the responses to sub-maximal exercise after EIMD (Davies et al., 

2009), the mode of muscle-damaging exercise also appears to affect 2OV  responses 

to endurance exercise, particularly during running. For example, studies that report 

increases in 2OV  during sub-maximal running tend to use downhill running to induce 

muscle damage (Braun & Dutto, 2003; Chen et al., 2007b; 2009). Moreover, 

irrespective of training status, exercise intensity and significant changes in the 

markers of EIMD, studies that observe a non-significant change in 2OV  during 

running use contrasting modes of muscle-damaging exercise, such as plyometrics 

(Marcora & Bosio, 2007), isokinetic eccentric exercise (Paschalis et al., 2005; 2008b) 

or lower limb resistance exercise (Scott et al., 2003). However, to date there is no 

study to confirm whether different modes of muscle damage induce contrasting 

responses in 2OV  during sub-maximal running.  
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2.9.2 Muscle oxygenation 

Recent research has observed that 2OV  kinetics (the rate at which oxygen uptake 

increases at the onset of exercise) remain unchanged after muscle-damaging 

exercise (Davies et al., 2008; Schneider et al., 2007). This appears surprising given 

that the inflammatory response during the degeneration and regeneration phases of 

the muscle fibre after EIMD could prevent muscle microcirculation, leading to an 

imbalance between muscle oxygen delivery and oxygen utilisation (Davies et al., 

2008; Ahmadi et al., 2008; Schneider et al., 2007; Walsh et al., 2001). Oxygen 

kinetics is postulated to reflect the ability of oxygen transport and utilisation, 

therefore impairment in oxygen delivery and utilisation could potentially retard the 

2OV  kinetic response (Poole et al., 2008; Schneider et al., 2007). In particular, 

Davies et al. (2008) hypothesised that EIMD could lead to individuals crossing the 

oxygen “tipping point” (Poole et al., 2008) in which muscle oxygen availability 

becomes limited and inevitably leads to a decrement in 2OV  kinetic response. 

However, Davies et al. (2008) found that the 2OV  kinetic response was not slowed 

as a result of muscle damage. Moreover, Schneider et al. (2007) concluded that 

muscle-damaging exercise failed to impair oxygen delivery or reduce oxygen 

utilisation during high-intensity exercise. However, Schneider et al. (2007) were 

unable to support this statement due to their failure to measure muscle oxygenation 

during endurance performance (Davies et al., 2008). Despite this, Walsh et al. 

(2001) have reported that muscle oxygenation measured via near infrared 

spectroscopy (NIRS) failed to change after eccentric cycling. However, these 

findings must be viewed with caution since the authors themselves questioned 

whether the muscle-damaging exercise they adopted was sufficient enough to 

induce symptoms of EIMD. Conversely, Ahmadi et al. (2008) demonstrated that 
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downhill walking led to an immediate increase in resting muscle oxygen utilisation, 

along with oxygen de-saturation and re-saturation kinetics that were significantly 

faster than baseline values. These changes were attributed to impairments in 

microcirculatory flow, increases in slow-twitch fibre recruitment and an increased 

requirement for aerobic energy-demanding repair processes. More recently, Davies 

et al. (2008) using NIRS indicated that de-oxyhemoglobin response was significantly 

slower after muscle-damaging exercise. They postulated that the balance between 

oxygen delivery and utilisation might have been increased in order to preserve an 

unchanged 2OV  kinetic response. Moreover, it was suggested that the participants 

might have been operating to the right of the oxygen “tipping point” during cycling 

endurance exercise in order to prevent a slowing of 2OV  kinetics after EIMD (Davies 

et al., 2008; Poole et al., 2008). Whilst it appears 2OV  kinetic response is unchanged 

after muscle-damaging exercise during cycling endurance exercise, no study to date 

has investigated whether this response is consistent across other modes of 

endurance exercise, such as running. This is particularly pertinent given the 

differences typically seen in 2OV  kinetic response between running and cycling 

exercise (Jones & McConnell, 1999; Carter et al., 2000; Hill et al., 2003).  

 

2.9.3 Ventilatory responses to exercise 

There is increasing evidence demonstrating that the EV  response during sub-

maximal exercise increases as a result of EIMD (Gleeson et al., 1995; Braun & 

Dutto, 2003; Hotta et al., 2006; Chen et al., 2007b; 2008; 2009; Davies et al., 2008; 

2009; Twist & Eston, 2009). Moreover, whilst exercise modality appears to be an 

important factor in determining 2OV  response to endurance exercise after EIMD, 
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ventilation does not appear to be dependent on the mode of endurance exercise 

selected, with significant increases in the EV  response observed during cycling 

(Gleeson et al., 1995; Davies et al., 2008; 2009; Twist & Eston, 2009) and running 

(Chen et al., 2007b; 2008) after eccentric exercise. Exercise intensity is also unlikely 

to influence ventilation after muscle-damaging exercise. Davies et al. (2009) 

demonstrated that after a bout of squatting exercise significant increases in the EV  

response occurred during both moderate (80% of the GET) and severe (70% of the 

difference between the GET and max2OV ) intensity cycling. Likewise, Twist and Eston 

(2009) reported increased EV  responses at 60 and 80% of the power output 

corresponding to max2OV . 

Paschalis et al. (2005; 2008b) observed no change in EV  during sub-maximal 

running after a bout of isokinetic eccentric exercise, suggesting that the mode of 

muscle damaging exercise adopted might be an important factor in determining EV  

response to endurance exercise. In particular, these findings could be due to the 

specific muscle recruitment patterns of isokinetic exercise, which would primarily 

result in muscle damage to the quadriceps and only limited effects on the other lower 

limb musculature typically recruited during cycling and running exercise, such as the 

biceps femoris, gastrocnemius, and gluteus maximus (Bijker et al., 2002). In studies 

which have shown significant increases in ventilation the modes of muscle-damaging 

exercise have involved multi-joint movements, such as; downhill running (Chen et 

al., 2007b), squatting (Davies et al., 2008) and plyometrics (Twist & Eston, 2009). 

Such exercises would be expected to recruit and damage a greater range of lower 

limb musculature that would explain the greater ventilatory response during sub-

maximal cycling and running exercise. 
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Several mechanisms have been provided to explain the observed elevations in sub-

maximal EV  response following EIMD, including reduced oxygen economy (Chen et 

al., 2007b), increased acidosis (Gleeson et al., 1995; Braun & Dutto, 2003), and 

increased muscle afferent discharge (Davies et al., 2008; Twist & Eston, 2009). 

Chen et al. (2007b) suggested that changes in EV  during sub-maximal running were 

indicative of a reduction in running economy as a result of muscle damage. It is 

reasonable to assume that an increased respiratory response occurred to facilitate 

an elevated oxygen cost. However, several studies have reported significant 

increases in EV  response without contemporaneous rises in 2OV  (Gleeson et al., 

2005; Davies et al., 2009; Twist & Eston, 2009), suggesting that other mechanisms 

might be involved. Indeed, it has been speculated that the ventilatory response is 

augmented by the respiratory system to offset elevations in blood lactate 

concentration ([La]) after muscle-damaging exercise. Blood lactate concentration has 

been shown to be increased during sub-maximal exercise after a prior bout of 

damage-inducing exercise (Gleeson et al., 1995; 1998; Braun & Dutto, 2003; Chen 

et al., 2007b; Schneider et al., 2007). It is posited that EV  responses are increased 

in order to excrete additional carbon dioxide as a result of elevated [La] during 

endurance exercise after muscle damage (Gleeson et al., 1995). However, Davies et 

al. (2009) and Twist and Eston (2009) have both observed significant elevations in 

EV  during moderate and severe intensity endurance exercise after EIMD without 

concomitant increases in [La]. Twist and Eston (2009) also found that the ventilatory 

equivalent for carbon dioxide ( EV / 2COV ) was increased; indicating that EV  during 

exercise was not elevated to counteract rises in 2COV  after EIMD. Furthermore, it is 

possible to dissociate [La] from EV  during exercise in McArdle’s disease patients 
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(Hagberg et al., 1982). Hagberg et al. (1982) still found increases in EV  during 

exercise in McArdle’s disease patients, despite their inability to produce lactate due 

to a lack of muscle phosphorylase.   

Ventilatory responses during exercise are controlled through two distinctly separate 

mechanisms (Amann, 2012). The first is a feed-forward mechanism, termed ‘central 

command’, and is posited to increase EV  by activating the insular or medial 

prefrontal cortex (Amann et al., 2011). It is possible that increases in central 

command, to ensure the same force during endurance exercise is maintained as a 

result of decrements in muscle function after EIMD, activate regions of the brain that  

control EV  response. Alternatively, the second is a feedback mechanism that reflexly 

augments EV  as a consequence of muscular contraction (Amann et al., 2011; 

Amann, 2012). Group III and IV afferent fibres, located in and around the blood 

vessels of the exercising musculature, are also suggested to be involved in 

controlling EV  response (Hotta et al., 2006). Davies et al. (2008) and Twist and 

Eston (2009) proposed that elevations in EV  during endurance exercise are due to 

alterations in muscle afferent activity after EIMD. It is suggested that EIMD provokes 

a discharge from muscle afferents that is projected via the spinal cord to various 

sites in the CNS; resulting in an increase in EV  (Davies et al., 2008; 2009; Twist & 

Eston, 2009; Amann, 2012). Amann et al. (2010) provided evidence that muscle 

afferents facilitate EV  response during exercise. They observed that 

pharmacologically blocking the central projection of Group III and IV afferents 

significantly reduced EV during sub-maximal cycling.  
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2.9.4 Metabolic responses to exercise 

Increases in [La] during endurance exercise would suggest that muscle metabolism 

is altered as a result of muscle damage. Indeed several studies have reported 

significant elevations in both sub-maximal and peak [La] during endurance exercise 

after EIMD (Gleeson et al., 1995; 1998; Braun & Dutto, 2003; Schneider et al., 2007; 

Chen et al., 2007b; 2008; 2009). It is postulated that impaired muscle metabolism is 

attributed to a reduction in oxygen extraction in the blood by the working musculature 

as a result of muscle damage, leading to an increased reliance on anaerobic 

metabolism to produce sufficient ATP. However, Gleeson et al. (1998) observed that 

peakOV 2
  was unaffected after muscle-damaging exercise despite significant elevations 

in peak [La] being evident. Furthermore, Schneider et al. (2007) also reported that 

elevated sub-maximal [La] was not accompanied by significant alterations in phase II 

oxygen uptake kinetic response after EIMD. It was concluded that the increased [La] 

was not due to alterations in oxidative function. The authors speculated that higher 

[La] during sub-maximal cycling was due to an increased rate of lactate efflux from 

the exercising muscles (due to an enhanced muscle membrane permeability) after 

muscle-damaging exercise. However, Davies et al. (2009), who reported an 

unchanged [La] response after EIMD, suggested that a higher rate of lactate efflux 

could result in an enhanced clearance that is facilitated by the increased muscle 

blood flow due to muscle damage (Laaksonen et al., 2006). Alternatively, Gleeson et 

al. (1995; 1998) attribute elevated [La] to a greater metabolic strain on undamaged 

muscle fibres after EIMD. It is possible that preferential damage to type II fibres after 

EIMD (Friden et al., 1983) leads to an increased recruitment of non-damaged type II 

fibres in order to maintain pre-damage force capacities during fixed-intensity 

endurance exercise (Gleeson et al., 1998; Braun & Dutto, 2003; Chen et al., 2007b). 
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Since type II fibres are more glycolytic, an increase in their activation following 

muscle damage might result in an increased [La] response during endurance 

exercise (Gleeson et al., 1998; Scott et al., 2003). However, the observed increase 

in [La] following eccentric exercise may only be evident during higher intensities 

(Twist & Eston, 2009). Indeed, Scott et al. (2003) reported that [La] failed to alter 

significantly after muscle-damaging exercise during running at an intensity deemed 

to be below the lactate threshold (LT). The authors suggested that because type I 

muscle fibres are recruited at intensities below the LT and are less susceptible to 

muscle damage (Friden et al., 1983), they may have been able to maintain a normal 

recruitment pattern and metabolic function (Scott et al., 2003). Moreover, Chen et al. 

(2009) recently investigated metabolic responses to running at exercise intensities 

corresponding to below, equal to, and above the LT following a period of downhill 

running. Significant changes in [La] were evident at and above the LT, whilst 

metabolic responses remained unchanged during running below the LT. Coupled 

with those of Scott et al. (2003), these findings suggest that [La] after muscle 

damage is dependent upon the intensity of endurance exercise adopted. 

 

2.9.5 Glycogen metabolism 

It is well documented that muscle glycogen is a vital fuel source for the maintenance 

of successful endurance performance (Burke, 2001). However, a number of 

investigations have observed that glycogen metabolism is impaired as a result of 

muscle damage, thereby posing a threat to endurance capacity (Sherman et al., 

1983; O’Reilly et al., 1987; Costill et al., 1990; Asp et al., 1995a; 1997; 1998; 1999).  

Attempts to clarify the mechanism behind why glycogen metabolism is impaired after 

muscle-damaging exercise have tended to focus on the action of GLUT-4 protein 
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concentration and inflammatory responses to EIMD (Tee et al., 2007). As GLUT-4 is 

the most abundant glucose transporter in skeletal muscle, any reduction in GLUT-4 

content as a result of muscle damage could impair glycogen resynthesis within the 

muscle cell membrane (Asp et al., 1995a; 1995b; 1998; Tee et al., 2007). However, 

alterations in GLUT-4 concentration after muscle-damaging exercise appear 

equivocal and dependent upon the training status of the participants recruited and 

the mode of muscle damage selected. Asp et al. (1995a) initially observed a 17% 

decrease in GLUT-4 content amongst a group of untrained males after eccentric 

cycling exercise, and in a later study (Asp et al., 1997) demonstrated that GLUT-4 

response in well-trained males after marathon running was unchanged. This was 

despite an increased CK activity and reduced muscle glycogen concentration being 

present 48 h after damage-inducing exercise. Alternatively, it has been proposed 

that impaired glycogen metabolism as a result of EIMD is due to the infiltration of 

inflammatory cells competing with muscle fibres for the available plasma glucose 

(Costill et al., 1990; Asp et al., 1995a; Tee et al., 2007). However, Asp et al. (1995b) 

observed significant reductions in glycogen content after EIMD without concomitant 

increases in inflammatory response, therefore providing evidence that accumulation 

of inflammatory cells is unlikely to explain the suppressed glycogen concentration 

after EIMD. 

Although impaired muscle glycogen resynthesis after eccentric exercise is well 

documented and poses a threat to endurance capability (Sherman et al., 1983; 

O’Reilly et al., 1987; Costill et al., 1990; Asp et al., 1995a; 1995b; 1997; 1998; 1999), 

the process involved has not been established. Therefore, future research is 

warranted to establish how glycogen metabolism is altered as a result of muscle-

damaging exercise (Tee et al., 2007).     
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2.9.6 Perceptual responses to exercise 

Whilst physiological and metabolic responses to eccentric exercise appear to be 

influenced by a number of factors, several studies, irrespective of muscle damage 

modality, participant training status and endurance exercise mode, have 

demonstrated that the rating of perceived effort (RPE) is increased after EIMD 

(Gleeson et al., 1995; Asp et al., 1998; Scott et al., 2003; Marcora & Bosio, 2007; 

Chen et al., 2007b; 2008; 2009; Davies et al., 2008; 2009; Twist & Eston, 2009; Burt 

& Twist, 2011). Hampson et al. (2001) suggested that RPE involves a combination of 

numerous sensory cues derived from both peripheral and central factors. Similarly, 

Jameson and Ring (2000) have suggested that RPE during endurance exercise is 

based upon an integration of increased leg pain and feelings of breathlessness. 

Therefore, augmented muscle soreness as a result of EIMD might be a determinant 

of RPE during endurance exercise (Davies et al., 2009). Moreover, increased 

physiological responses after muscle damage are also likely to provide a central cue 

to inform RPE during endurance exercise. Indeed, Robertson (1982) speculates that 

there is a critical metabolic rate at which ventilation influences overall RPE. It is 

postulated that as the ventilatory response increases, after EIMD, activated 

mechanoreceptors within the chest wall, lungs and airways influence the participant 

in perceiving breathing rate to be harder, leading to the elevation of RPE response 

during endurance exercise (Hampson et al., 2001). Work from Amann et al. (2010) 

provided indirect evidence that elevated ventilatory response during endurance 

exercise influences RPE. They observed that blocking afferent feedback responses 

from locomotor musculature during exercise resulted in the reduced ventilation 

response coincided with a reduction in RPE.  
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Marcora (2009) challenged the concept that sense of effort during exercise is based 

on peripheral mechanisms. In an earlier study, Marcora et al. (2008) observed that 

40 minutes after EIMD, increases in RPE during cycling occured despite no evidence 

of muscle soreness. They suggested that RPE is the conscious awareness of the 

central motor command sent to the exercising muscle; termed the ‘sensation of 

innervation’. Central motor command is the activity of premotor and motor areas of 

the brain related to voluntary muscular contraction (Marcora, 2009). It is posited that 

a corollary discharge or efference copy of the central motor command is forwarded 

to the sensory areas of the brain to generate RPE (Marcora, 2009). 

Stauber (1989) suggested that after EIMD the central nervous system evokes an 

alternative motor control strategy to distribute force production over a larger pool of 

muscle fibres. It was this increase in muscle fibre recruitment, required to produce 

the same baseline running speed after EIMD, that Scott et al. (2003) posited was 

responsible for an increase in RPE. In support, Elmer et al. (2010) suggested that an 

increase in central motor command, to enable the same pre-EIMD power during sub-

maximal cycling, resulted in the greater RPE. de Morree et al. (2012) examined the 

relationship between RPE and central motor command during a weight raising task. 

Participants were required to raise a light and heavy weight with a fatigued and non-

fatigued arm, during which RPE and movement-related cortical potential (MRCP) 

were recorded. Movement-related cortical potential measures the activity of premotor 

and motor areas of the brain and therefore provides a direct measure of central 

motor command (de Morree et al., 2012). They observed that RPE and MRCP 

during the weight raising task increased with weight and muscular fatigue. 

Furthermore, a significant correlation between RPE and MRCP across both 

experimental conditions was found; lending support to the corollary discharge theory 
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of effort perception. However, in a force-matching task in which the force produced in 

a damaged and non-damaged arm was perceived to be the same, the EMG activity 

was greater in the damaged arm (Carson et al., 2002). This suggests that effort 

perception is not based on corollary discharge from the motor cortex. Carson et al. 

(2002) indicated that the relationship between RPE and central motor command is 

altered after EIMD, and proposed that RPE is generated from neural centres 

upstream from the motor cortex.  

It is unlikely that an afferent or efferent pathway is solely responsible for RPE during 

exercise. Instead, it is probable that RPE is dependent on an interaction of both 

peripheral and central mechanisms (Smirmaul, 2012). Indeed, the ‘reafferent 

corollary discharge’ theory suggests that RPE is generated via a central signal that 

traverses efferent and then afferent pathways to feed the sensory areas of the brain 

(Luu et al., 2011; de Morree et al., 2012). For example, increased central motor 

command elevates muscle activation to ensure the same pre-EIMD force is achieved 

during endurance exercise. The subsequent increase in muscle activation augments 

muscle spindle firing, which is then relayed to the sensory areas of the brain, where 

it is used to generate RPE. However, this theory is not confirmed and future research 

to establish the contribution of the afferent and efferent pathways on RPE is required 

(de Morree et al., 2012).        

 

2.10 The implications of muscle-damaging exercise on time-trial performance 

A bout of fixed intensity exercise continuing until volitional exhaustion is the most 

commonly used assessment of endurance capacity (Jeukendrup et al., 1996; 

Schabort et al., 1998; Currell & Jeukendrup, 2008). However, whilst such open-loop 

protocols provide the opportunity to measure physiological responses during steady 
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state exercise, they appear to have low ecological validity (Schabort et al., 1998; 

Currell & Jeukendrup, 2008; Sewell & McGregor, 2008) and poor reliability (Krebs & 

Powers, 1989; McLellan et al., 1995; Jeukendrup et al., 1996). Alternatively, the use 

of simulated time-trials, whereby participants complete a fixed amount of work or 

cover a set distance in the shortest time possible provide a more reliable and 

accurate measurement of endurance performance (Foster et al., 1993; Jeukendrup 

et al., 1996; Lindsay et al., 1996; Palmer et al., 1996; Bishop et al., 1997; Schabort 

et al., 1998).  

The utility of these closed-loop protocols also enables the effects of muscle damage 

to be examined in a setting that is indicative of how endurance athletes typically 

compete. Marcora and Bosio (2007) have investigated the effects of plyometric 

muscle-damaging exercise on 30-minute running time-trial performance. It was 

observed that whilst physiological responses were unaltered, average running speed 

and distance covered were significantly lower after EIMD. More recently, Twist and 

Eston (2009) and Burt and Twist (2011) examined the effects of muscle damage on 

cycling time-trial performance, and demonstrated that power output, distance 

covered, and physiological and metabolic responses were significantly reduced 48 h 

after EIMD induced by plyometric exercise.  

Notwithstanding the observed decrease in time-trial performance, perceptual 

responses appear to be unchanged after EIMD (Marcora & Bosio, 2007; Twist & 

Eston, 2009; Burt & Twist, 2011). However, this suggests that in a muscle damaged 

state RPE is greater for a lower exercise intensity and physiological and metabolic 

cost. It is postulated that changes in performance after muscle-damaging exercise 

are attributed to an altered sense of effort and not damage to skeletal muscle per se 

(Miles et al., 1997; Carson et al., 2002; Proske et al., 2003; Weerakkody et al., 
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2003). However, if an altered sense of effort is responsible for impaired time-trial 

performance, the observed reduction in physiological response after EIMD is unlikely 

to provide a central cue to explain why perceptual response is altered.  

Several studies have reported that after fatiguing exercise, individuals are capable of 

quantitatively scaling their effort in an attempt to internally regulate exercise intensity 

in the face of disturbed homeostasis (Eston et al., 2007; Crewe et al., 2008). Twist 

and Eston (2009) postulate that the central nervous system might reduce the neural 

drive to the peripheral muscles during a time-trial after muscle damage to protect 

against further injury. It is possible that despite the conscious effort of the 

participants to cover as much distance as possible, muscle fibres may have been 

“spared” during the time-trial performance after muscle damage as part of a 

protective mechanism by the subconscious brain to prevent further injury (Burt & 

Twist, 2011). However, whilst this is an interesting concept it is yet to be confirmed. 

Alternatively, Marcora and Bosio (2007) hypothesise that the inflammatory response 

after EIMD is a possible mechanism behind the reduction in exercise tolerance. 

Cytokines, such as IL-1, are primary mediators behind the muscle’s inflammatory 

response to EIMD (Tidball, 1995). Once evident in the muscle, it is speculated that 

IL-1 can enter circulation whereby it has the potential to affect distant organs such as 

the brain (Carmichael et al., 2005). Interestingly, Rinehart et al. (1997) and Omdal 

and Gunnarsson (2005) have found that increased levels of IL-1 in the brain causes 

symptoms of fatigue in human participants. Indeed, Carmichael et al. (2005) 

attributed decrements in endurance performance after EIMD in mice to elevated 

concentrations of IL-1 in the cortex and cerebellum regions of the brain. While this 

mechanism has been suggested to explain impaired time-trial performance in 

cyclists (Burt & Twist, 2011), it has, to date, only been confirmed in animal models. 
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Therefore future research investigating the relationship between IL-1 activity in the 

brain and exercise tolerance after EIMD among human participants is warranted. 

Although the effects of EIMD have been shown to impair endurance performance 

that is more indicative of how athletes compete in a real world scenario, the 

aforementioned studies are limited to relatively short-term (i.e. 5 – 30-minute) time-

trial performance, the recruitment of recreational active participants, and the 

adoption of laboratory-based protocols. Future research is warranted investigating 

the impact of muscle-damaging exercise on endurance performance during event-

specific distances in a field-based environment among well-trained athletes. 

 

2.11 The effects of exercise-induced muscle damage on resting metabolic rate 

A body of research has emerged demonstrating that the effects of EIMD can 

increase resting metabolic rate (RMR) for up to 72 h post-exercise (Dolezal et al., 

2000; Schuenke et al., 2002; Jamurtas et al., 2004; Hackney et al., 2008; Paschalis 

et al., 2010). Investigating the consequence of a single bout of whole body 

resistance exercise (6 sets of 10 upper and lower body exercise at 70% 1 repetition 

maximum; RM), Melby et al. (1993) reported that RMR was still significantly elevated 

at 15 h post-exercise. Likewise, Gillette et al. (1994), adopting a similar resistance 

exercise protocol, demonstrated that RMR was increased above baseline values for 

up to 14.5 h. It was not the aim of these studies to investigate the effects of EIMD on 

post-exercise RMR, although it was speculated that the eccentric muscle actions 

associated with the resistance exercise might have induced muscle damage and 

consequently increased RMR. Furthermore, in both studies resting 2OV  had not 

returned to baseline and were pre-determined times set by the investigators, which 

suggests that the time course of the impact EIMD on RMR might be longer.  
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Dolezal et al. (2000) investigated whether muscle damage, resulting from an acute 

bout of lower limb resistance exercise (8 sets of leg presses at 6RM), could influence 

RMR. RMR was significantly elevated for up to 48 h post-exercise and occurred 

alongside increases in CK and DOMS to support speculation that EIMD alters resting 

metabolism. Schuenke et al. (2002) reported elevations in resting 2OV  for up to 38 h 

after a single bout of whole body resistance exercise; however no markers of EIMD 

were taken to suggest that damage to the muscle contributed to the increase in 

RMR. Jamurtas et al. (2004) reported that CK, DOMS and RMR were significantly 

increased for up to 24 h after 60 min of resistance exercise. Similarly, Hackney et al., 

(2008) observed significant elevations in CK, DOMS and RMR for up to 72 h after 

whole body resistance exercise. Paschalis et al. (2010) also demonstrated that EIMD 

increased RMR for up to 72 h. Furthermore, in an extension of this study, Paschalis 

et al. (2011) reported that acute and chronic eccentric exercise caused increases in 

RMR. RMR was shown to be increased by 12.7% in the 48 h after the acute bout of 

eccentric exercise and was 5% higher after 8 weeks of eccentric training.  

Williamson and Kirwan (1997) evaluated the effects of an acute bout of concentric 

resistance exercise on resting metabolism and observed a 3% increase at 48 h after 

exercise. However, this is considerably lower than the 5.5 – 25% increase in RMR 

observed 24 – 72 h after eccentric-biased exercise (Dolezal et al., 2000; Jamurtas et 

al., 2004; Hackney et al., 2008; Paschalis et al., 2010). These findings confirm that 

the increased metabolic rate in the days after a single bout of resistance exercise is 

dependent upon the involvement of eccentric muscle contractions. Kolkhorst et al. 

(1994) and Thomas et al. (1994) failed to report any increase in RMR 24 h after level 

and downhill running. However, both studies failed to assess the extent of muscle 

damage, which undermines the significance of their findings (Dolezal et al., 2000).   
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There are several mechanisms posited to explain why RMR is elevated after 

exercise, such as the resynthesis of glycogen from lactate, increased body 

temperature, replenishment of oxygen stores in blood and muscle, resynthesis of 

ATP and creatine phosphate (CP), increased circulation and ventilation and residual 

hormone effects (Gaesser & Brooks, 1984; Bahr, 1992; Borsheim & Bahr, 2003). 

However, these mechanisms are associated with the rapid and slow components of 

the excess post-exercise oxygen consumption (EPOC), which might only persist for 

a few hours, and are unlikely to contribute to the prolonged increase in RMR that 

occur for up to 72 h post-EIMD (Dolezal et al., 2000; Hackney et al., 2008).  

Alternatively, the prolonged increase in RMR observed after an acute bout of 

eccentric-biased exercise is attributed to the appearance of muscle damage and the 

stimulus for repair (Burleson et al., 1998; Dolezal et al., 2000; Paschalis et al., 2010). 

EIMD is accompanied by an inflammatory response that causes the influx of 

neutrophils and macrophages to the site of injury (Smith, 1991; MacIntyre et al., 

1995; Sorichter et al., 1999), the aim of which is to promote the degradation and 

synthesis of damaged muscle fibres (MacIntyre et al., 1995).  Chesley et al. (1992) 

reported that muscle protein synthesis was significantly increased for up to 24 h after 

a single bout of resistance exercise. In rat tibialis anterior muscle, Wong and Booth 

(1990) observed that muscle protein synthesis was increased by 45% as a result of 

muscle-damaging eccentric exercise. Welle and Nair (1990) found that the energy 

cost of protein synthesis accounts for as much as 20% of total resting metabolism. 

Furthermore, protein synthesis has also been shown to correlate positively with 

oxygen uptake and RMR in adults with severe burn trauma (Cunningham et al., 

1989).  
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A prolonged increase in RMR after muscle damage is also attributed to an elevation 

in sympathetic nervous system activity (Scheunke et al., 2002; Jamurtas et al., 

2004). The release of norepinephrine promotes 2OV  by stimulating the dilation of 

blood vessels that supply skeletal muscle (Sherwood, 2001; Schuenke et al., 2002).     

Moreau et al. (1995) found increased concentrations of urinary norepinephrine and 

epinephrine 24 – 48 h after EIMD. The authors posited that the stress associated 

with movement of sore muscles led to the release of catecholamines from the 

adrenal medulla.  

Concomitant with elevations in RMR post-EIMD, studies have shown that fat 

utilisation is increased in the days after muscle-damaging exercise (Schuenke et al., 

2002; Jamurtas et al., 2004; Paschalis et al., 2010; 2011). Using respiratory quotient 

(RQ) to provide an indirect measure of substrate use, a decrease in RQ suggests 

that fat utilisation is increased. EIMD has been found to increase insulin resistance 

(Tee et al., 2007), reduce glucose disposal rates (Kirwan et al., 1992) and decreases 

GLUT-4 protein concentration (Asp et al., 1995). Therefore, it is plausible that 

changes to the glucose transport system might explain the reliance on fat during 

recovery from EIMD (Paschalis et al., 2010). Damage to the muscle membrane 

could also breakdown fatty acid phospholipids, increasing beta oxidation due to the 

greater availability of free fatty acid inside the muscle cell (Paschalis et al., 2010). 

Alternatively, the increased reliance on fat during recovery from EIMD could be due 

to the inflammatory cells, associated with muscle damage, competing with muscle 

fibres for available plasma glucose (Costill et al., 1990; Asp et al., 1995; Jentjens & 

Jeukendrup, 2003; Tee et al., 2007). 
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Finally, given that RMR accounts for the largest percentage (65 – 75%) of total daily 

energy expenditure (Dolezal & Potteiger, 1998), any increase in RMR as a result of 

EIMD could have implications for athletes attempting to maintain a positive energy 

balance to facilitate hypertrophy and for those individuals attempting a negative 

energy balance to promote weight loss (Hackney et al., 2008).                    

 

2.12 Conclusion 

It is well established that unaccustomed eccentric exercise causes severe 

morphological changes to the musculoskeletal system. Whilst still debated, it is 

generally accepted that initial muscle damage occurs due to sarcomere disruption 

followed by E-C coupling failure. Increased intracellular Ca2+ concentrations then 

trigger proteolysis and an inflammatory response as the damaged muscle undergoes 

a period of degeneration and regeneration.  

There is increasing evidence that endurance athletes are engaging in repeated bouts 

of resistance exercise to enhance endurance performance. Given the incidence of 

symptoms associated with EIMD following initial bouts of resistance exercise, the 

need to examine the effects of muscle-damaging exercise on endurance 

performance is paramount to endurance athletes and coaches. Therefore, the aim of 

this thesis was to investigate the implications of EIMD on the physiological, 

metabolic, perceptual and kinematic responses during endurance performance 

amongst recreationally active males.  
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CHAPTER 3 

 

THE EFFECTS OF MUSCLE DAMAGING EXERCISE ON PHYSIOLOGICAL, 

METABOLIC, PERCEPTUAL AND KINEMATIC RESPONSES DURING TWO 

MODES OF ENDURANCE EXERCISE 
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following:  

Burt, D.G., Lamb, K., Nicholas, C., & Twist, C. (2012). Effects of muscle-
damaging exercise on physiological, metabolic and perceptual responses during 
two modes of endurance exercise. Journal of Exercise Science and Fitness, 10 
(2), 70-77. 

Burt, D.G., Twist, C., Lamb, K., & Nicholas, C. (2010). The effects of exercise-
induced muscle damage on physiological and perceptual responses to cycling 
and running exercise. The Annual Conference of the British Association of Sport 
and Exercise Science, Glasgow, UK. 
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3.1 Introduction 

A body of evidence has emerged that the development of neuromuscular 

characteristics from resistance-based exercise can further enhance endurance 

performance (Paavolainen et al., 1999; Paavolainen et al., 2000). Although the 

mechanisms are not fully understood, it is suggested that improvements in 

neuromuscular function translate into an improved exercise economy (Paavolainen 

et al., 1999). In particular, increased motor unit recruitment, improved muscle 

coordination, and enhanced utilisation of stored elastic energy following resistance-

based exercise have been proposed as mechanisms which might reduce oxygen 

uptake ( 2OV ) at a given exercise intensity (Johnston et al., 1997; Paavolainen et al., 

1999; Hoff et al., 1999; Spurrs et al., 2003; Paton & Hopkins, 2005). However, while 

prolonged exposure to resistance training might improve performance in the long-

term, a consequence of such training, particularly when it is unaccustomed, is the 

immediate and long-lasting appearance of symptoms associated with exercise-

induced muscle damage (EIMD) in the days following (Byrne & Eston, 2002; 

Marginson et al., 2005; Twist & Eston, 2005). Such symptoms include increases in 

muscle soreness, swelling, elevated muscle proteins in the blood, impaired muscle 

function, and reduced neuromuscular control (Byrne et al., 2004). Furthermore, while 

maximal oxygen uptake appears to be unaltered after muscle-damaging exercise 

(Gleeson et al., 1998; Davies et al., 2011a), our understanding of the accompanying 

changes in oxidative metabolism is unclear. Some studies have observed no change 

in sub-maximal oxygen uptake after EIMD, suggesting that exercise economy 

remains stable (Gleeson et al., 1995; Walsh et al., 2001; Paschalis et al., 2005; 

Moysi et al., 2005; Marcora & Bosio, 2007; Davies et al., 2008; 2009; Twist & Eston, 

2009), whereas others have observed increases in sub-maximal 2OV (Kyrolainen et 
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al., 2000; Calbert et al., 2001; Braun & Dutto, 2003; Chen et al., 2007b; Chen et al., 

2008).  

The challenge of interpreting these opposing results is made more difficult by the fact 

that studies have used different exercise protocols to induce muscle-damage and 

that the physiological responses after EIMD might be sensitive to the mode of 

endurance exercise adopted. Indeed, those studies showing no change in sub-

maximal 2OV  typically utilised cycling rather than running exercise. Therefore, it may 

be that alterations in limb kinematics (i.e. stride length and stride frequency) after 

EIMD have a greater impact on running than cycling. Several studies have shown 

that EIMD provokes changes to kinematic parameters during running (Hamill et al., 

1991; Braun & Dutto, 2003; Paschalis et al., 2007; Chen et al., 2007b; 2009), and 

have associated these changes with increases in 2OV  (Braun & Dutto, 2003; Chen et 

al., 2007b; 2009). The inference from such research is that muscle damage causes 

changes to a participant’s stride pattern in order to limit the level of discomfort, and 

consequently an increase in oxygen cost occurs (Cavanagh & Williams, 1982). 

Given that stride length cannot deviate during cycling, it is unlikely that oxygen cost 

will increase after muscle damage due to such changes.  

Alterations in lactate metabolism as a consequence of EIMD have not been reported 

consistently, with some studies reporting no change in [La] during sub-maximal 

exercise (Scott et al., 2003; Marcora & Bosio, 2007; Davies et al., 2008; 2011a; 

Twist & Eston, 2009) and others reporting a significant increase (Chen et al., 2007b; 

2008; Schneider et al., 2007; Braun & Dutto, 2003; Gleeson et al., 1995). Elevated 

[La] responses might reflect an increased metabolic demand on undamaged fibres 

during exercise (Gleeson et al., 1998), or that damage occurs to type II muscle fibres 
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during eccentric exercise (Friden et al., 1983; Brockett et al., 2002) resulting in an 

increased activation of non-damaged type II fibres to enable the same level of force 

production. However, as is the case with the equivocal 2OV  responses observed 

after muscle-damaging exercise, the different methods used to evoke symptoms of 

EIMD and the subsequent endurance exercise adopted make comparisons between 

such studies problematic.  

Changes in the RPE during sub-maximal exercise suggest that participants 

demonstrate an altered sense of effort as a consequence of EIMD (Davies et al., 

2008; Twist & Eston, 2009). Such responses may be associated with an increase in 

muscle pain after eccentric exercise, which has clearly been shown to heighten the 

sense of effort during force matching tasks (Proske et al., 2003; Weerakody et al., 

2003). Similarly, increases in RPE have also coincided with an increased ventilatory 

response (Gleeson et al., 1995; Davies et al., 2008; Twist & Eston, 2009), which may 

transcend from a disruption to nerve afferents located in and around the blood 

vessels of exercising muscle that control ventilation (Haouzi et al., 1999; Haouzi et 

al., 2004; Hotta et al., 2006). It is known that ventilation and muscle pain are strong 

determinants of an individual's RPE response to exercise (Jameson & Ring, 2000; 

Hampson et al., 2001; Robertson, 1982), though, whether this is consistent for 

different endurance exercise modes is unknown. 

Given the uncertainties highlighted above, this study aimed to 1) reaffirm that the 

muscle-damaging exercise (100 Smith-machine squats at 80% body mass) was 

effective in causing symptoms associated with EIMD; 2) to examine the effects of 

EIMD on endurance exercise, with a focus on whether 2OV , EV , [La], RPE and 

kinematic responses are altered during endurance exercise as a result of EIMD; and 
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3) to ascertain whether the effects of EIMD on 2OV , EV , [La], RPE and kinematic 

responses differ among contrasting modes of endurance exercise (namely cycling 

versus running). Findings from such a study would have implications for individuals 

contemplating concurrent resistance and endurance exercise for the first time. 

Indeed, if endurance exercise prescription is based on % peakOV 2
 , any increase in 

2OV  during endurance exercise as a result of EIMD will also affect training intensities 

in the ensuing days. For example, elevated 2OV  in the days after EIMD would inform 

that individuals are exercising at a higher % peakOV 2


 
than they were prior to muscle 

damage.  

 

3.2 Methods 

3.2.1 Participants 
 
Ten healthy male participants (age 22.8 ± 2.5 y, stature 1.77 ± 0.06 m, body mass 

75.9 ± 8.8 kg), all of whom engaged in regular physical activity but had not 

undertaken any form of lower limb resistance exercise in the six months prior to 

assessment, volunteered to participate in the study. Prior to the study, each 

participant completed a written informed consent form and a health questionnaire 

and received a verbal explanation of the risks associated with the experimental 

procedures. Ethical approval was obtained from the Faculty of Health and Applied 

Sciences Research Ethics Committee, University of Chester. 

 

3.2.2 Study design 

Participants performed a cycling and a running incremental exhaustive test in a 

counter-balanced order, one week apart, to determine LT and peak oxygen uptake   
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( peakOV 2
 ) for each exercise mode (see Table 1.). After the second incremental 

exhaustive test a habituation session was conducted to habituate participants with 

the procedures for measuring perceived muscle soreness and isokinetic muscle 

function. After a minimum of 48 h, participants returned to the laboratory to provide 

baseline measurements associated with two counter-balanced, 10 minute cycling 

and running exercise bouts (separated by 30 minutes of rest) at an exercise intensity 

corresponding to their individual LT (see Figure 3.1). After this and a further 15 

minutes of passive recovery, participants completed a bout of lower limb resistance 

exercise designed to elicit muscle damage. They then returned 24 h and 48 h later to 

repeat the baseline procedures, in the same order. All participants were asked to 

refrain from any strenuous exercise 24 h before each test, maintain their normal diet, 

and avoid using any analgesic agents.  

Table 3.1: Physiological measures (mean ± SD) from two exhaustive exercise trials.  

  Exercise Mode 

Variable Cycling Running 

peakOV 2
  (ml.kg-1.min-1) 44.44 ± 7.33 52.01 ± 6.11 

HRpeak (beats.min-1) 181 ± 9 191 ± 5 

LT (mmol.l-1) 2.8 ± 1.0 3.9 ± 1.6 

LTWR 135.0 ± 33.8 W 11.3 ± 1.3 km.h-1 

LTRPE 13.4 ± 1.1 13.6 ± 1.0 

Abbreviations: peakOV 2
  = peak oxygen uptake; HRpeak = peak heart rate at peak 

oxygen uptake; LT = lactate threshold; LTWR = work rate corresponding to lactate 
threshold; LTRPE = rating of perceived exertion at lactate threshold. 
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Figure 3.1 Schematic of the study design 

 

3.3.3 Assessment of lactate threshold and peak oxygen uptake 

Participants performed two incremental protocols to exhaustion using an 

electronically braked cycle ergometer (Lode Excalibur Sport, Lode Medical 

Technology, Groningen, The Netherlands) and a motorised treadmill (Woodway PPS 

55sport-I, Woodway GmbH, Germany), in order to determine their LT and peakOV 2
  for 

both modes of exercise. The test commenced at a workload of 50 W (cycling) or a 

speed of 9 km.h-1 with a 1% incline (running) and increased by 25 W or 0.5 km.h-1 

every 4 minutes until participants reached their LT. Individual LT was accepted as 

the power output or speed at which [La] increased 1 mmol.l-1 above baseline values 

(Coyle et al., 1985). At this point, the resistance was increased by 25 W.min-1 

(cycling) and speed by 1 km.h-1.min-1 (running) until volitional exhaustion. Volitional 

exhaustion was defined as either the point at which participants could no longer 

maintain a cycling cadence between 60 – 80 rev.min-1 or the speed of the treadmill. 

Visit 1 Visit 2 Visit 3 Visit 4 Visit 5 

168 h 48 h 24 h 24 h 
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Blood lactate levels were obtained from the Lactate Pro analyser (Arkray, Kyoto, 

Japan) using fingertip capillary blood samples taken during 30 s periods of forced 

inactivity between each 4 minute exercise bout.   

Expired air was collected continuously throughout each exhaustive trial using an 

online metabolic system and calibrated prior to each test with a span gas mixture of 

16% 2O  and 5% 2CO  and a 3 litre syringe (Hans Rudolph Inc., Kansas City, USA). 

Gas exchange variables, including oxygen uptake ( 2OV ), were recorded breath-by-

breath and later averaged over 30 s for each stage of the test. Heart rate (HR), 

collected via telemetry (Polar Electro, Polar Beat, Oy, Finland), was recorded in the 

final 15 s of each exercise bout. Upon exhaustion peakOV 2
  was accepted as the 

highest 2OV (averaged over 30 s). Reliability data for peakOV 2
 and HR at exhaustion 

showed a CV of 3.5% and 2.4%, respectively. 

 

3.2.4 Assessment of rating of perceived exertion   

Participants were asked to indicate their rating of perceived exertion using the Borg 

RPE scale. The scale ranges from 6 to 20, where 6 refers to ‘no exertion at all’ and 

20 corresponds to ‘maximal exertion’. During the final 15 s of the incremental tests to 

exhaustion and each sub-maximal exercise bout, participants were instructed to look 

at the scale and rate their overall perception of exertion (Borg, 1998). Before each 

maximal and sub-maximal exercise bout, participants were given detailed 

instructions on how to rate their effort using the scale (see Appendix 7). Reliability 

data for RPE at exhaustion and during sub-maximal exercise revealed a CV of 3.8% 

and 6.8%, respectively. 

 



 

 

103 
 

3.2.5 Assessment of peak isokinetic knee extensor torque 

Isokinetic strength was measured using a Biodex dynamometer (Biodex, Multi-Joint 

System 3, Biodex Medical, NY, USA) at a velocity of 60 deg.s-1. Participants were sat 

upright with the knee and hip of the test limb fixed at 90o. The ankle was then 

fastened to the input arm of the dynamometer on the tibia just above the malleoi, 

with the rotational axis of the dynamometer aligned with the lateral femoral 

epicondyle ensuring only motion around the knee joint was possible. The upper body 

and opposite limb were secured with restraining straps to avoid any extraneous 

movement and the dynamometer input arm length, vertical and horizontal seat 

positions were recorded to ensure replication of testing positions for each visit. The 

total range of movement for each subject was manually determined, and the mass of 

the limb was recorded by the dynamometer to enable gravitational correction of peak 

torque values. After five sub-maximal and one maximal warm-up trials, participants 

performed five maximal efforts at 60 deg.s-1, from which the highest value (N.m) was 

recorded. Visual feedback, displaying real-time force, was used to encourage 

maximal efforts. Participants were also consistently encouraged to exceed target 

values, based on those achieved during the habituation and warm-up phases. 

Reliability data for peak isokinetic knee extensor torque at 60 degs.s-1 showed a co-

efficient of variation (CV) of 4.9%.   

 

3.2.6 Perceived muscle soreness 

With hands on hips and squatting to an approximate knee angle of 90o each 

participant was asked to provide his perceived level of muscle soreness of the knee 

extensors using a visual analogue scale (VAS; see Appendix 8 for an example). The 

VAS was numbered from 0-10 (on the reverse of the scale, unseen by the subject), 
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wherein 0 indicated no muscle soreness, 5 signified that the muscles felt sore upon 

movement and 10 that the muscles were too sore to move. This scale has been 

used successfully in previous research (Twist & Eston, 2009) and has been 

established as a valid and reliable measurement tool of soreness (Price et al., 1983). 

 

3.2.7 Determination of creatine kinase 

Plasma blood CK activity was assessed from a finger-tip capillary sample with the 

participant in a seated position. After pre-warming the hand via immersion in warm 

water(~42ºC), a 30 microlitre sample of blood was collected, immediately pipetted to 

a test strip and analysed for CK using a colorimetric assay procedure (Reflotron, 

Boehringer Mannheim, Germany). Reliability data for CK revealed a CV of 10.9%.   

 

3.2.8 Sub-maximal exercise protocols 

The two 10 minute sub-maximal exercise protocols were performed in a counter-

balanced order, separated by 30-min rest, on an electronically braked cycle 

ergometer (Lode Excalibur Sport, Groningen, The Netherlands) and a motorised 

treadmill (Woodway PPS 55sport-I, Woodway GmbH, Germany), at a workload and 

running speed corresponding to each participant’s LT. Expired air, HR, RPE and [La] 

were recorded in the manner described above. Treadmill gradient was also set at a 

1% incline to reflect the energetic cost of outdoor running (Jones & Doust, 1996). 

Reliability, assessed using CV, determined errors of 3.3%, 5.4%, 2.3% and 6% for 

2OV , EV , HR and [La], respectively.       
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3.2.9 Limb kinematics 

Stride length and SF were determined by methods previously described by Braun 

and Dutto (2003) and Chen et al. (2007b, 2009). Briefly, a high speed video camera 

(Casio Exilim, Pro Ex-F1) recorded sagittal plane images at 100 Hz during the final 

10 s of each 10-min sub-maximal running bout. The 10-s video recordings were then 

downloaded and digitized using motion analysis software (Quintec Biomechanics 

9.03 v 14). Between 12 and 15 full strides were identified from the video recordings. 

SL for each full stride was then calculated from the formula: SL (m) = velocity (m.s-

1)/stride time (s), with an average SL used for analysis. SF was determined by 

measuring the time between the first and last heel contacts, and then dividing the 

number of full strides by time. For example, if 12 full strides were completed in 9.4 s, 

12.8 strides would be completed in 10 s. Reliability data for SL and SF revealed a 

CV of 1.2% and 1% respectively.      

 

3.2.10 Muscle-damaging exercise 

To induce symptoms of muscle damage, participants performed an initial bout of 10 

sets of 10 Smith-machine squats at 80% of body mass, with a 2 minute recovery 

between each set. Before starting the exercise, participants performed an unloaded 

squat during which a goniometer (Cranlea and Co., Birmingham, UK) was used to 

determine a 90 degree knee angle. Markers were then placed on either side of the 

Smith-machine to ensure the range of motion was maintained during the squatting 

protocol and between bouts. The bar was positioned on the participant’s shoulders, 

with his back straight, legs fully extended, and feet hip-width apart. The eccentric 

phase of the squat involved lowering the bar until a knee angle of 90 degrees was 

achieved. Participants then lifted the bar back to the starting position to complete the 
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concentric phase. To stress the eccentric component, participants were instructed to 

ensure the downward and upward phases of the squat lasted for 2 and 1 s, 

respectively. Previous research has shown this protocol to be successful in inducing 

symptoms of muscle damage to the knee extensors (Byrne & Eston 2002). 

 

3.2.11 Statistical analysis 

Changes over time in the markers of muscle damage (CK, perceived muscle 

soreness and isokinetic strength), stride frequency and stride length were analysed 

using separate one-way repeated measures ANOVAs. To test for changes over time 

in the physiological, metabolic and perceptual variables between modes of exercise 

(cycling versus running) two-way (Time [3] x Mode [2]) repeated measures ANOVAs 

were applied. Assumptions of sphericity were assessed using Mauchly’s test, with 

any violations adjusted by use of the Greenhouse-Geisser correction. Post-hoc 

Tukey tests, modified for repeated measures (Stevens, 2002), were used to 

determine where significant differences occurred. Descriptive statistics were 

calculated as means ± SD. The alpha level was initially set at P ≤ 0.05.  

 

3.3 Results 

3.3.1 Perceived muscle soreness 

Perceived muscle soreness was found to change (F(2,18) = 114.2, P ≤ 0.0005) over 

time after muscle-damaging exercise (Figure 3.2), with values being significantly 

higher at 24 and 48 h post-baseline. 
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3.3.2 Plasma creatine kinase activity 

Creatine kinase levels were found to vary over time after muscle-damaging exercise 

(FGG(1.1, 9.9) = 7.2, P = 0.021). Baseline values (78.1 ± 30.4 U.l-1) were significantly 

higher at 24 h (238.9 ± 181.6 U.l-1) but not at 48 h (143.1 ± 83.9 U.l-1). 

 
3.3.3 Peak knee extensor torque 
 
Peak knee extensor torque decreased after muscle-damaging exercise (FGG(1.0, 9.3) = 

10.1, P = 0.01), with values at 24 and 48 h being significantly lower than baseline 

(Figure 3.3). 

 

 

 

 

 

 

 

 

 

Figure 3.2: Changes in perceived muscle soreness (means ± SD) after 100 squats. 
* Significantly different to baseline (P< 0.05).  

 

 

 

 

 

 

 

 

 

Figure 3.3: Changes in relative peak isokinetic knee extensor torque (means ± SD) 
after 100 squats. * Significantly different to baseline (P< 0.05).  
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3.3.4 Sub-maximal cycling responses to muscle-damaging exercise 

There was a significant main effect of Time on 2OV  (F2,18 = 4.6, P = 0.025), EV  (F2,18 

= 6.5, P = 0.008), EV / 2OV  (F2,18 = 6.5, P = 0.008), EV / 2COV  (F2,18 = 12.3, P = 

0.0001), ƒR (F(GG)1.24, 11.13 = 13.5, P = 0.003), HR (F2,18 = 6.1, P = 0.010) and RPE 

(F2,18 = 15.2, P = 0.0001) after muscle-damaging exercise. Post-hoc analysis 

revealed that 2OV , EV , EV / 2OV , EV / 2COV , ƒR and HR values were significantly 

higher at 48 h than baseline, whilst RPE was significantly increased above baseline 

at both 24 h and 48 h (P< 0.05). However, there was no significant Time effect on 

2COV (F(GG)1.3, 11.7 = 2.0, P = 0.186), [La] response (F2,18 = 1.3, P = 0.292) or mean 

RPM (F2,18 = 1.4, P = 0.274) (Table 3.2). 

 

3.3.5 Sub-maximal running responses to muscle-damaging exercise 

There was a significant main effect of Time on 2OV  (F2,18 = 6.4, P = 0.008), EV  (F2,18 

= 12.7, P = 0.0001), EV / 2COV  (F2,18 = 11.4, P = 0.001), ƒR (F2,18 = 7.3, P = 0.005) 

and RPE (F2,18 = 11.9, P = 0.001), with values being significantly higher than 

baseline at 24 h and 48 h. EV / 2OV  (F(GG) 1.2, 10.8 = 8.7, P = 0.011) was also increased 

after muscle damage, although values were only significant at 24 h. The main effect 

of Time on 2COV  (F2,18 = 3.2, P = 0.066), HR (F2,18 = 2.1, P = 0.154), or [La] 

response (F2,18 = 2.1, P = 0.148) was not significant. These changes were 

accompanied by significant decreases in stride length (F(GG) 1.07, 9.7 = 9.2, P = 0.012) 

and increases in stride frequency (F(GG) 1.1, 9.9 = 6.98, P = 0.023) at 24 and 48 h after 

the squatting exercise. Values for running are shown in Table 3.2.  

 

 



 

 

109 
 

3.3.6 Sub-maximal responses to muscle-damaging exercise – cycling versus running 

There was no significant interaction of Time x Mode on 2OV  (F2,18 = 1.3, P = 0.308), 

2COV  (F2,18 = 2.0, P = 0.167), ƒR (F(GG)1.1, 10.1 = 4.5, P = 0.057), HR (F2,18 = 1.4, P = 

0.280), RPE (F2,18 = 0.9, P = 0.414) or [La] response (F2,18 = 2.5, P = 0.108) after 

muscle-damaging exercise. However, there was a significant Time x Mode 

interaction on EV (F2,18 = 5.3, P = 0.016), which reflected a higher relative increase 

for running at 24 h post EIMD than cycling. Similarly, EV / 2OV  (F2,18 = 6.2, P = 0.009) 

and EV / 2COV  (F2,18 = 7.0, P = 0.006) were also shown to be higher at 24 h during 

running when compared to cycling (Table 3.3). 



 

 

110 
 

Table 3.2: Mean (± SD) physiological, metabolic, perceptual and kinematic responses to sub-maximal exercise at LT after 100 
squats. 

* Significantly different to baseline (P< 0.05). Abbreviations: 2OV  = volume of oxygen uptake, 2COV  = volume of carbon dioxide, EV

= minute ventilation, EV / 2OV = ventilatory equivalent for oxygen, EV  / 2COV  = ventilatory equivalent for carbon dioxide, RPE = rating 
of perceived exertion, ƒR = breathing frequency, HR = heart rate, [La] = blood lactate, RPM = revolutions per minute, SL = stride 
length, SF = stride frequency.   

 

 

Cycling Running 

Baseline 24 h 48 h Baseline 24 h 48 h 

2OV  (ml.kg-1.min-1) 28.08 ± 5.58 28.81 ± 6.02 29.67 ± 6.53* 41.59 ± 4.82 43.01 ± 4.89* 43.15 ± 5.40* 

2COV (ml.kg-1.min-1) 26.91 ± 4.60 26.99 ± 5.66 28.12 ± 6.16 40.38 ± 4.51 41.90 ± 4.95 41.99 ± 5.47 

EV  (l.min-1) 58.4 ± 10.18 60.9 ± 15.13 66.2 ± 16.94* 89.20 ± 11.35 99.30 ± 14.84* 97.20 ± 14.79* 

EV / 2OV  
27.72 ± 2.49 27.89 ± 2.98 29.45 ± 2.81* 28.52 ± 3.4 30.64 ± 4.06* 29.92 ± 4.41 

EV / 2COV  
28.81 ± 2.17 29.79 ± 2.48* 30.99 ± 1.73* 29.42 ± 3.00  31.60 ± 3.70* 30.76 ± 3.38 

RPE 13.5 ± 1.4 15.2 ± 1.6* 15.4 ± 1.8* 14.7 ± 0.8 16.1 ± 1.8* 16.5 ± 1.9* 

ƒR (min-1) 27.9 ± 5.2 30.6 ± 5.95 35.3 ± 6.33* 40.1 ± 8.57 44.8 ± 9.0* 43.3 ± 10.2 

HR (b.min-1) 132.9 ± 16.7 137.4 ± 15.0 140.4 ± 17.9* 162.2 ± 14.3 167.2 ± 10.9 167.2 ± 11.0 

[La] (mmol.l-1) 3.48 ± 1.53 3.40 ± 1.57 3.69 ± 1.58 4.08 ± 1.91 4.54 ± 2.21 4.43 ± 2.16 

RPM 79.8 ± 15.7 75.6 ± 18.3 77.8 ± 18.4 - - - 

SL (m) - - - 2.24 ± 0.26 2.20 ± 0.28* 2.20 ± 0.27* 

SF  - - - 14.1 ± 0.6 14.4 ± 0.8*  14.4 ± 0.8* 
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Table 3.3: Normalised (relative to baseline) changes to physiological, metabolic, and 
perceptual responses to sub-maximal cycling and running after 100 squats. Values 
are expressed as means ± SD. 

* Significant difference between cycling and running at 24 h (P <  0.05) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cycling Running 

24 h 48 h 24 h 48 h 

2OV  +2.4 ± 6.7% +5.3 ± 6.6% +3.5 ± 4.6% +3.7 ± 3.1% 

2COV  -0.2 ± 9.1% +3.8 ± 9.5% +3.8 ± 5.2% +3.9 ± 5.9% 

EV  * +3.4 ± 11.6% +12.3 ± 13.1% +11.3 ± 8.3% +9.0 ± 8.4% 

EV / 2OV * 
+0.6 ± 5.7% +6.5 ± 7.8% +7.5 ± 6.6% +4.8 ± 6.7% 

EV / 2COV *    
+3.4 ± 3.5% +7.9 ± 6.3% +7.4 ± 5.5% +4.7 ± 6.0% 

RPE +12.7 ± 7.2% +14.3 ± 10.8% +9.3 ± 8.0% +12.1 ± 9.5% 

ƒR +11.2 ± 24.3% +28.5 ± 26.4% +12.4 ± 10.7% +8.2 ± 13.2% 

HR  +3.7 ± 5.0% +5.7 ± 5.7% +3.4 ± 5.8% +3.5 ± 7.4% 

[La] -2.4 ± 20.3% +6.4 ± 15.0% +10.2 ± 20.2% +9.1 ± 24.5% 
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3.4 Discussion 

The changes observed in muscle function, perceived muscle soreness and plasma 

CK indicate that the squatting protocol used in this study was effective in inducing 

symptoms associated with EIMD. Specifically, isokinetic peak knee extensor torque 

significantly decreased by 13.6% and 14.9% from baseline values at 24 and 48 h, 

respectively. This magnitude of force loss concurs with previous studies that have 

adopted resistance exercise (Byrne & Eston, 2002a; Davies et al., 2008; 2009) 

plyometrics (Twist & Eston, 2009) and downhill running (Braun & Dutto, 2003) for 

inducing muscle damage. In addition, the elevated levels of perceived muscle 

soreness (at both 24 and 48 h) are findings consistent with those reported studies 

that adopted a similar method of muscle-damaging exercise (Davies et al., 2008; 

2009). Likewise, the observed CK response was similar to that reported by Byrne 

and Eston (2002a), but whilst it was elevated above baseline, its peak occurred at 24 

h and not 48 h (as with muscle function and perceived muscle soreness). This 

pattern of response has been observed with previous research and might reflect an 

accelerated clearance of CK from the blood after 24 h (Hyatt & Clarkson, 1998; 

Warren et al., 1999). 

It is notable that the physiological and perceptual responses to sub-maximal cycling 

and running exercise in the current study were altered as a result of muscle damage. 

In terms of 2OV , increases occurred during both modes of exercise, though the time 

course appeared to be different. That is, the 2OV  response during running was 

significantly elevated above pre-EIMD values from 24 – 48 h, and concurs with 

previous findings (Kyrolainen et al., 2000; Calbet et al., 2001; Braun & Dutto, 2003; 

Chen et al., 2007b; 2009), whereas the cycling 2OV  response was only significantly 
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higher after 48 h. This is a novel and unexpected finding in light of past research 

(Gleeson et al., 1995; Walsh et al., 2001; Moysi et al., 2005; Davies et al., 2009; 

Twist & Eston, 2009) and deserves further scrutiny.  

Cavanagh and Williams (1982) reported an increased 2OV  response when runners 

deviated from their optimal stride length. Therefore, it is feasible that the elevated 

2OV  response during sub-maximal running was due in part to changes in lower limb 

kinematics following muscle-damaging exercise. Indeed, that this increased oxygen 

cost of running coincided with alterations in stride length and frequency, and that 

changes in 2OV  during sub-maximal running were found to be inversely correlated 

with changes in stride length after EIMD for 7 of the 10 participants (r = -0.71 – -

0.92), reinforces the findings of several running-related studies (Braun & Dutto, 

2003; Paschalis et al., 2007; Chen et al., 2007b; 2009). Moreover, that participants 

experienced heightened muscle soreness 24 and 48 h after the squatting exercise 

might explain the shortened stride length as a strategy to limit their discomfort. 

However, whilst kinematic changes could have influenced the time course response 

of running 2OV  after EIMD, the observation of Hamill et al. (1991) that minor 

kinematic changes occurred without any concomitant rise in oxygen cost imply that 

other mechanisms were involved. 

Chen et al. (2007b; 2009) attributed post-EIMD decrements in running economy 

between 24 – 72 h to an impaired ability to utilise the SSC. Previous research has 

demonstrated that improvements in running economy are a result of increased 

musculotendinous stiffness, allowing the muscle to absorb and utilise elastic energy 

more effectively during the SSC (Spurrs et al., 2003). However, EIMD has been 

shown to reduce stretch reflex sensitivity and muscle stiffness regulation, leading to 
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a decline in the force potential of the SSC (Nicol et al., 1996; Horita et al., 1996; 

1999; Avela & Komi, 1998; Byrne & Eston, 2002a). Therefore, it is possible that 

reductions in musculotendious stiffness after squatting exercise could have occurred 

as early as 24 h leading to a decreased ability to absorb and utilise elastic energy 

during running, creating an increased energy cost. Although, as such changes have 

yet to be demonstrated empirically during running, this is an area for future 

investigation.  

The aforementioned post-EIMD increase in 2OV  during sub-maximal cycling is at 

odds with previous research. Adopting a similar mode of muscle-damaging exercise, 

with comparable decrements in muscle function, both Moysi et al. (2005) and Davies 

et al. (2009) reported no changes in 2OV  during sub-maximal cycling. Studies using 

plyometrics (Twist & Eston, 2009) and eccentric bench stepping (Gleeson et al., 

1995; Schneider et al., 2007) to induce muscle damage also reported unchanged 

2OV  responses during sub-maximal cycling. Greater physiological responses have 

been reported during cycling at slower pedalling cadences (Deschenes et al., 2000). 

However, changes in cycling cadence are unable to explain the increase in 2OV  as 

RPM remained unchanged (see Table 3.2).  The elevation in 2OV  might have been 

due to the activation of auxiliary muscles after muscle-damaging exercise. For 

example, knee extensor strength had decreased by approximately 15% 48 h after 

muscle damage, suggesting that increased motor unit activation may have been 

evident in order to generate the same level of force required during the fixed-

intensity cycling (Kyrolainen et al., 2000; Braun & Dutto, 2003; Elmer et al., 2010). 

Indeed, as Bigland-Ritchie and Woods (1974) have observed a linear relationship 

exists between EMG activity and oxygen cost, it is possible that elevations in 2OV  
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during cycling might be explained by increased recruitment of motor units after 

EIMD. This requires further investigation. The only other study to observe an 

increase in 2OV  during sub-maximal cycling after muscle-damaging exercise 

postulated that it might have been due to an increase in ventilation (Burt & Twist, 

2011). As the current elevations in 2OV  during both cycling and running occurred 

alongside increases in EV  (see Table 3.2 and 3.3), it is possible that the lungs 

evoked an added metabolic cost in order to facilitate the augmented EV  response.  

The elevated EV responses concur with previous studies during both sub-maximal 

running (Braun & Dutto, 2003; Chen et al., 2007b; 2008; 2009) and cycling exercise 

(Gleeson et al., 2005; Schneider et al., 2007; Davies et al., 2008; 2009; Twist & 

Eston, 2009). As with the 2OV  response, the differing time course of EV  and ƒR 

during running and cycling after EIMD was not hypothesised and is difficult to 

explain. However, the following are offered as possible contributing factors. In 

contrast to cycling, running utilises the SSC, and there is strong evidence that the 

stretch-reflex has a vital role in SSC activity and contributes to force generation 

between eccentric and concentric phases (Komi, 2000). The reduction in stretch-

reflex sensitivity after muscle damage is thought to be mediated by the activation of 

fine myelinated (Group III) and unmyelinated (Group IV) afferent fibres (Horita et al., 

1996; 1999; Nicol et al., 1996; Avela & Komi, 1998; Avela et al., 1999). These small 

afferents could also exert a significant influence on EV  during dynamic exercise 

(Matieka & Duffin, 1995; Davies et al., 2011a). Therefore, it is possible that activation 

of Group III and IV afferents inhibiting stretch-reflex sensitivity as a consequence of 

EIMD may have led to the early augmentation of EV  during running. Group III and IV 

afferent fibres are often described as being polymodal, in that they are sensitive to 
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several parameters associated with fatigue or muscle damage (Avela & Komi, 1998; 

Haouzi et al., 2004). Muscle pain has also been shown to provoke an increased 

ventilatory response through activating nociceptive muscle afferents (Mense, 1977; 

1982; Duranti et al., 1991). Therefore, such pain (soreness) after the squatting 

exercise may have also stimulated afferent fibres contributing to the increased 

ventilatory response during running and cycling. Furthermore, the heightened muscle 

soreness response after 48 h could have been responsible for the increase in EV  

and ƒR during cycling after 48 h.  

Alternatively, an increased ventilatory response whilst exercising with muscle 

damage has been attributed to alterations in metabolic pathways (Gleeson et al., 

1995). Since [La] values in the current study were not statistically different during 

either cycling or running after muscle damage, the increase in EV  cannot be 

attributed to an increase respiratory response to cope with increased acidosis. 

Furthermore, post-EIMD EV / 2COV was also elevated during both modes of exercise, 

indicating that EV  was not increased to excrete accumulating 2CO  after squatting 

exercise (Twist & Eston, 2009). 

Although there was no difference in RPE response, both modes of fixed-intensity 

exercise revealed significant increases in effort perception 24 h and 48 h after EIMD. 

These results are consistent with previous research during cycling (Davies et al., 

2009; Twist & Eston, 2009) and running (Scott et al., 2003; Chen et al., 2009) as a 

result of exercise-induced muscle damage. Jameson and Ring (2000) suggested 

that effort perception during endurance exercise is based on a combination of both 

peripheral (increased leg pain) and central (feelings of breathlessness) feedback. 

The increased knee extensor soreness reported in the current study could have 
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provided the peripheral cue, whilst, the elevated EV  and ƒR responses reported 

during both modes of exercise provided the central cue (Davies et al., 2009). 

Moreover, activation of mechanoreceptors in the chest wall, lungs and airways may 

have increased breathing rate, influencing the participant in perceiving exercise to be 

harder after squatting exercise (Hampson et al., 2001). Marcora (2009) challenged 

the view that effort perception during exercise is dependent on feedback from the 

skeletal muscle, heart and lungs, suggesting that an increase in RPE during exercise 

is centrally governed from the brain. However, Amann et al. (2010) reported that 

through blocking afferent feedback response from the locomotor muscles a reduction 

in EV  and RPE responses occurred. Arguably, therefore, muscle afferents in the 

current study may have influenced RPE responses during both cycling and running 

modes after muscle-damaging exercise. 

Although attempts were made to ensure that the exercise intensities between 

running and cycling were similar, it is possible that our findings were influenced by 

the participants’ training history. Whilst, they were engaged in regular endurance 

exercise (2-3 sessions per week), this mainly consisted of running-based activity with 

limited cycling training. Unsurprisingly, symptoms associated with EIMD are 

dependent on training history, with greater responses reported in  less active muscle 

groups compared to those regularly exposed to exercise (Chen et al., 2011; 

Jamurtas et al., 2005). Furthermore, individuals more accustomed with running are 

able to exercise at a higher intensity for a given RPE compared to cycling (Thomas 

et al., 1995). Therefore, it is possible that participants in the current study tolerated 

running with muscle damage due to their greater familiarity with the exercise 

modality, whilst the unexpected increase in 2OV  during cycling might have occurred 

due to participants being less familiar with this type of exercise.                  
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In conclusion, the equivocal findings of EIMD on endurance performance have been 

attributed to the mode of endurance exercise adopted. The aim of Study 1 was to 

examine the influence of exercise mode (cycling versus running) on physiological, 

metabolic, perceptual and kinematic responses after EIMD. To address this aim, 

participants performed two counter-balanced cycling and running bouts before, 24 h 

and 48 h after muscle-damaging exercise. Findings demonstrated that 2OV  and EV  

were increased during both running and cycling modes after EIMD. However, the 

time course of these appeared to be mode-specific. It is posited that the elevated 

2OV  responses observed during running were due to changes in lower limb 

kinematics and a decreased ability to utilise the SSC, whilst the recruitment of 

auxiliary muscles after EIMD might have led to the unexpected increase in cycling 

2OV  response. The differences in ventilatory response between exercise modes 

following muscle damage were possibly due to different stimuli activating afferent 

muscle fibres. This is the first study to investigate the effects of EIMD during sub-

maximal cycing and running exercise. From an applied perspective, given that long-

term resistance exercise can improve endurance performance, individuals 

considering concurrent training should be aware of the consequences that 

unaccustomed resistance exercise can have on sub-maximal endurance exercise 

performed in the days following. Whilst, this study reaffirms that EIMD increases 

oxygen uptake during endurance exercise, a progression for the next study will be to 

consider how muscle damage affects oxidative metabolism at rest and during 

recovery from endurance exercise.   
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CHAPTER 4 

THE EFFECTS OF EXERCISE-INDUCED MUSCLE DAMAGE ON RESTING 

METABOLIC RATE, SUB-MAXIMAL RUNNING AND POST-EXERCISE OXYGEN 

CONSUMPTION 
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4.1 Introduction 

It is now established that regular resistance exercise improves several key 

parameters of endurance performance, including  running economy (RE) (Johnston 

et al., 1997; Paavolainen et al., 1999; Millet et al., 2002; Storen et al., 2008). 

Resistance exercise can also facilitate increases in resting metabolic rate (RMR) 

(Pratley et al., 1994; Dolezal & Potteiger, 1998; Paschalis et al., 2011). Indeed, 

several studies have observed increases in RMR for up to 72 hours after an acute 

bout of resistance exercise (Williamson & Kirwan, 1997; Dolezal et al., 2000; 

Schuenke et al., 2002; Jamurtas et al., 2004; Hackney et al., 2008; Paschalis et al., 

2010; 2011). Typically, these studies used resistance exercises incorporating a high 

eccentric component, in which the muscle lengthens under tension and yields a force 

greater than that of concentric actions despite fewer motor units being recruited 

(Enoka, 1996). However, such exercise places substantial stress on the muscle, and 

when executed during an unaccustomed activity can lead to the immediate and 

prolonged appearance of symptoms associated with EIMD (Byrne et al., 2004).  

The initial manifestations of EIMD include a disruption to the sarcomeres and 

damage to the excitation-contraction (E-C) coupling system. This is followed by an 

inflammatory response, which promotes the breakdown, removal and resynthesis of 

the damaged muscle fibre (Armstrong et al., 1991; Morgan & Allen, 1999; Proske & 

Morgan, 2001; Byrne et al., 2004). Furthermore, the inflammatory response 

associated with EIMD is responsible for the elevation in RMR after acute eccentric 

exercise (Dolezal et al., 2000; Schuenke et al., 2002; Jamurtas et al., 2004; 

Paschalis et al., 2010; 2011). The repair of damaged muscle is reported to be 

energetically expensive, with the energy cost of protein resynthesis estimated to 

account for as much as 20% of the RMR (Welle & Nair, 1990).  
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Symptoms of EIMD include delayed onset muscle soreness (DOMS), leakage of 

intramuscular proteins (e.g. creatine kinase) into circulation and the impairment of 

muscle function (Byrne et al., 2004). Furthermore, at their peak, typically 24 – 48 h 

after damage-inducing exercise, these symptoms are detrimental to sub-maximal 

endurance performance. Indeed, as observed in Chapter 3, alterations in oxygen 

cost, minute ventilation, blood lactate, ratings of perceived exertion and lower limb 

kinematics occurred during sub-maximal running as a result of EIMD.  

Oxygen uptake does not return from its elevated state to resting values immediately 

after the termination of endurance exercise. Traditionally, this post-exercise 

increased oxygen consumption has been attributed to an oxygen debt, which was 

deemed necessary to repay the oxygen deficiency that occurred at the onset of 

exercise (Gaesser & Brooks, 1984; Bahr, 1992; Borsheim & Bahr, 2003). Hill and 

Lupton’s (1923) original hypothesis that the oxygen debt resulted from the oxidation 

of lactate was developed by Margaria et al. (1933). The authors posited that the 

oxygen debt comprised both an alactacid component, which was responsible for the 

restoration of phosphagens, and a lactacid component responsible for the 

resynthesis of glycogen from lactate (Margaria et al., 1933). More recent studies 

have challenged this hypothesis, observing that the magnitude of the oxygen debt is 

neither equal to nor correlates with the oxygen deficit (Gaesser & Brooks, 1984; 

Bahr, 1992). Therefore, it was suggested that the term ‘excess post-exercise oxygen 

consumption (EPOC)’ was more appropriate for the prolonged increase in oxygen 

cost that can be evident for several hours after the cessation of exercise (Gaesser & 

Brooks, 1984; Brehm, 1988; Bahr, 1992; Borsheim & Bahr, 2003; Laforgia et al., 

2006). 
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The magnitude of EPOC is often dependent upon the intensity of the exercise 

adopted (Sedlock et al., 1989; Bahr & Sejersted, 1991; Bahr, 1992; Smith & 

McNaughton, 1993). Therefore, increases in oxygen cost during fixed intensity 

endurance exercise when muscle is damaged (as shown in Chapter 3) could elevate 

EPOC further. Indeed, when examining the impact of strenuous training on recovery 

from prior strenuous exercise, Bahr et al. (1991) reported that the increase in oxygen 

demand during sub-maximal cycling exercise was responsible for a 24% increase in 

oxygen uptake during recovery post-exercise. However, to what extent muscle 

damage from prior resistance exercise alters EPOC after sub-maximal endurance 

exercise is currently not known. Such knowledge might have implications for 

endurance athletes who engage in repeated bouts of endurance exercise on the 

same day or in the days after. Indeed, if 2OV  is still elevated after exercising with 

muscle damage, reductions in exercise efficiency during subsequent endurance 

training sessions are likely to occur (Bahr et al., 1991; Borsheim & Bahr, 2003). 

Furthermore, given that findings from previous research and Chapter 3 demonstrate 

that EIMD increases oxygen uptake at rest and during endurance exercise, it would 

be interesting to examine whether oxygen uptake during recovery from endurance 

exercise is increased when experiencing EIMD. Thus, this investigation aimed to 1) 

confirm that resting metabolic rate is elevated for up to 48 h after muscle-damaging 

exercise; 2) reaffirm that oxygen uptake during sub-maximal running exercise is 

increased for up to 48 h after EIMD; and 3) to examine whether elevations in 

oxidative metabolism at rest and during endurance exercise after EIMD increase 

post-exercise oxygen consumption. 
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4.2 Methods 

4.2.1 Participants 

Eight healthy male participants (age 24.3 ± 1.7 y, stature 1.81 ± 0.08 m, body mass 

77.4 ± 10.8 kg), all of whom engaged in regular physical activity (2 – 3 sessions per 

week) but had not undertaken any form of lower limb resistance exercise in the six 

months prior to assessment, volunteered to take part in the study. Participants’ 

physiological characteristics are shown in Table 1. Each participant completed a 

written informed consent form and a health questionnaire and received a verbal 

explanation of the risks associated with the experimental procedures. Ethical 

approval was obtained from the Faculty of Applied Sciences Research Ethics 

Committee, University of Chester. 

 

4.2.2 Study Design 

This was a within-subjects design involving multiple repeat measurements 

interspersed with an intervention to invoke symptoms of EIMD (see Figure 1.). 

Participants completed a habituation session to accustomise them with the 

procedures used for measuring resting metabolic rate (RMR), perceived muscle 

soreness and isokinetic strength. During the same visit they also completed an 

incremental running trial to determine individual lactate turnpoint (LTP) and peak 

oxygen uptake ( peakOV 2
 ). One week later, participants completed baseline 

measurements, which included 45 minutes of supine rest to measure RMR, three 

indirect markers of EIMD, 10 minutes of sub-maximal running, followed by a 30-

minute recovery period to assess EPOC. Twenty four hours after this, they 

completed a bout of resistance exercise designed to cause symptoms of EIMD. They 

then returned to the laboratory 24 and 48 h later to repeat the baseline procedures 
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(in the same order). All measurements were conducted between 08:00 and 09:00 h 

after a 12 h overnight fast. Participants were asked to refrain from any other exercise 

24 h before each trial, maintain a similar diet for each testing day and avoid using 

any analgesic agents.    

Table 4.1. Physiological characteristics 

Variable Mean ± SD 

peakOV 2
  (ml.kg-1.min-1) 54.2 ± 5.5 

HRpeak (b
.min-1) 189 ± 5 

LTP (mmol.l-1) 4.4 ± 0.8 

LTPSPEED (km.h-1) 11.9 ± 1.0 

Abbreviations: peakOV 2
  = peak oxygen uptake; HRpeak = peak heart rate at peak 

oxygen uptake; LTP = lactate turnpoint; LTPSPEED = speed corresponding to lactate 
turnpoint. 
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Figure 4.1. Schematic of the study design 
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4.2.3 Assessment of lactate turnpoint and peak oxygen uptake 

Participants performed an incremental treadmill (Woodway PPS 55sport-I, Woodway 

GmbH, Germany) protocol to determine individual LTP and peakOV 2
 . The protocol 

started at 9 km.h-1 and increased by 1.0 km.h-1 every 4 minutes until volitional 

exhaustion. Blood lactate activity was obtained via the Lactate Pro analyser (Arkray, 

Kyoto, Japan) from finger-tip capillary blood samples taken during 30 s periods of 

forced inactivity between each 4-minute exercise bout. Individual LTP was accepted 

as the speed at which a second distinctive rise in [La] occurred above baseline 

values (Jones et al., 2009). Expired air, HR and RPE were recorded and analysed in 

the manner described in Chapter 3.  

 

4.2.4 Perceived muscle soreness 

Perceived muscle soreness in the knee extensors was measured using the same 

scale described in Chapter 3.  

 

4.2.5 Assessment of dynamic muscle function 

Knee extensor strength of the dominant limb was measured using the same 

procedures outlined in Chapter 3.  

 

4.2.6 Determination of creatine kinase 

Creatine kinase activity was assessed from the same methods used in Chapter 3. 

 

4.2.7 Assessment of resting metabolic rate  

Resting metabolic rate was measured whilst participants adopted a supine position 

on a bed in a dark, quiet and thermo-controlled laboratory (22 ± 0.4 oC) for 45 
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minutes. Expired air was collected using an online gas analyser (Oxycon Pro, 

Hoechberg, Germany), calibrated before each trial in the manner highlighted in 

Chapter 3. Heart rate (Polar Electro, Polar Beat, Oy, Finland) was also recorded 

during the RMR collection period. Data during the first 15 minutes of measurement 

were discarded and the average of the last 30 minutes was used to determine RMR 

(Osterberg & Melby, 2000). Participants were instructed to remain quiet, minimise 

their movements and avoid hyperventilation and sleep during the RMR collection 

period. Prior to each RMR trial they were requested not to eat or drink, except water, 

for 12 h beforehand and to refrain from exercise (additional to that provided in the 

study) for 48 h. Energy expenditure (kcal) was calculated using the Weir equation 

(1949) and expressed per 24 h (Paschalis et al., 2010).          

 

4.2.8 Assessment of energy intake 

Participants were provided with written guidelines and a food diary to record their 

daily food intake. They were instructed to monitor and follow their normal dietary 

habits 24 h before the first visit and asked to maintain those foods in similar amounts 

until the last day of their involvement in the study (Dolezal et al., 2000).    

 

4.2.9 Sub-maximal running protocol  

Participants were required to run on a motorised treadmill (Woodway PPS 55sport-I, 

Woodway GmbH, Germany) at a speed corresponding to their previously determined 

LTP for 10 minutes. Expired air, HR, RPR and [La] were recored in the final minute 

of each bout using methods described in Chapter 3.    
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4.2.10 Assessment of post-exercise oxygen consumption 

After each sub-maximal running bout, participants resumed the supine resting 

postion and their expired air and HR were recorded immediately for 30 minutes. 

EPOC was determined in the mannar described by Binzen et al. (2001):  

EPOC (l) = total recovery 2OV  - total baseline RMR 2OV .  

A recovery period of 30 minutes was based on studies (incorporating exercise of 

similar magnitude and intensity to that used in the current study), in which EPOC had 

been observed to return to baseline within 30 minutes (Freedman-Akabas et al., 

1985; Lee et al., 1999).     

  

4.2.11 Muscle-damaging exercise 

Participants performed the same muscle-damaging exercise as described in Chapter 

3.  

4.2.12 Statistical analysis 

The variability of the dependent variables (indirect markers of muscle-damage, RMR, 

sub-maximal running and EPOC) across the three trials (Time) was examined via 

separate one-way repeated measures analysis of variance (ANOVAs). Assumptions 

of sphericity were assessed using Mauchly’s test and any violations were adjusted 

by Greenhouse-Geisser correction. Post hoc Tukey tests, modified for repeated 

measures (Stevens, 2002), were applied where appropriate to determine where 

significant differences in means occurred. Descriptive statistics were calculated as 

means ± SD. The alpha level was set at P < 0.05. 
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4.3 Results 

4.3.1 Indirect markers of muscle damage 

Perceived muscle soreness (F(2,14) = 80.2, P ≤ 0.0005) and CK activity (F(2,14) = 7.3, 

P = 0.007) increased over Time, being significantly higher at both 24 and 48 h after 

the squatting exercise. Peak knee extensor torque decreased over Time (FGG(1.2,8.4) = 

8.7, P = 0.015), with values at 24 and 48 h being lower than baseline (Figure 4.2). 
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Figure 4.2. Changes in a perceived muscle soreness, b CK and c knee extensor 
torque after squatting exercise. Values are ± means SD. * significantly different from 
baseline (P < 0.05).  
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4.3.2 The effects of muscle damage on resting metabolism 

Resting 2OV  (FGG(1.1,7.9) = 25.2, P = 0.001), RMR (F(2,14) = 24.4, P = 0.0005) and 

resting HR (F(2,14) = 7.2, P = 0.007) increased over Time, being significantly elevated 

above baseline at both 24 and 48 h (see Table 4.2). However, no change in resting 

RQ (FGG(1.2,8.4) = 0.12, P = 0.889) was observed after muscle damage. 

Table 4.2. Mean (± SD) changes in resting metabolic rate after muscle damage.  

 Baseline 24 h 48 h 

Resting 2OV  (ml.kg-1.min-1) 3.4 ± 0.2 3.9 ± 0.2* 3.9 ± 0.3* 

RMR (kcal.d-1) 1852.3 ± 327.8 2070.7 ± 286.1* 2097.1 ± 322.3* 

Resting HR (b.min-1) 54 ± 5 58 ± 5* 57 ± 4* 

Resting RQ 0.85 ± 0.04 0.85 ± 0.08 0.84 ± 0.04 

* significantly different from baseline (P < 0.05). Abbreviations: 2OV = oxygen uptake, 

RMR = resting metabolic rate, HR = heart rate, RQ = respiratory quotient.  
 

4.3.3 Sub-maximal exercise responses to muscle-damaging exercise 

All physiological, metabolic and perceptual responses during sub-maximal running 

were increased over Time ( 2OV (F(2,14) = 5.3, P = 0.019); EV  (F(2,14) = 9.4, P = 0.003); 

ƒR (F(2,14) = 9.8, P = 0.002); [La] (F(2,14) = 4.3, P = 0.034); HR (F(2,14) = 6.8, P = 

0.009); RPE (F(2,14) = 5.7, P = 0.016), and in particular were raised from baseline at 

24 and 48 h (see Table 4.3).   
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Table 4.3. Mean (± SD) physiological, metabolic and perceptual responses during 
sub-maximal running after muscle-damaging exercise.  

 Baseline 24 h 48 h 

2OV  (ml.kg-1.min-1) 46.2 ± 3.2 48.5 ± 3.9* 48.1 ± 3.6* 

EV  (l.min-1) 103.8 ± 25.3 117.9 ± 31.7* 115.9 ± 29.5* 

ƒR (breaths.min-1) 40.5 ± 7.9 46.8 ± 9.8* 46.0 ± 8.3* 

[La] (mmol.l-1) 4.8 ± 1.7 5.5 ± 2.1* 5.1 ± 1.9* 

HR (b.min-1) 170 ± 9 175 ± 6* 174 ± 7* 

RPE 14.8 ± 1.4 16.0 ± 1.5* 16.1 ± 1.7* 

* significantly different from baseline (P < 0.05). 

 

4.3.4 The effects of muscle damage on post-exercise oxygen consumption 

Total (F(2,14) = 8.6, P = 0.004) and mean (F(2,14) = 7.2, P = 0.007) recovery 2OV , 

EPOC (F(2,14) = 8.6, P = 0.004), recovery HR (F(2,14) = 9.0, P = 0.003) and recovery 

EV  (F(2,14) = 6.9, P = 0.008) all increased across the repeated measurements, and 

were significantly greater at 24 and 48 h post muscle-damaging exercise (see Table 

4.4). Mean recovery RQ, however, remained unaltered (FGG(1.2,8.4) = 3.8, P = 0.082). 

To highlight the changes in resting, exercise and recovery 2OV  before and 48 h after 

muscle-damaging exercise data are shown from a randomly selected participant in 

Figure 4.3.   
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Table 4.4. Mean (± SD) changes in post-exercise recovery after muscle-damaging 
exercise. 

* significantly different from baseline (P < 0.05). # EPOC calculated as total recovery 

2OV  - total baseline RMR 2OV . Abbreviations: EPOC = excess post-exercise oxygen 

consumption.   
 
 
 

 

 

 

 

 

 

 

 

 

 

Figure 4.3. A time plot of 2OV  during rest, exercise and recovery before (○) and 48 h 
after (●) exercise-induced muscle damage (data from a randomly selected 
participant).      
 
 

 Baseline 24 h 48 h 

Total 2OV  (l-1) 14.0 ± 2.9 14.8 ± 3.0* 14.6 ± 3.0* 

Mean 2OV  (ml.kg-1.min-1) 6.0 ± 0.5 6.3 ± 0.7* 6.2 ± 0.7* 

EPOC (l-1)# 5.9 ± 1.8 6.8 ± 2.1* 6.6 ± 2.1* 

Recovery HR (b.min-1) 77 ± 8 83 ± 8* 81 ± 7* 

Recovery RQ 0.92 ± 0.04 0.87 ± 0.07 0.89 ± 0.06 

Recovery EV  (l.min-1) 14.9 ± 3.0 16.5 ± 4.1* 16.0 ± 3.3* 

2.5

12.5

22.5

32.5

42.5

52.5

5 10 15 20 25 30 5 10 5 10 15 20 25 30

V
O

2
(m

l. k
g

-1
. m

in
-1

)

Time (mins)

REST EXERCISE RECOVERY 



 

 

133 
 

4.4 Discussion 

The efficacy of this study’s attempt to create muscle damage via an unaccustomed 

bout of squatting exercise was confirmed by the notable changes in three indirect 

markers 24 and 48 h afterwards. As anticipated, the acute bout of resistance 

exercise was effective in elevating resting metabolism, with resting 2OV , resting HR 

and RMR elevated above baseline values for the 48 h measurement period after 

EIMD. These findings concur with previous research reporting these increases for up 

to 15 – 72 h after similar exercise (Melby et al., 1993; Gillette et al., 1994; Dolezal et 

al., 2000; Schuenke et al., 2002; Jamurtas et al., 2004; Hackney et al., 2008; 

Paschalis et al., 2010; 2011). Observations do contradict the findings of Thomas et 

al. (1994) and Kolkhorst et al. (1994) who reported an unchanged RMR 24 h after 

muscle-damaging exercise, although in both cases a failure to assess the extent of 

muscle damage undermined their findings.  

The increase in RMR observed after an acute bout of eccentric-biased exercise is 

attributed to the appearance of muscle damage and the stimulus for repair (Burleson 

et al., 1998; Dolezal et al., 2000; Paschalis et al., 2010). It is well established that 

muscle damage is accompanied by an inflammatory response that causes the influx 

of neutrophils and macrophages at the site of injury (Smith, 1991; MacIntyre et al., 

1995; Sorichter et al., 1999), the purpose of which is to promote the degradation and 

synthesis of damaged muscle fibres (MacIntyre et al., 1995). The energy cost of 

protein synthesis can account for as much as 20% of total resting metabolism (Welle 

& Nair, 1990). Furthermore, in adults with severe burn trauma, protein synthesis 

correlates positively with oxygen uptake and RMR (Cunningham et al., 1989). 

Therefore, it is plausible that the stimulus for repair after unaccustomed resistance 

exercise led to the increase in RMR observed in the current study.  



 

 

134 
 

Alternatively, the prolonged increase in RMR after muscle damage could have been 

caused by an elevation in sympathetic nervous system activity. Moreau et al. (1995) 

reported increased concentrations of urinary norepinephrine and epinephrine 24 – 48 

h after muscle-damaging exercise. The authors posited that the stress associated 

with movement of sore muscles led to the release of catecholamines from the 

adrenal medulla, which acts to increase the rate and strength of cardiac contraction, 

and might explain the increase in HR observed before, during and after endurance 

exercise. Furthermore, activation of the sympathetic nervous system causes 

vasodilation of the blood vessels that supply skeletal muscle, which could have 

accounted for the greater 2OV  before, during and post-exercise (Sherwood, 2001; 

Schuenke et al., 2002).      

Surprisingly, there was no change in resting substrate utilisation after muscle 

damage. In using the respiratory quotient (RQ) to provide an indirect measure of 

substrate use, a decrease infers that fat utilisation is increased in the days after 

EIMD (Schuenke et al., 2002; Jamurtas et al., 2004; Paschalis et al., 2010; 2011). 

Muscle damage also increases insulin resistance (Tee et al., 2007), reduces glucose 

disposal rates (Kirwan et al., 1992) and decreases glucose transporter (GLUT-4) 

protein concentration (Asp et al., 1995). Therefore, changes to the glucose transport 

system might explain the reliance on fat during recovery from EIMD (Paschalis et al., 

2010). Alternatively, damage to the muscle membrane could breakdown fatty acid 

phospholipids, increasing beta oxidation due to the greater availability of free fatty 

acid inside the muscle cell (Paschalis et al., 2010). However, that other studies 

reported a decrease in resting RQ and the current study did not is possibly owing to 

the type of muscle-damage protocols employed. The use of whole-body resistance 

exercise (Schuenke et al., 2002; Jamurtas et al., 2004) and isokinetic eccentric 
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exercise (Paschalis et al., 2010) might have imposed greater changes in resting RQ 

than squatting exercise.  

This is the first study to examine the impact of muscle damaging exercise on EPOC 

after endurance exercise, where total 2OV  was 4 – 6% higher during recovery from 

sub-maximal running whilst participants were experiencing symptoms of muscle 

damage. In the only comparable study, Bahr et al. (1991) investigated recovery from 

3 – 4 days of strenuous continuous training, after which participants underwent 60 

minutes of supine rest to determine RMR, 30 minutes of cycling at 50% max2OV  and a 

further 60 minutes of supine rest after exercise to determine EPOC. In comparison to 

a control condition, total oxygen consumption during recovery after cycling exercise 

was 24% higher after strenuous training. Direct comparisons between the current 

study and the findings of Bahr et al. (1991) are difficult due to differences in the type 

of endurance exercise (running versus cycling), the timing of EPOC (0.5 hour versus 

1 hour) and the stress conditions (single resistance training session versus 3 – 4 

days of intensive training). However, our findings reaffirm those of Bahr and 

colleagues that engaging in further exercise after a period of intensified training 

causes an increase in EPOC.  

It was shown in Chapter 3 that EIMD increases the oxygen cost required during 

subsequent sub-maximal endurance exercise. These changes have been attributed 

to alterations in running stride pattern (Braun & Dutto, 2003), an inability to store and 

use elastic energy (Chen et al., 2007b; 2009) and an increase in motor unit 

recruitment in order to produce the same pre-damage force (Kyrolainen et al., 2000).  

This study reaffirms the findings from Chapter 3, with the observed 4 – 5% increase 

in oxygen uptake during sub-maximal running (after EIMD) indicating that 
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participants were exercising, on average, at 89 – 90 % max2OV  compared to 85% at 

baseline. Furthermore, it is likely that this greater energetic cost during sub-maximal 

running after EIMD is responsible for the observed increase in EPOC (Gore & 

Withers, 1990a; 1990b; Bahr & Sejersted, 1991; Bahr, 1992; Smith & McNaughton, 

1993).  

Blood lactate responses at the end of sub-maximal running were approximately 6 – 

14% higher than baseline in the days after muscle-damaging exercise. This increase 

is in agreement with other studies (Gleeson et al., 1995; Braun & Dutto, 2003; Chen 

et al., 2007b; 2009; Schneider et al., 2007) and reflects an increased recruitment of 

non-damaged type II fibres in order to maintain pre-damage capacities. It is also 

possible that the increase in [La] response contributed slightly to the elevated EPOC 

observed after sub-maximal running. Research has shown that only a small fraction 

of recovery oxygen is required for the reconversion of lactate to glycogen (Gaesser & 

Brooks, 1984; Bangsbo et al., 1991; Bahr, 1992). Hill & Lupton (1923) first 

hypothesised that 80% of the lactate produced during exercise was reconverted to 

glycogen, with the remaining 20% being oxidised to provide the energy required for 

glycogen resynthesis. However, evidence has shown that less than 20% of the post-

exercise oxygen consumption is responsible for the reformation of glycogen from 

lactate (Gaesser & Brookes, 1984; Bangsbo et al., 1991).  

Other mechanisms that contribute to the EPOC include the replenishment of 

myoglobin and haemoglobin and the resynthesis of adenosine tri-phosphate (ATP) 

and creatine phosphate (CP) (Gaesser & Brooks, 1984; Bahr, 1992; Bangsbo & 

Hellsten, 1998; Borsheim et al., 1998a). Indeed, Davies et al. (2011b) recently 

reported an increase in resting inorganic phosphate concentration ([Pi]) after EIMD, 
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which they attributed to an increase in the ATP turnover required for the repair and 

remodelling of damaged tissue. A sustained increase in ventilation has also been 

used to the explain EPOC (Bahr, 1992; Bangsbo & Hellsten, 1998; Borsheim et al., 

1998a). In this study, ventilatory responses during exercise and recovery were 

higher than baseline at 24 and 48 h after muscle-damaging exercise. Given that 

group III and IV afferents located in and around skeletal muscle are responsible for 

controlling ventilation (Haouzi et al., 2004), it is hypothesised that damage to the 

muscle stimulates a discharge from the nerve afferents causing ventilation to 

increase (Hotta et al., 2006; Davies et al., 2009; Twist & Eston, 2009). Any residual 

muscle pain experienced after sub-maximal running might have also provided a 

stimulus to increase ventilation through activating nociceptive muscle afferents 

(Duranti et al., 1991). More recently, research has attributed elevations in oxygen 

demand during exercise to an increase in ventilation (Burt & Twist, 2011). Therefore, 

it is possible that oxygen demand during recovery was increased to facilitate the 

increased ventilation because of damaged muscle tissue.     

Heart rates were also increased during recovery from sub-maximal running in the 

days after EIMD. The return of heart rate to resting values after exercise has a 

similar time course to EPOC (Bahr, 1992).  It is plausible that the stress associated 

with the movement of sore muscles caused the secretion of catecholamines and 

subsequent elevation in heart rate during the recovery period (Moreau et al., 1995).  

Catecholamines also regulate the triglyceride / fatty acid (TG / FA) cycle and fat 

oxidation through stimulating β-adrenoceptors (Borsheim et al., 1998a; 1998b). 

During the TG / FA cycle, FA released from lipolysis is re-esterified into TG rather 

than being oxidised, and it is the increase in ATP required for this process that is 

thought to contribute to EPOC (Borsheim & Bahr, 2003). Since fat oxidation requires 
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relatively more oxygen than carbohydrate oxidation, any shift from carbohydrate to 

fat utilisation during recovery would also contribute to EPOC (Borsheim et al., 1998a; 

1998b). Although not statistically significant, the recovery RQ was lower than 

baseline in the current study, suggesting a greater proportion of fat was utilised after 

sub-maximal running when muscle damage was present.  

The possibility that an elevated RMR after the muscle-damaging (squatting) exercise 

had a residual effect on EPOC after the sub-maximal endurance exercise can also 

not be ruled out. That is, the elevated rate of protein breakdown and resynthesis 

after muscle-damaging exercise could have contributed to the increase in oxygen 

uptake both during and after sub-maximal running exercise. 

Whilst it might be difficult to extrapolate our findings to those of others who have 

used a larger sample size, our findings are in agreement with previous studies that 

used larger sized samples. However, future research should investigate if RMR and 

EPOC are elevated after muscle-damaging exercise in a larger sample size and a 

control group should also be used to further reduce the risk of a type I error. It is 

accepted that there were limitations with the assessment of dietary intake during 

data collection. The variability of our diet from a day-to-day basis questions whether 

the 24 h recorded before data collection was a true representation of diet. 

Furthermore, instructing participants to maintain a similar energy intake throughout 

the study may have been laborious. To address these limitations, participants were 

asked to complete the food diary over a typical day and were provided with detailed 

instructions on how to complete the diary and the importance of maintaining a similar 

diet throughout the investigation.                         
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The capacity of resistance exercise to induce further improvements in running 

economy is alluring to endurance runners. However, as this and the previous study 

have shown, performing unaccustomed resistance exercise causes the acute 

symptoms of muscle damage. The results of this study revealed that in the days after 

muscle-damaging exercise RMR is increased by 11.8 – 13.2%. To compensate for 

this increase and in order to maintain a positive energy balance between training 

sessions individuals may need to increase their calorie intake. However, for 

individuals trying to facilitate a negative energy balance, increasing resting energy 

expenditure through unaccustomed resistance exercise could provide a short-term 

health-promoting effect. Endurance athletes often engage in repeated bouts of 

endurance exercise on the same day or in the days after. The increased oxygen 

demand during endurance running after muscle damage led to an increase in EPOC. 

On this basis, individuals should periodise their recovery after unaccustomed 

resistance exercise to preserve their exercise economy during subsequent training.  

 

In conclusion, findings from previous research and Chapter 3 infer that EIMD 

increases oxidative metabolism at rest and during endurance exercise. 

Nevertheless, it was not known whether oxygen uptake during recovery from 

endurance exercise is also augmented when experiencing EIMD. Thus, the aim of 

this study was to investigate the effects of EIMD on 2OV  before, during and after 

sub-maximal running. In order to address this aim, participants completed baseline 

measurements comprising RMR, sub-maximal running and 30 minutes recovery to 

ascertain EPOC. Measurements were then repeated 24 and 48 h after muscle-

damaging exercise. This is the first study to demonstrate that in the presence of 

EIMD, oxygen uptake is increased at rest, during and after endurance exercise. The 
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elevated RMR in the days after EIMD is in agreement with research and reflects the 

breakdown and repair or damaged muscle that is energetically expensive. The 

higher oxygen cost during sub-maximal running highlights that for a given exercise 

intensity participants are working harder than without EIMD. Moreover, this is the first 

study to show an increase in EPOC after sub-maximal running whilst experiencing 

EIMD. This is likely to be a direct consequence of the greater energetic demand of 

running observed when muscle-damaged. Individuals engaging in unaccustomed 

resistance exercise that results in muscle damage should be mindful of the increases 

in resting energy expenditure and increased metabolic demand to exercise in the 

days that follow. The next aim of this thesis will be to investigate whether the same 

changes in endurance exercise are evident after a second bout of EIMD, since the 

signs and symptoms of muscle damage appear to be attenuated.  
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CHAPTER 5 

 

THE EFFECTS OF REPEATED BOUTS OF MUSCLE DAMAGING EXERCISE ON 

PHYSIOLOGICAL, METABOLIC, PERCEPTUAL AND KINEMATIC RESPONSES 

DURING SUB-MAXIMAL RUNNING 
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5.1 Introduction 

The provision of resistance training alongside endurance training (also referred to as 

concurrent training) is known to improve running economy (Guglielmo et al., 2009; 

Storen et al., 2008; Millet et al., 2002; Johnston et al., 1997). Furthermore, as shown 

in Chapter 4, resistance exercise also induces health-promoting effects, such as 

elevating resting energy expenditure. However, as demonstrated in Chapters 3 and 

4, a consequence of resistance exercise, when novel and unaccustomed, is the 

immediate and prolonged appearance of symptoms associated with EIMD. These 

symptoms include muscle soreness, swelling  and reduced muscle strength (Byrne 

et al., 2004), and at their peak, typically 24 - 48 h after muscle-damaging exercise, 

have been found to impact negatively on sub-maximal running performance. Indeed, 

findings from Chapters 3 and 4 infer that oxygen demand for a given running 

intensity (i.e. running economy) is increased after EIMD. This elevation is attributed 

to altered gait kinematics (Braun & Dutto, 2003), an impaired ability to absorb and 

utilze elastic energy (Chen et al., 2007b; 2009) and increased motor unit recruitment 

(Kyrolainen et al., 2000). 

Likewise, increases in [La] during sub-maximal running after EIMD were also 

observed in Chapter 4, and are attributed to an increase in the recruitment of non-

damaged type II fibres in an attempt to maintain pre-damage capacities (Braun & 

Dutto, 2003). Since type II fibres are more glycolytic, an increase in their activation 

after EIMD is likely to result in an increased [La] during endurance exercise (Gleeson 

et al., 1998; Scott et al., 2003). Whilst Scott et al. (2003) have reported unchanged 

[La] during sub-maximal running (deemed to be below the LT), work by Chen et al. 

(2009) confirmed that the increased [La] after EIMD is more pronounced at exercise 

intensities above the LT. It was suggested that because type I fibres are 
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predominantly recruited at intensities below the LT, and are less susceptible to EIMD 

(Friden et al., 1983), these fibres are capable of maintaining a normal recruitment 

pattern and metabolic function (Scott et al., 2003).    

Increases in effort perception have also been observed during sub-maximal 

endurance exercise after muscle-damaging exercise (as shown in Chapters 3 and 

4), and are associated with the increased muscle pain accomanying EIMD (Scott et 

al., 2003). Furthermore, as reported in Chapter 3, increases in RPE coincided with 

increases in EV , which may be manifested by the activation of nerve afferents 

located in and around the blood vessels of the exercising muscles that are involved 

in controlling ventilaton (Hotta et al., 2006; Twist & Eston, 2009; Davies et al., 2011). 

However, after an initial bout of muscle-damaging exercise, adaptation occurs to the 

muscle, whereby if the same bout of eccentric exercise was repeated it would result 

in the symptoms of EIMD being attenuated (McHugh et al., 1999a; McHugh, 2003; 

Howatson & van Someren, 2008). This protective adapatation is referred to as the 

‘repeated bout effect’ (RBE) and is characterized by a reduced deficit in muscle 

function, a lowered perception of muscle soreness, and a reduction in the leakage of 

myofibre proteins into the circulation (Byrnes et al., 1985; Newman et al., 1987; 

Nosaka & Clarkson, 1995; Hortobagyi et al., 1998; Howatson et al., 2007; Smith et 

al., 2007). The exact mechanism responsible for the RBE has not been established, 

however several studies suggest that the protective adpatation is attributed to either 

neural or peripheral mechanisms (McHugh et al., 1999a; McHugh, 2003). The neural 

theory contends that EIMD is attenuated through a more efficient recruitment of 

motor units allowing for a greater distribution of contractile stress across a larger 

number of fibres (Golden & Dudley, 1992; Nosaka & Clarkson, 1995), an increased 
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motor unit syncronization or an increase in slow-twitch muscle fibre recruitment 

(Warren et al., 2000; Chen, 2003; Howatson et al., 2007; Starbuck & Eston, 2012). 

Alternatively, the periperal theory proposes that the RBE resides within the muscle 

through an increase in connective tissue (Lapier et al., 1995), the remodelling of 

intermediate filaments (Lehti et al., 2007), strengthening of the muscle cell 

membrane (Clarkson & Tremblay, 1988), removal of weak muscle fibres (Newham et 

al., 1987), longitudinal additon of sarcomeres (Brockett et al., 2002), changes to E-C 

coupling (Clarkson & Tremblay, 1988) or an attenuated inflammatory response 

(Pizza et al., 1996).            

Whilst findings from Chapter 3 and 4 show that an initial bout of muscle-damaging 

exercise alters the physiological, metabolic, perceptual and kinematic responses 

during sub-maximal endurance exercise, the impact after a repeated bout of 

damaging exercise is yet to be elucidated. Therefore, this study aimed to 1) confirm 

that symptoms (muscle soreness, increased CK activity and decreased muscle 

function) of EIMD that follow an initial bout of squatting exercise are attenuated when 

the same bout of muscle-damaging exercise is performed two weeks later; 2) to 

reaffirm that 2OV , EV , [La], RPE, SL and SF during sub-maximal running are altered 

as a result of EIMD; and 3) to investigate whether these responses are attenuated 

during sub-maximal running after a repeated exposure to the muscle-damaging 

exercise. Considering that individuals will engage in numerous resistance training 

sessions, rather than a single bout, to induce adaptations in endurance performance 

it appears imperative to examine whether responses during sub-maximal endurance 

exercise are still altered after a repeated bout of resistance exercise. 
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5.2 Methods 

5.2.1 Participants 

Nine healthy male participants (age 25.8 ± 4.1 years, stature 1.80 ± 0.09 m, body 

mass 79.6 ± 9.9 kg), who all engaged in regular physical activity (2-3 endurance 

exercise sessions per week), but had not undertaken any form of lower limb 

resistance exercise in the previous six months, volunteered to participate in the 

study. Their physiological characteristics are shown in Table 1. Before the study, 

each participant completed a written informed consent form and medical health 

questionnaire and received verbal explanation of the risks associated with the 

experimental procedures. Institutional ethical approval was obtained from the Faculty 

of Applied Sciences Research Ethics Committee. 

 

5.2.2 Study Design 

The participants took part in a repeated measures design involving seven laboratory 

visits over a period of 5 weeks (see Figure 5.1). An initial exhaustive incremental 

running trial to establish individual LTP and peakOV 2
  was performed, followed by 

habituation to the procedures used to measure perceived muscle soreness, 

isokinetic strength, and vertical jump performance (Visit 1). This was followed 24 – 

72 h later by baseline measurements of perceived muscle soreness, isokinetic 

strength, CK, vertical jump performance and a bout of sub-maximal running at a 

speed corresponding to the individual’s LTP. During the same visit, participants 

experience a bout of lower limb resistance exercise designed to elicit muscle 

damage (Visit 2).  Measurements were then repeated 24 h and 48 h after the EIMD 

(Visits 3 and 4). Two weeks later, participants returned to the laboratory to repeat the 

baseline measurements and the same muscle-damaging exercise (Visit 5). Two 
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further testing sessions then occurred 24 and 48 h later (Visits 6 and 7). All 

participants were asked to refrain from any strenuous exercise 24 h prior to each 

visit, maintain their normal diet, and avoid using any analgesic agents.    

 

Table 5.1. Participants’ physiological characteristics 

 Mean ± SD

peakOV 2
  (ml.kg-1.min-1) 54.2 ± 3.2

HRpeak (b
.min-1) 190 ± 9

LTP (mmol.l-1) 4.7 ± 0.8

LTPSPEED (km.h-1) 12.3 ± 0.8

Abbreviations: peakOV 2
  = peak oxygen uptake; HRpeak = peak heart rate at peak 

oxygen uptake; LTP = lactate turnpoint; LTPSPEED = speed corresponding to lactate 
turnpoint. 
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Figure 5.1. Schematic of the study design 
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5.2.3 Assessment of lactate turnpoint and peak oxygen uptake 

Participants performed the same incremental protocol to exhaustion as previously 

detailed in Chapter 4.  

 

5.2.4 Perceived muscle soreness 

Each participant was asked to provide his perceived level of muscle soreness of the 

knee extensors using the same instructions outlined in Chapter 3.  

 

5.2.5 Peak knee extensor torque 

Knee extensor torque was measured on the dominant limb using an isokinetic 

dynamometer (Biodex 3, Biodex Medical Systems, Shirley, NY, USA). The same 

testing guidelines are detailed in Chapter 3.   

 

5.2.6 Vertical jump performance 

Participants were asked to perform separate trials of squat (SJ), countermovement 

(CMJ) and drop jumps (DJ), which were recorded using an infra-red timing system 

(Optojump, Microgate S.r.l, Bolzano, Italy). After warm-up trials, each jump was 

performed three times, in the same order and with 60 s rest between each jump. 

Maximal jump height was then recorded and used for analysis. The SJ was 

performed with the participant starting in a crouched position, with knees flexed at 

90º before jumping for maximal height. The CMJ started with the participant in an 

upright position after which they were required to rapidly flex the knees to 90º before 

jumping for maximal height. The DJ was performed from a height of 50 cm (Horita et 

al., 1999) and required participants to drop to the ground and after minimal contact 

jump for maximal height. Vertical jump height was calculated for each jump from the 
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method previously used by Byrne and Eston (2002a) and Twist and Eston (2007). 

Measuring flight time (tflight) enabled vertical take-off velocity (v ) to be calculated as: 

v  = 0.5 (tflight x g), where g  is the acceleration due to gravity (9.81 m.s-2). Vertical 

jump height was then calculated from the equation: height = 2v / g2 . Reliability data 

for the SJ, CMJ and DJ demonstrated a CV of 2.3%, 2.6% and 3.4% respectively.     

 

5.2.7 Determination of creatine kinase 

Plasma blood CK activity was assessed using the same method described in 

Chapter 3.  

 

5.2.8 Sub-maximal running protocol 

Sub-maximal running was performed on a motorized treadmill (Woodway PPS 

55sport-I, Woodway GmbH, Germany) at a speed corresponding to previously 

determined individual LTPs for 10 minutes. Expired air, HR, RPE, and [La] were 

recorded as detailed in Chapter 3. 

 

5.2.9 Running stride pattern 

A high speed video camera (Casio Exilim, Pro Ex-F1) recorded sagittal plane images 

at 100 Hz during the final 10 s of each 10-min sub-maximal running bout. Stride 

length and SF were then determined by the same methods previously described in 

Chapter 3.  
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5.2.10 Muscle-damaging exercise 

To induce symptoms of muscle damage, participants performed the same bout of 

Smith-machine squats described in detail in Chapter 3. An identical bout of muscle-

damaging exercise was also performed two weeks later.  

 

5.2.11 Statistical analysis 

The differences in the indirect markers of muscle-damage and sub-maximal running 

performance between bouts were analysed using separate two-way (Time [3] and 

Bout [2]) repeated measures ANOVAs. The assumption of sphericity was analysed 

using Mauchly’s test, with any violations adjusted by the use of the Greenhouse-

Geisser correction. Where significant Time and Bout interaction effects were found, 

post-hoc Tukey tests modified for repeated measures (Stevens, 2002) were used to 

identify differences between conditions. Descriptive statistics were calculated as 

means ± SD. The alpha level was set at P ≤ 0.05).  

 

5.3 Results 

5.3.1 Indirect markers of muscle damage 

Analysis revealed a significant Bout x Time (F(2,16) = 38.3, P ≤ 0.0005) interaction on 

muscle soreness, with post-hoc analysis indicating that muscle soreness was 

increased after both bouts of EIMD. However, significantly less soreness was 

reported in the days after Bout 2 when compared to Bout 1. The Bout x Time 

interaction (FGG(1.1,8.6) = 9.5, P = 0.013) revealed that the notable decrements in peak 

torque 24 – 48 h after the first bout of EIMD did not occur after the second bout. The 

Bout x Time interactions on drop (FGG(1.2,9.5) = 11.5, P = 0.006), countermovement 

(FGG(1.2,9.9) = 11.5, P = 0.005) and squat (FGG(1.1,8.9) = 7.2, P = 0.023) jump heights 
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were also significant, and characterized by vertical jump performance declining at 24 

– 48 h after the initial bout of muscle damage, but being unchanged in the days after 

the repeated bout. Creatine kinase activity demonstrated a Bout effect (F(1,8) = 5.9, P 

= 0.042), with values after Bout 1 being considerably greater than after Bout 2, 

however no significant Bout x Time interaction (F(2,16) = 2.4, P = 0.124) was observed 

(Figures 5.2 – 5.3, Tables 5.2 – 5.3).  

 
Figure 5.2. Changes in muscle soreness before (baseline) and 24 – 48 h after initial 
(Bout 1) and repeated (Bout 2) bouts of muscle damage. Values are shown as 
means ± SD. * Significantly different from baseline (P < 0.05).  
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Figure 5.3. Changes in knee extensor torque before (baseline) and 24 – 48 h after 
initial (Bout 1) and repeated (Bout 2) bouts of muscle damage. Values are shown as 
means ± SD. * significantly different from baseline (P< 0.05).  

 
Table 5.2. Changes in vertical jump performance before (baseline) and 24 – 48 h 
after initial (Bout 1) and repeated (Bout 2) bouts of muscle damage. Values are 
shown as means ± SD.  
 
 Bout 1  Bout 2 

 Baseline 24 h  48 h  Baseline 24 h  48 h 

DJ height (cm) 
 

34.7 ± 3.3 28.5 ± 3.7* 29.0 ± 5.2*  34.7 ± 3.8 34.6 ± 4 34.7 ± 3.8 

CMJ height (cm) 
 

33.7 ± 3.2 29.9 ± 4.3* 28.7 ± 5.9*  33.7 ± 3.9 33.7 ± 3.6 34.6 ± 3.9 

SJ height (cm) 31.2 ± 3.3 26.8 ± 4.6* 26.8 ± 5.5*  30.5 ± 3.5 29.6 ± 3.7 30.6 ± 3.9 

* significantly different from baseline (P< 0.05). Abbreviations: DJ = drop jump, CMJ 
= counter movement jump, SJ = squat jump. 
  

Table 5.3. Changes in CK activity before (baseline) and 24 – 48 h after initial (Bout 
1) and repeated (Bout 2) bouts of muscle damage. Values are shown as means ± 
SD. 
 
 Bout 1#  Bout 2 

 Baseline 24 h 48 h  Baseline 24 h 48 h 

CK (IU.l-1) 76.3 ± 41.8 157.4 ± 107.5 107 ± 81.6  59.3 ± 27.8 70.1 ± 33.2 63.9 ± 43.5 

# significant overall difference between Bout 1 and Bout 2 (P < 0.05). 
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5.3.2 Sub-maximal running responses to repeated bouts of muscle damage 

Figure 5.4 and Table 5.4 highlights significant Bout x Time interactions in most of the 

measures presented. That is, for 2OV  (F(2,16) = 7.7, P = 0.005) it is clear that the 

increases evident 24 – 48 h after Bout 1 no longer occurred in the days after Bout 2. 

The same pattern of variability was seen for EV  (F(2,16) = 5.0, P = 0.021), RPE (F(2,16) 

= 8.3, P = 0.003), ƒR (F(2,16) = 8.9, P = 0.003), HR (FGG(1.3,10) = 5.4, P = 0.037), SL 

(F(2,16) = 5.9, P = 0.012) and SF (FGG(1.2,9.5) = 8.7, P = 0.013), but not for [La] (F(2,16) = 

2.7, P = 0.101), EV / 2OV  (F(2,16) = 1.7, P = 0.213) or EV / 2COV  (F(2,16) = 2.1, P = 

0.154). A significant effect of Bout for [La] (F(1,8) = 9.0, P = 0.017), EV / 2OV  (F(1,8) = 

5.4, P = 0.049) and EV / 2COV  (F(1,8) = 6.6, P = 0.034) was observed, reflecting higher 

overall values after Bout 1 compared to Bout 2.     

Table 5.4. Changes in stride pattern before (baseline) and 24 – 48 h after initial 
(Bout 1) and repeated (Bout 2) bouts of muscle damage. Values are shown as 
means ± SD. 

 Bout 1 Bout 2 

 Baseline 24 h 48 h  Baseline 24 h 48 h 

SL (m) 2.45 ± 0.25 2.39 ± 0.24* 2.39 ± 0.23*  2.44 ± 0.26 2.46 ± 0.24 2.46 ± 0.24 

SF  14.0 ± 0.8 14.4 ± 0.6* 14.4 ± 0.6*  14.0 ± 0.8 14.0 ± 0.8 14.0 ± 0.8 

 * significantly different from baseline (P< 0.05) 
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Figure 5.4. Changes in a oxygen uptake ( 2OV ), b ventilation ( EV ), c blood lactate, d RPE, e heart rate, f breathing frequency, g 

ventilatory equivalent for oxygen ( EV / 2OV ), and h ventilatory equivalent for carbon dioxide ( EV / 2COV ) before (baseline) and 24 
– 48 h after initial (Bout 1) and repeated (Bout 2) bouts of muscle damage. Values are shown as means ± SD. * significantly 
different from baseline (P< 0.05). # significant overall difference between Bout 1 and Bout 2 (P < 0.05).      
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5.4 Discussion 

In agreement with findings from Chapters 3 and 4, this study has demonstrated that 

an initial bout of resistance exercise decreased peak knee extensor strength and 

vertical jump performance, and increased perceived muscle soreness and CK 

response. Creatine kinase values were lower than those previously shown in studies 

that adopted similar modes of EIMD (Byrne & Eston 2002a; Davies et al. 2011a). 

However, this disparity might reflect an accelerated clearance of CK from the blood 

due to an increased blood flow (Warren et al. 1999) or that participants in this study 

had a better training status (Vincent & Vincent 1997). Notwithstanding this, impaired 

muscle function and increases in perceived muscle soreness suggest that EMID 

occurred as a result of the first bout of squatting exercise. 

The symptoms of EIMD that followed the first bout were attenuated when the same 

bout of resistance exercise was performed two weeks later. This attenuation is 

consistent with previous research (Byrnes et al., 1985; Newman et al., 1987; Nosaka 

& Clarkson, 1995; Hortobagyi et al., 1998; Howatson et al., 2007; Smith et al., 2007), 

and provides evidence that unaccustomed resistance exercise evoked an adaptation 

that enables the muscle to be more resistant to a repeated bout of the same exercise 

performed two weeks later. The justification for the 2-week interval between each 

bout of muscle damage was based on previous research. Using lower limb exercise 

to incur EIMD, research has shown that symptoms associated with EIMD are 

attenuated within 2 weeks (Clarkson & Tremblay, 1988; Eston et al., 1996; 

Hortobagyi et al., 1998; McHugh et al., 2001). Moreover, baseline markers of muscle 

soreness, knee extensor torque, vertical jump height and CK activity between Bout 1 

and 2 were not significantly different (P > 0.05), thus providing support that the 2-

week rest interval was sufficient for optimal recovery between bouts.    
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This study also observed that the physiological, metabolic, perceptual and kinematic 

responses during sub-maximal running were altered as a result of unaccustomed 

resistance exercise; the significant changes in 2OV , EV , ƒR, [La], RPE and lower limb 

kinematics after EIMD all concur with results from Chapters 3 and 4. However, this is 

the first study to demonstrate that the detrimental effects of EIMD on sub-maximal 

endurance exercise are attenuated after a second bout. Furthermore, this 

attenuation in sub-maximal endurance exercise after the repeated bout of muscle 

damage was similar to the attenuation shown in the indirect markers of muscle 

damage. Whilst the underlying mechanism responsible for the RBE is unknown, a 

reduced magnitude of muscle damage and its subsequent impact on sub-maximal 

running could be central or peripheral in origin, or a combination of both. Using 

surface EMG, several studies have observed that the frequency content (MF) of the 

EMG signal is decreased during a repeated bout of EIMD (Warren et al., 2000; Chen 

et al., 2003; Howatson et al., 2007; Starbuck & Eston, 2012), indicating a higher 

reliance on slow twitch muscle fibres (Warren et al., 2000). Given that slow twitch 

fibres are more resistant to muscle damage (Friden et al., 1983), it is plausible that 

an increased recruitment protects the muscle against a second bout of EIMD. 

Additionally, Kyrolainen et al. (2000) suggested that impaired muscle function 

following muscle-damaging exercise requires additional motor unit activation in order 

to produce the same resultant force during running at a given speed. As there is a 

linear relationship between EMG activity and oxygen cost (Bigland-Ritchie & Woods, 

1974), the elevations in 2OV  after the initial bout of squatting exercise (Bout 1) might 

have reflected such an increase in motor unit recruitment. However, with the 2OV  

response remaining unchanged during sub-maximal running after Bout 2, it is 

possible that a neural adaptation might have occurred. Indeed, an increased reliance 
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on slow twitch fibres during the repeated bout could have protected the muscle, 

causing muscle function to be unchanged in the days after Bout 2 and enabling 

normal motor unit recruitment to be maintained during the sub-maximal running. 

Nonetheless, future studies to confirm changes in neuromuscular recruitment during 

endurance exercise after EIMD are required.  

Running uses the SSC to provide elastic energy during repeated eccentric and 

concentric actions (Komi, 2000). Prolonged exposure to resistance training improves 

running economy by increasing muscle stiffness regulation, allowing for more elastic 

energy to be stored during the eccentric phase (Bonacci et al., 2009). However, 

unaccustomed resistance exercise reduces muscle stiffness regulation and the 

subsequent ability to store elastic energy (Horita et al., 1996; 1999; Nicol et al., 

1996). The reductions in drop jump performance provide indirect evidence that the 

force potential of the SSC was impaired after Bout 1. Therefore, an increase in 2OV  

during running could have been because of a reduced utilisation of elastic energy 

caused by the initial muscle-damaging exercise. That both drop jump performance 

and 2OV  during sub-maximal running remained unchanged after the second bout of 

EIMD supports this. 

The sensation of pain in skeletal muscle is believed to be signalled by Group III and 

IV fibres (Armstrong, 1984; Ebbeling & Clarkson, 1989; Jones & Round, 1990; Cleak 

& Eston, 1992a; Kendall & Eston, 2002). Indeed, it is hypothesized that the 

accumulation of noxious chemicals (such as prostaglandin, bradykinin, and 

histamine) activates afferent fibres to produce muscle soreness (Jones & Round, 

1990). In attempts to limit the discomfort associated with muscle soreness, it is 

reasonable to assume that participants changed their running stride pattern, leading 
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to the observed increase in the oxygen cost of running. Indeed, the initial increase in 

2OV  occurred alongside decreases in stride length and increases in stride frequency 

during sub-maximal running, supporting the findings observed in Chapter 3. 

Accordingly, the attenuation in muscle soreness after the second bout would have 

enabled participants to maintain their normal stride pattern and explain why 2OV  

remained unchanged. The reduction in muscle soreness after Bout 2 also suggests 

that less stimulation was caused to Group III and IV afferent fibres.  

Located in and around the skeletal muscle, Group III and IV afferent fibres are also 

responsible for modulating the ventilatory response to exercise (Haouzi et al., 2004) 

and are thought to be responsible for the increase in ventilation after eccentric 

exercise (Hotta et al., 2006; Davies et al., 2008; 2009; 2011a; Twist & Eston, 2009; 

Burt & Twist, 2011). Furthermore, muscle soreness also provides a stimulus to 

increase ventilatory response by activating nociceptive muscle afferents (Mense, 

1977; 1982; Duranti et al., 1991). As anticipated there was an increase in  and fR 

after the first bout of squatting exercise that was consistent with findings shown in 

Chapters 3 and 4. However, ventilatory responses remained unchanged after the 

second bout. These findings are likely to be explained by the repeated bout effect; 

namely the lower magnitude of muscle damage and reductions in perceived muscle 

soreness after the repeated bout of squatting exercise. Indeed, the maintenance of 

muscle fibre integrity (evidenced by lower CK and preservation of force after Bout 2) 

would not result in the increased discharge from afferent fibres to increase ventilation 

as described by Hotta et al. (2006). Similarly, the lower perceptions of muscle pain 

after Bout 2 would not have the same stimulating effect on ventilation that was 

perhaps observed after the initial bout.    

EV
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An increased reliance on non-damaged type II muscle fibres is thought to be 

responsible for elevations in [La] that accounts for the increased ventilatory response 

observed whilst exercising with muscle damage (Gleeson et al., 1995; Braun & 

Dutto, 2003). The EV  response is increased to excrete the additional 2CO  produced 

because of elevated [La]. In this study [La] was greater during running after Bout 1 

than after Bout 2, suggesting that the attenuated EV  response after Bout 2 was due 

to a reduction in [La]. However, as EV / 2COV  was greater during running after Bout 1 

than Bout 2, indicating that EV  was not associated with changes in 2CO , it is unlikely 

that changes in [La] was responsible for the attenuated EV  response after Bout 2.      

The elevation of RPE during sub-maximal running exercise after the first bout of 

muscle-damaging exercise is consistent with the findings from Chapters 3 and 4. 

Hampson et al. (2001) proposed that perceived exertion involves a combination of 

sensory cues derived from a number of different factors. Indeed, Jameson and Ring 

(2000) suggest that muscle pain and feelings of breathlessness are determinants of 

RPE during endurance exercise. Likewise, Scott et al. (2003) and Elmer et al. (2010) 

attribute a greater perceived exertion to the increased motor unit recruitment 

required to produce the same baseline sub-maximal force after muscle-damaging 

exercise. If these responses provided cues for RPE in the current study, it is likely 

that their attenuation after Bout 2 explains the unchanged RPE response. Moreover, 

it is possible that the same neural and/or peripheral adaptations highlighted above to 

explain the reduction in muscle soreness, ventilatory response and neuromuscular 

function contribute to the attenuation in RPE response.  

Whilst this is the first study to demonstrate that the RBE is transferable to endurance 

performance, the findings are limited to fixed intensity endurance running. Such 
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protocols allow the physiological, metabolic and perceptual responses to be 

monitored during steady state endurance exercise; nonetheless, they do not 

replicate real-world endurance events. Alternatively, time-trials, whereby individuals 

cover a set distance in the quickest time possible, are a more realistic marker of 

endurance performance. Therefore, one of the aims of the next study will be to 

investigate the effects of the RBE on running time-trial performance. 

In conclusion, findings from Chapters 3 and 4 suggest that EIMD has a negative 

impact on endurance exercise performed in the days that follow. However, it was not 

known whether such effects occur after a repeated bout of EIMD. Therefore, the aim 

of this study was to investigate the effects of repeated bouts of muscle-damaging 

exercise on sub-maximal running exercise. To address this aim, participants 

completed a bout of sub-maximal running before, 24 and 48 h after an initial bout of 

muscle-damaging squatting exercise. Two weeks later, participants repeated the 

same baseline procedures, muscle-damaging exercise and follow-up testing. In 

agreement with Chapters 3 and 4, this investigation reaffirms that the physiological, 

perceptual, and kinematic responses during sub-maximal running are altered in the 

days following unaccustomed resistance exercise. However, following this initial bout 

of muscle-damaging exercise, an adaptation occurs to the muscle, which is shown to 

attenuate the detrimental effects of muscle damage on the physiological, metabolic, 

perceptual and kinematic responses during sub-maximal running. It is unlikely that 

any one mechanism explains the observed RBE; rather it is probable that the 

interaction of various neural and peripheral adaptations occurred to protect the 

muscle against the detrimental effects of EIMD during sub-maximal running exercise. 

Importantly, these findings have applied implications for both endurance athletes and 

recreationally active populations wishing to embark on concurrent training for the first 
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time. In the first instance, such people need to be aware of the negative effects that 

unaccustomed resistance exercise can have on the muscle and how this impacts 

upon further exercise performed in the days following. Thereafter, as the current 

study has demonstrated, less recovery will be required in the days after a repeated 

bout of resistance exercise performed in the few weeks that follow. What remains to 

be investigated is if a bout of low volume muscle-damaging exercise performed two 

weeks prior to a bout of high volume EIMD provides the same protective effect on 

endurance running exercise. Furthermore, prior research has demonstrated that 

EIMD reduces endurance time-trial performance; nevertheless, it remains to be seen 

if this reduction is still evident as a result of the RBE.          
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CHAPTER 6 

 

A LOW VOLUME OF MUSCLE-DAMAGING EXERCISE CONFERS PROTECTION 

AGAINST A HIGH VOLUME OF MUSCLE-DAMAGING EXERCISE AND THE 

DETRIMENTAL EFFECTS ON ENDURANCE RUNNING  
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6.1 Introduction 

Findings from the previous three chapters clearly demonstrate that EIMD increases 

oxygen consumption ( 2OV ) during fixed-intensity running. One of the mechanisms 

posited to explain this rise in 2OV  is an increase in motor unit recruitment (Kyrolainen 

et al., 2000; Braun & Dutto, 2003; Chen et al., 2007b). Kyrolainen et al. (2000) 

postulated additional motor units are recruited in order to attain the same force 

during fixed-intensity running when the muscle is damaged. However, it has not 

been confirmed if motor unit activation is increased during running as a result of 

muscle damage. Therefore, an investigation incorporating EMG would confirm if 

increases in motor unit recruitment occur alongside increases in 2OV  during fixed-

intensity running after EIMD.  

It is also well established that the signs and symptoms of EIMD are attenuated after 

a repeated bout of muscle-damaging exercise (Byrnes et al., 1985; Newman et al., 

1987; Nosaka & Clarkson, 1995; McHugh et al., 1999a; McHugh, 2003). These 

adaptations are now known to be extended to the observed effects of EIMD on 

running performance (see Chapters 3, 4 and 5), whereby the alterations in the 

physiological, metabolic, perceptual and kinematic responses during fixed-intensity 

running are attenuated after a repeated bout of EIMD performed two weeks later 

(see Chapter 5).  

An interesting observation is that a prior bout of low volume eccentric exercise 

protects the muscle against damage in the days after high volume muscle-damaging 

exercise (Schwane & Armstrong, 1983; Clarkson & Tremblay, 1988; Brown et al., 

1997; Nosaka et al., 2001b; Chen, 2003; Chen & Nosaka, 2006). Howatson et al. 

(2007) demonstrated that 10 maximal eccentric contractions protected the elbow 
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flexors against 45 maximal eccentric contractions performed two weeks later. Here 

the RBE was attributed to a neural adaptation that faciliated a greater activation of 

more robust type I muscle fibres during the high volume eccentric exercise. 

However, it is not known whether the protective effect of low volume muscle-

damaging exercise performed prior to a high volume of the same exercise preserves 

running performance (as observed in Chapter 5). Such a study would have ‘real-

world’ application for those endurance athletes engaging in periodized resistance 

training for the first time. That is to say where endurance athletes are contemplating 

concurrent endurance and resistance exercise to improve performance, performing a 

low volume of resistance exercise two weeks before engaging in concurrent training 

might  precondition the muscle to withstand higher bouts of muscle-damaging 

exercise and its effects on endurance performance. 

The previous chapters of this thesis have examined the effects of EIMD on fixed-

intensity endurance exercise; whilst such protocols enable physiological responses 

to be measured during steady state exercise, they do lack ecological validity (Currell 

& Jeukendrup, 2008). Alternatively, time-trials provide a more accurate 

measurement of endurance performance and research has shown time-trial 

performance is impaired as a result of EIMD. Indeed, decreases in distance covered 

(~6%), power output (~12%) and oxygen cost (~11%) have all been observed during 

cycling and running time-trial performances after EIMD (Marcora & Bosio, 2007; 

Twist & Eston, 2009; Burt & Twist, 2011). The mechanims to explain the decrement 

in time-trial performance include an altered sense of effort, a reduction in neural 

drive and an increased production of inflammatory cytokines (Marcora & Bosio, 

2007; Twist & Eston, 2009; Burt & Twist, 2011). However, it is unknown if this 

reduction in time-trial performance is still evident after a repeated bout of EIMD. This 
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study aimed to 1) investigate if increases in motor unit recruitment occur alongside 

increases in 2OV  during fixed-itensity running after EIMD; 2) to reaffirm findings from 

study 3; that changes to 2OV , EV , [La], RPE, SL and SF during sub-maximal running 

after initial EIMD are reduced in the days after a repeated bout of EIMD; 3) to 

confirm that a prior bout of low volume (50 squats) muscle-damaging exercise 

protects the muscle against symptoms of EIMD following high volume (100 squats) 

muscle-damaging exercise; 4) to investigate whether a low volume of muscle-

damaging exercise can protect the muscle against the detrimental effects on 2OV , 

EV , [La], RPE, SL and SF reponses during fixed-intensity running after a subsequent 

bout of high volume EIMD; 5) to confirm the detrimental effects of EIMD on running 

time-trial performance; focusing on whether time, speed, 2OV , HR and [La] are 

changed during time-trial running as a result of EIMD; 6) to examine whether the 

negative implications of EIMD on time-trial running are negated following a repeated 

exposure to muscle-damaging exercise.  

 

6.2 Methods 

6.2.1 Participants 

After Institutional ethical approval was granted from the Faculty of Applied Sciences 

Research Ethics Committee, 16 healthy male participants, who had not completed 

any form of lower limb resistance exercise in the previous six months, volunteered 

for the study. Prior to data collection, participants provided informed consent and 

completed a medical health questionnaire. Participant characteristics are shown 

below (see Table 6.1). 
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Table 6.1 Participant characteristics 

 Low-High (n = 8) High-High (n = 8) 

Age (y) 26 ± 5 27 ± 4 

Stature (m) 1.79 ± 0.05 1.77 ± 0.1 

Body Mass (kg) 79.5 ± 7.8 76.7 ± 9.8 

peakOV 2
  (ml.kg-1.min-1) 54.8 ± 3.5 54.2 ± 4.1 

HRpeak (b
.min-1) 191 ± 10 191 ± 9 

LTPspeed (km.h-1) 12.4 ± 1.1 12.6 ± 0.9  

Abbreviations: peakOV 2
  = peak oxygen uptake; HRpeak = peak heart rate at peak 

oxygen uptake; LTPspeed = speed corresponding to lactate turnpoint. 
 

6.2.2 Study Design 

Participants were tested on eight separate occasions over a 5-week period (see 

Figure 6.1). During visit 1, participants completed an incremental exhaustive running 

test to determine LTP and peakOV 2
 . This was followed by habituation procedures for 

perceived muscle soreness, peak knee extensor torque (isometric and isokinetic) 

and 3 km running time-trial. After 48 – 72 h, participants completed isometric 

maximal voluntary contractions (MVCs) of the knee extensors, during which EMG 

activity of the vastus medialis (VM) and vastus lateralis (VL) was recorded (visit 2). 

Upon completion, participants were randomly assigned to either a low volume  (n = 

8) or high volume (n = 8) muscle damage group. After a further 48 – 72 h, 

participants completed pre-damage perceived muscle soreness, isokinetic peak 

knee extensor torque, CK activity, fixed-intensity running, a 3 km running time-trial 

and either a low or high volume bout of lower limb resistance exercise designed to 

develop symptoms of EIMD (visit 3). Baseline procedures were then repeated 24 

and 48 h later with the exception of the time-trial at 24 h (visit 4 and 5). Two weeks 

later, when symptoms associated with the initial bout of muscle damage had 
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disappeared (Hortobagyi et al., 1998), participants repeated baseline procedures, a 

repeated bout of high volume muscle-damaging exercise (visit 6) and the same 

follow-up testing at 24 and 48 h (except for the time-trial at 24 h) (visit 7 and 8). 

Participants were requested to avoid exercise 24 h prior to each visit, maintain their 

normal diet and avoid using any analgesic agents.  
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6.2.3 Assessment of lactate turnpoint and peak oxygen uptake 

Incremental running to determine individual LTP and peakOV 2
  was performed using 

the methods outlined in Chapter 4.  

 

6.2.4 Perceived muscle soreness 

Participants indicated the perceived soreness felt in their knee extensors using the 

VAS scale detailed in Chapter 3. 

 

6.2.5 Assessment of peak isometric and isokinetic knee extensor torque 

To normalise peak EMG amplitude, recorded during each fixed-intensity running 

bout, EMG activity of the VM and VL was recorded during isometric MVCs of the 

knee extensors (Ansley et al., 2004) measured from the dominant limb using an 

isokinetic dynamometer (Biodex 3, Biodex Medical Systems, Shirley, NY, USA). 

Peak isometric force was assessed at an angle of 80°, with full knee extension 

providing a 0° reference (Byrne et al., 2001). Before the test, participants performed 

a standardized warm-up comprising 3 min of sub-maximal cycling at 50 W (Monark, 

874E, Monark, Varberg, Sweden). After five sub-maximal and one maximal 

familiarization trials, participants performed two MVCs of 3 s duration with a 60 s rest 

between each trial (Byrne et al., 2001). 

To assess muscle function after the initial and repeated bouts of EIMD, isokinetic 

peak knee extensor torque was determined from the dominant limb using the same 

procedures described in Chapter 3.  
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6.2.6 Assessment of creatine kinase 

Plasma blood CK activity was assessed using the same method described in 

Chapter 3.  

 

6.2.7 Fixed-intensity running and stride pattern 

Participants performed 5 min of fixed-intensity running at their previously determined 

LTP on a motorized treadmill (Woodway PPS 55sport-I, Woodway GmbH, 

Germany). Expired air, HR, RPE and [La] were recorded as previously described in 

Chapter 3. The final 10 s of each 5-min running bout was recorded, downloaded and 

digitized using motion analysis software (Quintec Biomechanics 9.03 v 14). Stride 

length and SF during each running bout were determined from the methods 

previously described in Chapter 3.   

   

6.2.8 Electromyography 

During the isometric MVCs and each fixed-intensity running bout, surface EMG 

(Noraxon, Scottsdale, AZ, USA) was recorded from the VM and VL. The location of 

each muscle site was in accordance with the Surface EMG for Non-Invasive 

Assessment of Muscles (SENIAM) recommendations (Hermens et al., 1999). Briefly, 

electrodes for the VM were placed at four-fifths of the distance between the anterior 

superior iliac spine and the joint space in front of the anterior border of the medial 

ligament. The VL electrode site was located at two-thirds of the distance from the 

anterior superior iliac spine and the lateral side of the patella. A ground reference 

electrode was placed over the tibia. Before the placement of electrodes, body hair 

was removed, the skin lightly abraded and cleansed with an alcohol swab. In 

agreement with recommendations from SENIAM, dual silver/silver chloride 
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electrodes (10 mm diameter contact area, 20 mm inter-electrode distance and 40 

mm x 22 mm adhesive gel surface) were aligned with the orientation of the muscle 

fibre. Once in place, the electrode-skin impedance was checked to ensure it was < 

10 KΩ. Electrodes were connected, via wires with built-in pre-amplifiers, to a 

transmitter unit that relayed data to an analogue-to-digital converter through 

telemetry. The wires and pre-amplifiers were taped to the skin to prevent any 

movement artefact. The raw EMG signals were sampled at a frequency of 1500 Hz, 

amplified by 500 and underwent a 12-bit analog-to-digital conversion. The common 

mode rejection ratio was > 100 dB, the baseline noise < 2 µV and the input 

impedance > 10 MΩ (Konrad, 2005). Data were collected during all of the 5-min 

fixed-intensity running bouts, with the last 10 contractions analysed for peak EMG 

amplitude and median frequency (MF). To calculate the peak EMG amplitude, the 

raw data were full-wave rectified using root mean squared averaging with a 50 ms 

time window and then filtered with a band-pass of 10 – 500 Hz (Konrad, 2005). All 

peak EMG amplitude data was normalized by dividing the value during each fixed-

intensity running bout by the peak EMG amplitude obtained during the peak 

isometric MVC (Ansley et al., 2004). 

To generate the MF, the sampled raw EMG signal was processed using a fast 

Fourier transform (FFT) to create a power density spectrum. The MF was calculated 

as the point at which the power spectrum was divided into equal halves of low and 

high-frequency (Kamen & Caldwell, 1996). After the first trial, the position of each 

electrode was marked with permanent ink to ensure the same placement across the 

bouts. 

 

        



 

 

173 
 

6.2.9 Three kilometre time-trial protocol 

Participants were required to complete 3 km in the quickest time possible on a 

motorized treadmill (Woodway PPS 55sport-I, Woodway GmbH, Germany) set at a 

1% incline (Jones & Doust, 1996). Feedback on distance covered was freely 

available, however participants were not able to view time, treadmill speed or heart 

rate. As previously described by Marcora and Bosio (2007), the time-trial 

commenced with the participants standing on the treadmill whilst the speed was 

increased to 9 km.h-1. Once this speed was attained, participants were able to adjust 

the speed freely. Time and a fingertip capillary sample analysed for [La] were 

collected upon completion of the time-trial. Expired air and heart rate were measured 

throughout the time trial, with mean 2OV  and heart rate determined for analysis. 

Rating of perceived exertion was recorded in the last 50 m of the time-trial. Average 

speed was calculated from dividing distance by time.   

 

6.2.10 Exercise-induced muscle damage protocol 

The same muscle-damaging protocol as detailed in Chapter 3 was performed by 

participants in this current study. The low volume group completed an initial bout of 

resistance exercise consisting of 5 sets of 10 squats, followed two weeks later by a 

higher volume bout of 10 sets of 10 squats. The high volume group completed an 

initial bout of 10 sets of 10 squats, followed two weeks later by repeating the same 

high volume bout.  

 

6.2.11 Statistical analysis 

Descriptive statistics (mean ± SD) were calculated for all performance variables. To 

test for differences between the indirect markers of EIMD and dependent variables 
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during the fixed-intensity running protocol a series of separate three-way mixed 

factor (Group [2] and Bout [2] and Time [3]) repeated measures analyses of variance 

(ANOVAs) were conducted. Dependant variables during the time-trial were also 

analysed using a mixed factor repeated measures ANOVA (Group [2] and Bout [2] 

and Time [2]). Assumptions of sphericity were assessed using Mauchly’s test, with 

any violations adjusted by use of the Greenhouse-Geisser correction. Where 

significant group x bout x time interaction effects were observed, independent t-tests 

were used to identify differences. The alpha level was set at P < 0.05.  

 

6.3 Results 

6.3.1 Indirect markers of muscle damage 

Perceived muscle soreness demonstrated a significant Bout (F(1,14) = 33.9, P ≤ 

0.0005) and Bout x Time (F(2,28) = 24.3, P ≤ 0.0005) effect, however, no significant 

Group x Bout x Time interaction was observed (F(2,28) = 1.3, P = 0.29). There was no 

Group x Bout x Time interaction for isokinetic peak knee extensor torque (FGG(1.2,16.2) 

= 1.3, P = 0.296), although a Bout (F(1,14) = 15.4, P = 0.002) and a Bout x Time 

(FGG(1.2,16.2) = 11.6, P = 0.003) effect was shown. CK activity changed over Bout 

(F(1,14) = 28.2, P ≤ 0.0005) and across Bout x Time (FGG(1.2,17.3) = 37.8, P ≤ 0.0005). A 

Group x Bout x Time interaction (FGG(1.2,17.3) = 7.9, P = 0.009) was also observed, 

with post hoc analysis revealing that CK activity was significantly greater in the High-

High group at 24 and 48 h after Bout 1 (Figure 6.2). 

 

 

  



 

 

175 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2. Changes in a perceived muscle soreness, b knee extensor torque and c 
CK after repeated bouts of muscle-damaging exercise. Values are shown as means 
± SD. ‡ denotes a significant effect for Bout; Bout 1 > Bout 2 (P < 0.05). # denotes a 
significant Bout x Time interaction; values 24 – 48 h after Bout 1 > values 24 – 48 h 
after Bout 2 (P < 0.05). * denotes a Group x Bout x Time interaction; High-High 
group > Low-High Group at 24 – 48 h after Bout 1 (P < 0.05). 
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6.3.2 Fixed-intensity running responses to repeated bouts of muscle-damaging 
exercise 

Most of the physiological, metabolic and perceptual responses during fixed-intensity 

running revealed significant Bout and Bout x Time effects. Heart rate demonstrated a 

Bout effect, but no significant Bout x Time interaction was observed. There was no 

significant interaction of Group x Bout x Time on 2OV , EV , [La], RPE, HR, ƒR,         

EV / 2OV  or EV / 2COV  (Table 6.2; results are shown in Table 6.4). 

Table 6.2 Three-way ANOVA results during fixed-intensity running after repeated 
bouts of EIMD    
 
Variable Bout Bout x Time  Group x Bout x Time 

 

2OV  (ml.kg-1.min-1) F(1,14) = 30.2, P ≤ 0.0005 
 

F(2,28) = 16.1, P ≤ 0.0005 F(2,28) = 0.7, P = 0.495 

EV  (l.min-1) F(1,14) = 9.4, P = 0.008 
 

F(2,28) = 18.2, P ≤ 0.0005 F(2,28) = 0.4, P = 0.684 

[La] (mmol.l-1) F(1,14) = 25.4, P ≤ 0.0005 
 

F(2,28) = 5.9, P = 0.007 F(2,28) = 2.6, P = 0.096 

RPE F(1,14) = 20.1, P = 0.001 
 

F(2,28) = 25.6, P ≤ 0.0005 F(2,28) = 0.5, P = 0.642 

HR (b.min-1) F(1,14) = 7.1, P = 0.019 
 

F(2,28) = 1.1, P = 0.359 F(2,28) = 0.5, P = 0.595 

ƒR (breaths.min-1) F(1,14) = 8.3, P = 0.012 
 

F(2,28) = 12.5, P ≤ 0.0005 F(2,28) = 1.1, P = 0.336 

EV / 2OV  F(1,14) = 4.7, P = 0.049 
 

FGG(1.4,19.3) = 5.1, P = 0.026 FGG(1.4,19.3) = 0.4,P = 0.629 

EV / 2COV  
F(1,14) = 5.5, P = 0.035 F(2,28) = 13.0, P ≤ 0.0005 F(2,28) = 1.2, P = 0.316 

 

 

6.3.3 Stride pattern 

Running stride pattern demonstrated significant Bout (SL (F(1,14) = 34.2, P ≤ 0.0005); 

SF (F(1,14) = 36.5, P ≤ 0.0005)) and Bout x Time (SL (F(2,28) = 13.7, P ≤ 0.0005); SF 

(F(2,28) = 15.2, P ≤ 0.0005) effects. However, there was no significant difference 

between the Low-High and High-High groups (Group x Bout x Time: SL (F(2,28) = 0.8, 

P = 0.469); SF (F(2,28) = 0.5, P = 0.597) (Table 6.5).  
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 6.3.4 Electromyography 

Median frequency during fixed-intensity running for the VM (Bout (F(1,14) = 0.2, P = 

0.648); Bout x Time (F(2,28) = 0.5, P = 0.609); Group x Bout x Time (F(2,28) = 0.4, P = 

0.685) and VL (Bout (F(1,14) = 0.8, P = 0.400); Bout x Time (F(2,28) = 1.6, P = 0.230); 

Group x Bout x Time (F(2,28) = 1.0, P = 0.370) was not significantly different after 

repeated bouts of muscle-damaging exercise. Peak EMG amplitude of the VM 

demonstrated a significant main effect of Bout (F(1,14) = 17.5, P = 0.001) and an 

interaction effect of Bout x Time (F(2,28) = 9.8, P = 0.001). However, there was no 

significant difference between the groups (Group x Bout x Time: F(2,28) = 1.1, P = 

0.342). Peak EMG amplitude of the VL demonstrated a significant Bout effect (F(1,14) 

= 27.4, P ≤ 0.0005), however, there was no interaction effect of Bout x Time (F(2,28) = 

2.2, P = 0.130) or Group x Bout x Time (F(2,28) = 0.4, P = 0.665) (Table 6.6).    

 

6.3.5 Time trial responses to repeated bouts of muscle-damaging exercise 

Analysis revealed a significant main effect of Bout and an interaction effect of Bout x 

Time on most variables presented. However, there was no Bout or Bout x Time 

effect for end RPE response during the time-trial. Furthermore, there was no 

significant interaction of Group x Bout x Time on time, average speed, mean 2OV , 

end [La], mean HR or end RPE (Table 6.3; results are shown in Figure 6.3). 
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Table 6.3 Three-way ANOVA results during time trial running after repeated bouts of 
EIMD 

Variable Bout Bout x Time Group x Bout x Time 
 

Time (s) F(1,14) = 39.3, P ≤ 0.0005 
 

F(1,14) = 29.7, P ≤ 0.0005 F(1,14) = 0.3, P = 0.614 

Speed (km.h-1) F(1,14) = 29.9, P = ≤ 0.0005 
 

F(1,14) = 25.5, P ≤ 0.0005 F(1,14) = 0.9, P = 0.364 

2OV (ml.kg-1.min-1) F(1,14) = 15.9, P = 0.001 
 

F(1,14) = 19.1, P = 0.001 F(1,14) = 2.2, P = 0.163 

[La] (mmol.l-1) F(1,14) = 33.8, P ≤ 0.0005 
 

F(1,14) = 15.2, P = 0.002 F(1,14) = 0.01, P = 0.938 

HR (b.min-1) F(1,14) = 7.2, P = 0.018 
 

F(1,14) = 21.1, P ≤ 0.0005 F(1,14) = 3.9, P = 0.07 

RPE F(1,14) = 0.7, P = 0.425 
 

F(1,14) = 1.1, P = 0.312 F(1,14) = 0.3, P = 0.609 
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Table 6.4 Mean (± SD) physiological, metabolic and perceptual responses during fixed-intensity running after repeated bouts of 
muscle-damaging exercise 
 

  Low-High High-High 
Variable Bout Baseline 24 48 h Baseline 24 h 48 h 

2OV  (ml.kg-1.min-1) ‡ # 1 46.9 ± 2.3 48.7 ± 3.1 48.9 ± 3.0 47.3 ± 2.8 49.5 ± 2.7 49.9 ± 3.1 

 2 46.7 ± 2.4 47.1 ± 2.5 46.9 ± 2.7 47.5 ± 2.8 47.4 ± 3.1 47.4 ± 2.8 

EV  (l.min-1) ‡ # 1 101.3 ± 11.7 110.8 ± 12.4 109.3 ± 12.4 101.3 ± 21.9 112.4 ± 26.5 114.3 ± 26.3 

 2 102.6 ± 11.8 104.4 ± 10.9 103.3 ± 11.9 100.3 ± 16.3 102.9 ± 15.6 103.1 ± 18.4 

[La] (mmol.l-1) ‡ # 1 4.8 ± 1.0 5.5 ± 1.2 5.1 ± 1.2 5.7 ± 1.5 6.1 ± 1.4 6.6 ± 1.8 

 2 4.6 ± 1.1 4.8 ± 1.1 4.6 ± 1.0 5.6 ± 1.6 5.7 ± 1.6 5.7 ± 1.4 

RPE ‡ # 1 12.6 ± 0.9 14.1 ± 1.1 13.8 ± 1.0 13.0 ± 1.5 14.8 ± 1.6 14.3 ± 1.6 

 2 12.6 ± 0.7 12.9 ± 1.1 12.6 ± 0.7 13.3 ± 1.2 13.5 ± 1.3 13.5 ± 1.3 

HR (b.min-1) ‡ 1 163.4 ± 11.6 166.4 ± 11.5 165.8 ± 11.2 172.5 ± 10.2 172.9 ± 11.2 173.5 ± 9.5 

 2 163.3 ± 11.4 164.5 ± 10.1 163.9 ± 10.0 170.8 ± 11.0 171.0 ± 11.6 171.3 ± 11.1 

ƒR (breaths.min-1) ‡ # 1 36.6 ± 7.5 40.9 ± 7.5 40.9 ± 8.2 36.9 ± 4.2 42.3 ± 6.1 42.9 ± 6.4 

 2 36.4 ± 6.8 37.6 ± 7.2 38.4 ± 7.3 36.8 ± 3.7 38.5 ± 3.5 38.3 ± 4.1 

EV / 2OV  ‡ # 1 27.3 ± 3.6 28.9 ± 3.8 28.3 ± 3.4 27.9 ± 2.4 29.5 ± 3.1 29.8 ± 3.4 

 2 27.9 ± 3.3 28.2 ± 3.3 27.9 ± 3.4 27.6 ± 1.9 28.4 ± 2.3 28.4 ± 2.6 

EV / 2COV  ‡ # 1 27.7 ± 3.6 29.3 ± 3.8 29.3 ± 4.1 27.3 ± 2.0 29.8 ± 2.5 29.8 ± 3.2 

 2 28.3 ± 3.2 28.7 ± 3.3 28.0 ± 3.3 27.4 ± 1.7 28.6 ± 1.6 28.8 ± 2.6 

‡ significant effect for Bout; Bout 1 > Bout 2 (P < 0.05). # significant Bout x Time interaction; values 24 – 48 h after Bout 1 > values 
24 – 48 h after Bout 2 (P < 0.05).
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Table 6.5 Mean (± SD) stride length and frequency responses during fixed-intensity running after repeated bouts of muscle-
damaging exercise 

  Low-High High-High 

Variable Bout Baseline 24 h 48 h Baseline 24 h 48 h 

SL (m-1) ‡ # 1 2.39 ± 0.17 2.33 ± 0.19 2.33 ± 0.18 2.43 ± 0.20 2.35 ± 0.19 2.33 ± 0.18 

 2 2.41 ± 0.18 2.40 ± 0.18 2.40 ± 0.18  2.45 ± 0.21 2.44 ± 0.20 2.43 ± 0.20 

SF ‡ #  1 14.4 ± 1.1 14.8 ± 1.2 14.8 ± 1.2 14.5 ± 0.8 14.9 ± 0.7 15.1 ± 0.7 

 2 14.3 ± 1.1 14.3 ± 1.1 14.4 ± 1.1 14.4 ± 0.8 14.4 ± 0.8 14.5 ± 0.8 

‡ significant effect for Bout; Bout 1 > Bout 2 (P < 0.05). # significant Bout x Time interaction; values 24 – 48 h after Bout 1 > values 
24 – 48 h after Bout 2 (P < 0.05). 

 

 

 

 

 

 



 

 

181 
 

Table 6.6 Mean (± SD) median frequency and peak EMG amplitude responses during fixed-intensity running after repeated bouts 
of muscle-damaging exercise 
 

  Low-High High-High 

Variable Bout Baseline 24 h 48 h Baseline 24 h 48 h 

MF VM (Hz) 1 66.7 ± 15.8 65.0 ± 14.3 64.4 ± 15.0 72.3 ± 14.5 66.2 ± 10.7 69.1 ± 11.1 

 2 66.0 ± 12.2 64.0 ± 11.1 66.2 ± 11.4 69.0 ± 9.5 65.9 ± 11.9 67.8 ± 10.5 

MF VL (Hz) 1 66.1 ± 9.8 62.0 ± 6.2 67.4 ± 10.1 70.6 ± 9.4 68.0 ± 12.2 69.4 ± 11.6 

 2 63.9 ± 9.3 65.8 ± 7.3 63.0 ± 8.2 68.6 ± 11.8 67.6 ± 7.1 68.5 ± 9.4 

EMG Peak VM (%) ‡ # 1 66.8 ± 22.3 72.5 ± 24.4 71.0 ± 22.3 49.3 ± 14.7 62.6 ± 15.0 59.8 ± 19.4 

 2 66.2 ± 21.9 63.3 ± 21.5 65.5 ± 23.0 50.2 ± 20.7 48.4 ± 18.0 48.1 ± 17.8 

EMG Peak VL (%) ‡ 1 68.8 ± 17.3 72.4 ± 14.7 71.4 ± 11.6 52.0 ± 13.0 57.0 ± 17.0 56.7 ± 14.4 

 2 61.8 ± 16.1 62.0 ± 14.7 61.5 ± 13.8 51.8 ± 15.5 51.2 ± 7.7 48.6 ± 11.1 

‡ significant effect for Bout; Bout 1 > Bout 2 (P < 0.05). # significant Bout x Time interaction; values 24 – 48 h after Bout 1 > values 
24 – 48 h after Bout 2 (P < 0.05). Abbreviations: MF VM = median frequency for vastus medialis, MF VL = median frequency for 
vastus lateralis, EMG Peak VM = Peak electromyography amplitude for vastus medialis, EMG Peak VL = Peak electromyography 
amplitude for vastus lateralis.   
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Figure 6.3. Changes in a time, b average speed, c mean 2OV , d mean heart rate, e 

end blood lactate and f end RPE during time-trial running after repeated bouts of 
EIMD. Values are shown as means ± SD. ‡ significant effect for Bout; Bout 1 > Bout 
2 (P < 0.05). # significant Bout x Time interaction; values 24 – 48 h after Bout 1 > 
values 24 – 48 h after Bout 2 (P < 0.05). 
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6.4 Discussion 

The initial bout of squatting exercise, independent of volume, resulted in symptoms 

of muscle damage. Both groups experienced heightened perceptions of muscle 

soreness, decreases in peak knee extensor torque and increases in CK activity in 

the 24 and 48 h after the low or high volume bout of EIMD. There was no significant 

differences between the groups in perceived muscle soreness and peak knee 

extensor torque in the days after Bout 1, although the high volume group did show 

higher perceptions of muscle soreness and greater decrements in knee extensor 

torque compared to the low volume group. Creatine kinase responses in the high 

volume group were greater than those in the low volume group at both 24 and 48 h 

after Bout 1. This is consistent with previous research (Nosaka et al., 2001b; Brown 

et al., 1997; Howatson et al., 2007) and suggests that greater changes in muscle 

membrane permeability are evident after a more intensive bout of muscle-damaging 

exercise (Boros-Hatfaludy et al., 1986).  

In agreement with studies investigating the repeated bout effect (Byrnes et al., 1985; 

Newman et al., 1987; Nosaka & Clarkson, 1995; Hortobagyi et al., 1998), the 

symptoms of EIMD were attenuated in the days after a second bout of muscle-

damaging exercise. This reduction occurred regardless of whether participants 

performed an initial bout of low or high volume squatting exercise. This concurs with 

existing studies (Clarkson & Tremblay, 1988; Brown et al., 1997; Nosaka et al., 

2001b; Chen et al., 2003; Chen & Nosaka, 2006; Howatson et al., 2007) to provide 

further evidence that a low volume of resistance exercise protects the muscle 

against a high volume of resistance exercise performed two weeks later. 

As expected and in agreement with results from Chapters 3 – 5, the physiological, 

metabolic and perceptual responses during fixed-intensity running were heightened 
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as a result of inducing muscle damage. The findings were not significantly different 

between the groups, which suggests that similar alterations to fixed-intensity running 

occur irrespective of whether the initial bout of EIMD is of low or high volume. 

However, this study reaffirms that the detrimental effects of muscle-damaging 

exercise on fixed-intensity running are reduced after a repeated bout (see Chapter 

5). Moreover, the protective effect of low volume muscle-damaging exercise against 

high volume EIMD is also transferable to treadmill running. That is, the responses 

after the repeated bout of high volume EIMD were reduced independent of whether 

this was preceded by low or high volume muscle-damaging exercise.    

The mechanism responsible for the RBE is still an area of debate; the lower 

magnitude of muscle damage and its subsequent impact on fixed-intensity running 

could be centrally or peripherally orientated, or a combination of both. It has been 

suggested that unaccustomed exercise damages a pool of stress-susceptible 

sarcomeres, which upon recovery are replaced by stronger sarcomeres that are 

more resistant to a second bout of EIMD (Armstrong et al., 1983; Byrnes et al., 1985; 

Newham et al., 1987; McHugh et al., 1999a; McHugh, 2003). However, the initial 

bout does not have to cause extensive muscle damage to confer protection (McHugh 

et al., 1999a). If weak sarcomeres were still intact after the low volume bout of 

squatting, then they would have been damaged during the more strenuous high 

volume bout. However, CK response after the second bout of high volume squatting 

was reduced by the initial low volume bout. Therefore, in agreement with Nosaka et 

al. (2001b), it is unlikely that the RBE was exclusively due to the removal and 

replacement of weak sarcomeres. Clarkson and Tremblay (1998) suggested that the 

initial stress provided a stimulus to strengthen the muscle cell membrane against 

further injury. The reduction in CK suggests that a cellular adaptation, such as 
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improved muscle membrane integrity, might have occurred after the initial bout of 

low volume squatting exercise (Howatson et al., 2007). However, blood 

concentrations of intramuscular proteins reflect leakage from the muscle after EIMD 

and clearance from the blood (Warren et al., 1999). Vincent and Vincent (1997) 

postulated that trained individuals have an efficient mechanism for clearing CK from 

the blood. Therefore, that participants were accustomed to lower limb eccentric 

exercise after the initial bout, the lower CK values were possibly due to a greater CK 

clearance capacity.  

The protective effect of low volume muscle-damaging exercise against subsequent 

high volume exercise could also be due to changes in motor unit recruitment. Using 

EMG, studies have observed a 10 – 20% reduction in MF during a second bout of 

high volume EIMD (Chen, 2003; Howatson et al., 2007), which suggests that a 

reduction in MF reflects a shift in muscle fibre recruitment from type II to type I 

(Warren et al., 2000). Since type I fibres are more resistant to muscle damage 

(Friden et al., 1983), it is conceivable that a greater activation decreased the stress 

on type II fibres and protected the muscle against damage from the second squatting 

bout (Nosaka et al., 2001b; Chen, 2003; Howatson et al., 2007). Electromyography 

amplitude can also be increased after eccentric exercise (Komi & Buskirk, 1972; 

Hortobagyi et al., 1996a; 1996b), meaning the repeated bout redistributes the 

contractile stress over a greater number of muscle fibres (McHugh et al., 1999a; 

McHugh, 2003). However, Chen (2003) and Howatson et al. (2007) observed that 

EMG amplitude was unchanged during a repeated bout of EIMD, which suggests 

that an increase in motor unit recruitment during the second bout of EIMD might not 

have contributed to the attenuation of muscle damage.  
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This is the first study to confirm that EMG amplitude is increased during fixed-

intensity running after EIMD. Muscle fibre recruitment was potentially increased in 

order to complete the same running speed; given that knee extensor strength had 

decreased by 10.4 – 11.3% and 15.5 – 17.1% after initial low and high volume EIMD, 

respectively. As sensations of pain in muscle are mediated through Group III and IV 

afferent fibres (Jones & Round, 1990), the increase in muscle soreness after the 

unaccustomed bout of squatting exercise might have also contributed to the increase 

in EMG amplitude. Disturbances to these fibres as a result of EIMD can reduce 

locomotor muscle contractility, which might have caused a compensatory increase in 

central motor command to ensure participants were able to produce the force 

required during fixed-intensity running (Kyrolainen et al., 2000; Marcora, 2009). 

Since there is a linear relationship between EMG activity and oxygen uptake 

(Bigland-Ritchie & Woods, 1974), it is plausible that the observed increase in 2OV  

during fixed-intensity running after the initial bout of EIMD was reflective of an 

increase in EMG amplitude.  

Alterations to stride pattern have also been attributed to an increase in fixed-intensity 

running 2OV  after muscle-damaging exercise (see Chapters 3 and 5). Indeed, in line 

with Chapters 3 and 5, this study found that increases in stride frequency and 

decreases in stride length occurred alongside increases in 2OV , which suggests that 

participants altered their normal stride to limit the discomfort associated with muscle 

soreness (Braun & Dutto, 2003). However, the attenuation of muscle soreness and 

maintenance of muscle function after the repeated bout enabled the preservation of 

stride pattern and motor unit activation during fixed-intensity running, and possibly 

explains why 2OV  remained unchanged. 
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Alongside inhibiting neural drive to the muscle, group III and IV afferents are likely to 

have caused the increase in EV  during fixed-intensity running at 24 and 48 h after 

EIMD.   Group III and IV afferents are located in the blood vessels of the exercising 

muscle which are distended after muscle damage, stimulating a discharge from the 

afferent fibres that results in EV  increasing (Hotta et al., 2006; Davies et al., 2008; 

2011a; Twist & Eston, 2009). Moreover, it is likely that the muscle soreness 

experienced after the initial squatting bout provided an additional stimulus to drive 

EV  during fixed-intensity running (Davies et al., 2009). Muscle soreness can activate 

nociceptors and mechanoreceptors, which subsequently increase EV  response 

(Mense, 1977; Duranti et al., 1991; Gleeson et al., 1995). Ventilation was unaltered 

after the repeated bouts of squatting exercise and the protective effect was also 

evident after the bout of low volume resistance exercise. It is proposed that the initial 

bout strengthened the sarcolemma that subsequently increased muscle fibre 

integrity during the second bout. This cellular adaptation might have prevented the 

stimulation of afferent fibres that increased EV  after Bout 1.  

That EV  remained unchanged after the repeated bout could explain the concomitant 

reduction in RPE during fixed-intensity running. Effort perception during exercise 

involves a combination of sensory cues that are derived from many different sources 

(Hampson et al., 2001). It is possible that feelings of breathlessness (as evidenced 

through the increase in EV ) provided a central cue to determine RPE (Davies et al., 

2009) during fixed-intensity running after the initial bout of squatting exercise. 

Likewise, the muscle soreness experienced in the knee extensors might have also 

provided a peripheral cue that altered the sense of effort (Jameson & Ring, 2000; 

Davies et al., 2009; Twist & Eston, 2009). Marcora (2009) proposed that RPE is 
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generated centrally by forwarding neural signals from the motor to the sensory areas 

of the cerebral cortex. Arguably, the increased central motor command required to 

produce the same baseline running speed after Bout 1 was responsible for the 

elevation in RPE (Scott et al., 2003; Elmer et al., 2010). If this was the case, then the 

lower EMG activity during fixed-intensity running after the repeated bout might also 

explain why RPE was unchanged. 

The increase in [La] during fixed-intensity running after the initial bouts of squatting 

exercise supports results from Chapters 4 and 5. These findings are consistent with 

the observed increase in EMG activity that reflects an increase in the recruitment of 

non-damaged, more glycolytic, type II fibres in order to maintain pre-damage force 

capacity (Braun & Dutto, 2003). Alternatively, an increased efflux of lactate from the 

muscle might have occurred due to the increased muscle membrane permeability 

after the first bout of EIMD (Gleeson et al., 1995). It is also plausible that the neural 

and/or peripheral adaptations that explain the attenuated EMG activity during fixed-

intensity running and the reduction in symptoms of EIMD contributed to the unaltered 

[La] response during the fixed-intensity running after the repeated bout of squatting 

exercise.       

Running time-trial performance was impaired after the initial bout of resistance 

exercise. The time to complete 3 km was increased by 7% and 9% after low and 

high volumes of resistance exercise, respectively. This corresponds with prior 

studies, whereby distance covered during cycling (Twist & Eston, 2009; Burt & Twist, 

2011) and running (Marcora & Bosio, 2007) time-trials has been decreased by 4 – 

6% after EIMD. However, this is the first study to demonstrate that the detrimental 

effects of EIMD on running time-trial performance are attenuated after a second 
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bout. This study also shows that time-trial running after the repeated bout of high 

volume squatting was protected by a preceding low volume bout. 

Studies investigating the effects of EIMD on force estimation have shown that 

humans perceive a higher effort for the same force and produce less force for the 

same perception of effort (Miles et al., 1997; Weerakkody et al., 2003; Proske et al., 

2004). In the current study, and in support of Marcora and Bosio (2007), participants 

ran at a slower speed despite their RPE being similar to pre-damage during the time-

trial after Bout 1. It is speculated that muscular pain incurred as a result of the initial 

bout of squatting exercise altered the sense of effort during the time-trial, which 

resulted in participants adopting a slower speed and the subsequent lower 2OV , EV , 

HR and [La] responses. Nonetheless, the attenuation of muscle soreness as a result 

of the RBE would have enabled the sense of effort to be maintained during the time-

trial after Bout 2, which subsequently led to the preservation of time, speed, 2OV , HR 

and [La] responses. 

Contradicting findings from Khan et al. (2011) suggest that pain does not influence 

sense of effort during exercise. Likewise, Marcora et al. (2008) found that 40 minutes 

after muscle-damaging exercise, increases in RPE during cycling occured despite no 

evidence of muscle soreness. They suggested that the sense of effort was 

determined by an increase in central motor command and not muscle pain. The 

premature termination of fixed-intensity time-to-exhaustion trials after EIMD have 

also been attributed to an increase in central motor command, which enabled 

participants to exercise at the same relative workload after EIMD (Doncaster & Twist, 

2012). In the current study, if participants ran at the same pre-damage speed during 

the time-trial after EIMD, it is possible that an increase in central motor command 
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would have prevented them from completing the task. Therefore, due to the impaired 

muscle function after Bout 1, participants reduced their speed to a tolerable running 

speed to complete the 3 km. Accordingly, the preservation of muscle function after 

Bout 2 would have maintained central motor command and subsequently time-trial 

performance.                      

Alternatively, Marcora and Bosio (2007) hypothesised that the inflammatory 

response associated with EIMD would reduce running time-trial performance. 

Interleukin (IL)-1 is a primary mediator of the muscle’s inflammatory response to 

EIMD (Tidball, 1995) and once evident in the muscle is speculated to enter 

circulation where it can have a direct effect on the brain (Carmichael et al., 2005). 

Studies have shown that increased levels of IL-1 in the brain causes symptoms of 

fatigue in human participants (Rinehart et al., 1997; Omdal & Gunnarsson, 2005). 

Furthermore, Carmichael et al. (2005) observed that decrements in endurance 

performance after EIMD in mice coincided with elevations in IL-1 in the cortex and 

cerebellum regions of the brain. The attenuation of inflammatory markers has been 

observed after a repeated bout of muscle-damaging exercise (Pizza et al., 1996). 

Therefore, it is possible that an adaptation that prevented the disruption of muscle 

fibres and the subsequent inflammatory response reduced the negative effect of 

EIMD on time-trial performance.       

Despite this study being the first to show that the detrimental effects of EIMD on 

running time-trial performance are attenuated after repeated muscle-damaging 

exercise, the findings are limited to short-term (3 km) endurance performance and 

recreationally active participants. Given this, future research should consider 

investigating the effects of repeated bouts of muscle-damaging exercise during long 
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distance running (> 5 km) among elite endurance runners. It is accepted that there 

are further limitations with the time-trial protocol. Indeed, pacing strategy during the 

time-trial was not assessed and given that pacing strategy is altered as a result of 

EIMD (Burt & Twist, 2011); future research should investigate if changes to pacing 

during time-trial running are still evident after a repeated bout of EIMD. There are 

also concerns with the standard deviations of the end RPE data (see Figure 6.2 f). 

Indeed, for 3 of the 4 trials, the spread of the end RPE data are greater than 20. The 

RPE scale is relatively narrow (6 – 20), which might lend itself to such problems 

when treated as an interval level of measurement. Furthermore, session RPE could 

have been measured to provide an overall perception of effort during the time-trial, 

as opposed to asking participants to rate their RPE in the last 50 m of the time-trial.  

In conclusion, Chapter 5 demonstrated that the effects of EIMD on fixed-intensity 

endurance exercise are attenuated after a repeated bout of muscle-damaging 

exercise performed two weeks later. Accordingly, this study examined if a low 

volume bout of muscle-damaging exercise performed two weeks prior to a high 

volume bout of the same exercise provided the same protective effect on endurance 

running exercise. To address this aim, participants completed bouts of fixed-intensity 

and 3 km time-trial running before and 24 – 48 h EIMD comprising low volume or 

high volume squats. To ascertain the RBE, participants repeated the baseline 

measurements, the high volume squats and the same follow-up testing two weeks 

later. This investigation reaffirmed that EIMD causes alterations to fixed-intensity and 

time-trial running performance. However, a low volume bout of muscle-damaging 

exercise was shown to provide protection against a high volume bout performed two 

weeks later. Furthermore, in the days after this repeated bout of EIMD, alterations to 

fixed-intensity and 3 km time-trial running were attenuated. From a practical 
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standpoint, where endurance athletes are contemplating concurrent endurance and 

resistance exercise to enhance performance, this study shows that performing a 

lower volume of resistance exercise preconditions the muscle to withstand higher 

bouts of muscle-damaging exercise and its detrimental effects on fixed-intensity and 

time-trial running.   
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CHAPTER 7 

 

CONCLUSIONS 

 

7.1 Limitations 

7.1.1 Participant training status 

Since the participants recruited for each study comprised recreationally active young 

males whom engaged in 2 – 3 sessions of physical activity per week, the findings 

can only be extrapolated to those with matching physiological characteristics. Given 

that the responses to EIMD appear to be different between trained and untrained 

(Falvo et al., 2007; Hackney et al., 2008) and adults and children (Marginson et al., 

2005), the application of the findings presented in this thesis to other populations 

would be inappropriate.          

 

7.1.2 The lack of underpinning mechanisms to explain findings 

The significance of this thesis is limited by a lack of mechanistic experimentation to 

explain the effects of EIMD on endurance performance. Evidence that EIMD had 

occurred after squatting exercise was inferred using indirect markers of muscle 

damage. More complex histological analysis was required to confirm that damage 

has occurred at the site of the muscle. Furthermore, this thesis demonstrates that 

the effects of EIMD on endurance performance are attenuated after a repeated bout 

of muscle damage. However, the mechanisms used to explain this phenomenon 

have been based on neural and peripheral adaptations that have been confirmed or 

suggested in previous studies. Further blood, muscle biopsy and EMG analysis was 

needed to confirm the hypotheses put forward. Finally, some explanations of the 

findings have been attributed to concomitant alterations in other measured variables. 
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For example, increases in 2OV  during sub-maximal running post-EIMD were 

attributed to changes in stride length and frequency. Despite the changes in these 

variables showing good agreement, this does not imply cause-and-effect.    

 

7.1.3 Exercise-induced muscle damage protocol 

To incur EIMD, participants were required to perform squats at a resistance 

corresponding to 80% of body mass. Whilst, this resistance was effective in inducing 

symptoms associated with EIMD, there are limitations surrounding its relevance to 

resistance training. Indeed, a muscle-damaging protocol that incorporated a range of 

lower limb resistance exercises would have replicated typical resistance training; it is 

unlikely that individuals would perform 100 repetitions of one exercise. The protocol 

also failed to account for inter-individual differences. For example, a resistance 

corresponding to 80% body mass for one participant might have been heavy, but for 

another individual might have been moderate. Alternatively, a resistance comprising 

%MVC or %1RM would have accounted for any inter-individual responses.                 

 

7.2 Future directions 

7.2.1 Effects of muscle-damaging exercise on endurance exercise in the well-
trained 

Whilst a large amount of research examining the effects of EIMD on endurance 

performance has been conducted in recreationally active adults (Gleeson et al., 

1995; Braun & Dutto, 2003; Chen et al., 2007b; 2009; Davies et al., 2009; Twist & 

Eston, 2009; Burt & Twist, 2011), it is not known if the same responses are seen 

amongst the well-trained. Research has shown that responses to EIMD are 

dependent on training status. For example, Hackney et al. (2008) demonstrated that 

symptoms of EIMD were less pronounced in resistance trained males compared with 
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untrained males after muscle-damaging exercise. Therefore, an interesting future 

study would be to examine if the effects of EIMD on physiological, metabolic and 

perceptual responses during endurance exercise are similar between untrained and 

well-trained athletes.         

 

7.2.2 Effects of repeated bouts of muscle-damaging exercise on athletic 
performance 

Despite the well-established body of studies advocating that the effects of EIMD are 

negated after a repeated bout of muscle-damaging exercise, a common limitation 

among RBE research is its lack of application to athletic performance. As far as the 

author is aware, Chapters 5 and 6 describe the only two studies to examine the RBE 

in an athletic performance context. It was observed that the detrimental effects of 

muscle damage on sub-maximal and time-trial running performance are attenuated 

in the days after a repeated bout of EIMD. However, EIMD has been shown to limit 

power (Sargeant & Dolan, 1987; Byrne & Eston, 2002b; Twist & Eston, 2007), sprint 

performance (Twist & Eston, 2005; Highton et al., 2009) and agility (Highton et al., 

2009). Therefore, it remains to be seen if these alterations are still apparent in the 

days after a second bout of muscle-damaging exercise.  

Prior research has shown that the attenuation of symptoms associated with muscle 

damage after a repeated bout can last between two and six months (Byrnes et al., 

1985; Nosaka et al., 2001a). However, the length of protection on athletic 

performance is currently not known. Future research should look to investigate how 

long the RBE on endurance performance lasts.   
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7.2.3 Investigation into the cross-over effect on endurance exercise 

It appears that EIMD in one limb serves to protect against repeated muscle-

damaging exercise in the opposite limb. Referred to as the “cross-transfer effect”, 

two studies (Howatson & van Someren, 2007; Starbuck & Eston, 2012) have both 

shown that a prior bout of muscle-damaging exercise in one arm reduces the 

symptoms of EIMD when a repeated bout of muscle damage is performed in the 

opposite arm two weeks later. An interesting future investigation would be to 

investigate if the effects of EIMD on the physiological, metabolic and perceptual 

responses during single leg cycling protect against EIMD during subsequent single 

leg cycling performance in the opposite leg. A study of this kind could have 

implications for endurance athletes with a single limb injury. 

  

7.2.4 Nutritional strategies to alleviate the effects of exercise-induced muscle 
damage on endurance exercise  

The results of this thesis clearly demonstrate that symptoms of EIMD occur after an 

unaccustomed bout of heavy squatting exercise. Furthermore, these symptoms were 

shown to impair sub-maximal and time-trial endurance performance. However, 

nutritional interventions that alleviate the symptoms of EIMD have long been of 

interest to researchers. For example, milk (Cockburn et al., 2012), branched chain 

amino acids (Howatson et al., 2012) and cherry juice (Howatson et al., 2010; Bowtell 

et al., 2011) have been found to reduce muscle soreness, inflammation and CK and 

recover muscle function after EIMD. However, whether any of these nutritional aids 

can attenuate the detrimental effects of muscle damage on endurance performance 

remains to be elucidated.  
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7.3 Main findings 

7.3.1  The effects of exercise mode on the physiological responses to 
exercise-induced muscle damage 

Despite a different time course, sub-maximal 2OV  is increased after muscle 

damaging exercise during both cycling (Chapter 3) and running (Chapters 3 – 6). 

Across each study, 2OV  during sub-maximal running was elevated at 24 and 48 h 

after EIMD, whilst cycling 2OV  (in Chapter 3) was only increased after 48 h. The 

increased 2OV  response during sub-maximal running is attributed to changes in 

running stride pattern (as shown in Chapters 3, 5 and 6) and possibly a decreased 

ability to use the SSC (as shown in Chapter 5). The unexpected increase in cycling 

2OV  might be due the increase in motor unit recruitment in order to produce the 

same pre-damage force. Indeed, Chapter 6 demonstrates that increases in motor 

unit recruitment (measured using EMG) occur alongside increases in 2OV  during 

sub-maximal endurance exercise after EIMD.     

The findings of this thesis also extend the growing body of research that 

demonstrates that EV  during sub-maximal endurance exercise is increased after 

EIMD. Across each of the four studies, EV  was elevated during sub-maximal 

endurance exercise after muscle-damaging exercise. Moreover, this finding occurred 

independent of the mode of endurance exercise investigated. However, as with 2OV  

response, EV  during sub-maximal running was increased at 24 and 48 h after EIMD 

(Chapters 3 – 6), whilst EV  during sub-maximal cycling was only elevated at 48 h 

(Chapter 3). It is proposed that damage to the musculature provokes a discharge 

from Group III and IV afferent fibres resulting in the increase in  during sub-

maximal endurance exercise. The impaired ability to use the SSC after EIMD is 

EV
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thought to be due to the activation of afferent fibres (Avela et al., 1999). Thus, the 

activation of Group III and IV afferents inhibiting the SSC as a result of EIMD might 

have caused the earlier elevation in EV  during running. Muscle soreness also 

provokes an increased EV  response through activating nociceptive muscle afferents 

(Duranti et al., 1991). Thus, the heightened muscle soreness 48 h after EIMD might 

have been responsible for the increase in EV  during cycling.    

    

7.3.2 The effects of muscle damage on resting metabolic rate, exercise 
metabolism and excess post-exercise oxygen consumption 

The effects of EIMD have been shown to increase oxidative metabolism both before 

(rest) and during endurance exercise. However, its effect on recovery (EPOC) from 

endurance exercise had not been previously investigated. In the presence of EIMD, 

2OV  was increased before (resting metabolic rate), during and in the 30 minutes 

after sub-maximal running (EPOC). Resting metabolic rate was suggested to be 

elevated due to the increased energy required for the breakdown and repair of 

damaged muscle fibres. The increased oxygen cost during sub-maximal running 

informs that for a given exercise intensity participants are exercising harder whilst 

muscle damaged. Indeed, the 4 – 5% increase in 2OV  during sub-maximal running 

(as shown in Chapter 4) indicated that participants were exercising at 89 – 90% 

max2OV , as opposed to 85% max2OV  before EIMD. The increase in 2OV  during running 

post-EIMD is also likely to be responsible for the elevation in EPOC. Chapter 4 

examined the effect of EIMD on EPOC after endurance exercise, whereby total 2OV  

was increased by 4 – 6% during recovery from sub-maximal running after EIMD. 

Other mechanisms associated with the increase in EPOC include elevations in blood 

lactate concentration, minute ventilation, heart rate and resting metabolic rate. Blood 
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lactate at the end of sub-maximal running was 6 – 14% higher in the presence of 

muscle damage and the increase in EPOC might have been required to reconvert 

lactate to glycogen (Gaesser & Brookes, 1984; Bangsbo et al., 1991). Alternatively, 

EPOC might have increased to facilitate the elevated EV  response due to the 

activation of Group III and IV afferent fibres after muscle damage. Recovery heart 

rate was also increased following sub-maximal running post-EIMD and stress 

associated with the movement of sore muscles might have secreted catecholamines 

causing the increase in EPOC (Moreau et al., 1995). Moreover, the 11.8 – 13.2% 

increase in resting metabolic rate after EIMD might have had a residual effect on 

EPOC after the sub-maximal running exercise. 

 

7.3.3 The effects of repeated bouts of muscle-damaging exercise on 
 endurance performance 

It is well documented that the symptoms of muscle damage are reduced after a 

repeated bout of EIMD. However, it was not known if this protective adaptation was 

transferable to endurance performance. Physiological, metabolic, perceptual and 

kinematic responses during sub-maximal and time-trial running were measured 

before and after (24 – 48 h) an initial bout of EIMD. Two weeks later, when 

symptoms associated with Bout 1 had disappeared; responses during the same sub-

maximal exercise were measured again after a repeated bout of the same muscle-

damaging exercise. The results informed that while novel muscle-damaging exercise 

was detrimental to endurance performance, the muscle underwent an adaptation 

that attenuated these changes in the days after the repeated bout. This protective 

adaptation was also shown after a low volume bout of muscle-damaging exercise. 

Indeed, a bout of low volume EIMD (50 squats at 80% body mass) protected the 
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muscle against damage after a high volume bout (100 squats at 80% body mass) 

performed two weeks later. Furthermore, Chapter 6 shows that the protective effect 

of low volume muscle-damaging exercise against high volume EIMD is transferable 

to fixed-intensity and time-trial running. It is posited that an interaction of neural and 

peripheral adaptations occurred to protect the muscle from the effects of EIMD on 

endurance performance. 

  

7.4 Summary 

The overall aim of this thesis was to investigate the effects of EIMD on endurance 

performance. This objective was addressed through four empirical studies, all of 

which contribute to the existing body of research into EIMD. For the first time, 

physiological, metabolic and perceptual responses to different modes of endurance 

exercise were examined after muscle-damaging exercise. While, responses were 

altered in both cycling and running as a result of EIMD, the time course of these 

responses were mode specific with running impacted at 24 and 48 h after EIMD and 

cycling at only 48 h. Previous research and results from Chapter 3 inform that 

oxidative metabolism, in the presence of EIMD, is increased at rest and during 

endurance exercise. Chapter 4 extends these findings to confirm that EIMD also 

increases oxygen uptake during recovery from endurance exercise. It has long been 

shown that symptoms of EIMD are reduced after a repeated bout of muscle-

damaging exercise. For the first time, alterations to physiological, metabolic, 

perceptual and kinematic responses during sub-maximal running after an initial bout 

of EIMD are attenuated in the days after a repeated bout of EIMD. Furthermore, in 

Chapter 6, these findings were extended to running time-trial performance. Chapter 

6 also demonstrated that performing an initial bout of low volume EIMD protected the 
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muscle against a repeated bout of high volume EIMD and the detrimental effects on 

endurance performance. Finally, from a practical standpoint, individuals 

contemplating resistance exercise for the first time should be considerate of the 

consequences EIMD can have on endurance exercise. Thereafter, as the latter two 

studies demonstrate, the muscle will be preconditioned to withstand repeated bouts 

of muscle-damaging exercise and its negative effects on endurance performance.  
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APPENDIX 1 

Participant information sheet (taken from study 4) 

Title of the study: Does a lower volume of muscle-damaging exercise confer 
protection against a higher volume of muscle-damaging exercise and the detrimental 
effects on endurance running? 

You are being invited to take part in a research study. Before you decide, it is 
important for you to understand why the research is being done and what it will 
involve. Please take time to read the following information carefully and discuss it 
with others if you wish. Please feel free to ask the lead researcher if there is anything 
that is not clear or if you would like more information. Please take your time to decide 
whether or not you wish to take part.  
 

Thank you for reading this. 

What is the purpose of this study? 
The aims of this study are to investigate whether a lower volume of muscle-
damaging exercise can protect the muscle against a higher volume of muscle-
damaging exercise and the detrimental effects exercise-induced muscle damage 
(EIMD) has on endurance running performance. 
 

Why have I been chosen? 
You have been asked to take part because you are from an endurance trained 
population who has had limited experience of lower limb resistance training. 
 

Do I have to take part?  
It is up to you to decide whether or not to take part. If you decide to take part you will 
be given this information sheet to keep and be asked to sign a consent form. You are 
then still free to withdraw at any time, without giving a reason.  
 

What will happen to me if I take part? 
You will be required to attend 8 different exercise trials over a 5-week period. The 
first visit will require you to complete a maximal lactate threshold test in which you 
will be instructed to run to exhaustion. Additionally, a habituation session to 
familiarise you with the measurements of leg strength, perceived muscle soreness, 
and time-trial running will also take place. Forty eight hours later, you will complete a 
leg strength test, from which the electrical activity from two muscles in your 
quadricep will be recorded (Visit 2). Upon completion, you will then be randomly 
assigned to either a low volume or high volume muscle damage group. A week later 
you will return to complete baseline measurements (visit 3), which will consist a 5-
minute bout of moderate intensity running, a 3 km running time-trial, measurements 
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of leg strength, perceived muscle soreness, a finger-prick sample of blood for 
creatine kinase content, followed by either a low (5 sets of 10 squats) or high (10 
sets of 10 squats) volume bout of resistance exercise designed to develop 
symptoms of muscle damage. You will then return to the laboratory 24 (visit 4) and 
48 hours (visit 5) later to complete the same procedures outlined at baseline, in the 
same order (except for the time-trial at 24 hours). Approximatly two weeks later, 
when symptoms associated with the initial bout of muscle-damaging exercise have 
dissipated, you will repeat all testing procedures outlined at baseline, the high 
volume bout of muscle-damaging exercise (visit 6) and the same follow-up testing at 
24 (visit 7) and 48 hours (visit 8). 

You will be required not to consume food or drink in the 2 hours prior to any exercise 
testing, and not to take part in strenuous exercise in the 24 hour period before any 
exercise testing. In addition no alcohol must be consumed in the 24 hour period 
before any exercise testing.  

 
What are the possible disadvantages and risks of taking part?  
You will experience a short bout of muscle soreness as a consequence of the 
resistance exercise. This will be most evident approximately 48 hours following the 
muscle-damaging exercise, after which symptoms will ease and will have 
disappeared by approximately one week later. These symptoms are common in all 
exercising populations, particularly following a bout of unaccustomed exercise and 
have no lasting effect (please read the 'protocol for the management of exercise-
induced muscle damage' leaflet for further advice on how to manage your muscle 
soreness). 
 
 
What are the possible benefits of taking part?            
Participation in this study includes the direct assessment of your aerobic fitness 
level, which you can subsequently use to prescribe intensities for training. 
Additionally, you should be protected from symptoms of muscle damage for 
approximately six months following other subsequent bouts of muscle-damaging 
exercise.    
 

What if something goes wrong?  
If you wish to complain or have any concerns about any aspect of the way you have 
been approached or treated during the course of this study, please contact Professor 
Sarah Andrew, Dean of the Faculty of Applied Sciences, University of Chester, 
Parkgate Road, Chester, CH1 4BJ, 01244  513055. 

 
Will my taking part in the study be kept confidential?  
All information which is collected about you during the course of the research will be 
kept strictly confidential, only the lead researcher and his supervisors will have 
access to such information. All of your raw data will be stored in a locked filing 
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cabinet which will only be accessed by the lead researcher. All electronic formats of 
the data will be coded to ensure your anomity.  
 
 
What will happen to the results of the research study?  
The results will be written up into a report as part of the lead researcher’s PhD 
thesis. Individuals who participate will not be identified in any subsequent report or 
publication. 
 
 
Who is organising and funding the research?  
The Department of Sport and Exercise Sciences is funding the research project. 
Dean Burt, a PhD student in the Department of Sport and Exercise Sciences at the 
University of Chester will be involved in organising and carrying out the study.  
 
 
Who may I contact for further information?  
If you would like more information about the research before you decide to take part, 
please contact: 
 
Dean Burt at  
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APPENDIX 2 

Pre-test Health Questionnaire                                                                
(Please note that this information will remain confidential) 

Name:..........................................................   Date of Birth:................   Age:................ 

Resting Blood Pressure (mmHg)........../..........       Resting Heart Rate (b.min-1).......... 

Please answer these questions truthfully and completely. The purpose of this 
questionnaire is to ensure that you are fit and healthy enough to participate in this 
research project. 

                                                                                                                    YES    NO 
1. Have you ever experienced a serious illness or accident?                        □       □          
If yes, please provide details. 

....................................................................................................................................... 

                 YES     NO 
2. Have you consulted your doctor in the last 6 months?               □          □       
If yes, please provide details 

....................................................................................................................................... 

3. Do you suffer, or have you suffered from any of the following:    
       YES NO                                                
Asthma          □       □                                                  
Diabetes                                                                □       □                                                 
Bronchitis          □       □                                             
Epilepsy          □       □                                                            
High blood pressure        □       □    
                                                                               YES NO     
4. Is there a history of heart disease in your family?     □   □           

                  YES NO       
5. As far as you are aware are you suffering from                                         □   □                      
any infectious skin diseases or blood infections i.e., Hepatitis B, HIV?                         
If yes, please provide details. 

....................................................................................................................................... 

                 YES       NO 
6. Are you currently taking any medication?                  □           □     
If yes, please provide details  

 ......................................................................................................................................          
                 YES NO                      
7. Are you suffering from any disease that inhibits the sweating process?  □            □              
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                 YES NO     
8. Is there anything to your knowledge that may prevent you from           □           □                        
participating in the testing that has been outlined to you?                                                  
If yes, please provide details. 

.......................................................................................................................................  
Your recent condition               YES NO                      
Have you had any kind of illness or infection in the last 2 weeks?              □            □             

 Evaluate your diet over the last 2 days.   POOR  AVERAGE  GOOD  EXCELLENT             

                                                                                                                  YES NO             
Have you consumed alcohol in the last 24 hours?            □            □                
                                               
                                                       YES NO                      
Have you eaten in the last 2 hours?             □             □         
If yes, please provide details 
.......................................................................................................................................                 
                                                                                                                 YES NO                
Are you currently engaging in regular physical activity?                                      
If yes, please describe below 
....................................................................................................................................... 
                                                                                                                 YES NO                      
Have you ever done lower body resistance exercise?                                              
If yes, please provide details on the last time? 

…………………………………………………………………………………………………..                      
               YES         NO 
Have you exercised in the last 2 days?                                                                      
If yes, please describe below 

…………………………………………………………………………………………………. 

Persons will not be permitted to take part in any experimental testing if they: 

Have a known history of medical disorders (i.e. hypertension, heart or lung disease)       
Have a fever, suffer from fainting or dizzy spells                                                           
Are currently unable to train because of a joint or muscle injury               
Have had any thermoregulatory disorder                                                                       
Have gastrointestinal disorder                                                                                            
Have a history of infectious diseases (i.e. HIV or Hepatitis B)          
Have, if pertinent to the study, a known history of rectal bleeding, anal fissures, 
haemorrhoids, or any other similar rectal disorder. 

My responses to the above questions are true to the best of my knowledge and I am 
assured that they will be held in the strictest confidence. 
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Name: (Participant).................................................................................Date:.............. 

Signed: (Participant)...............................................................................                               

 

Name: (Researcher)...............................................................................Date:............... 

Signed (Researcher):............................................................................. 
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APPENDIX 3 

Informed consent form 

Title of project: Does a lower volume of muscle-damaging exercise confer 
protection against a higher volume of muscle-damaging exercise and the detrimental 
effects on endurance running? 

Name of researcher: Dean Burt 

I have read the Information Sheet concerning this project and understand what it is 
about.  All my questions have been answered to my satisfaction.  I understand that I 
am free to request further information at any stage. 

I know that:- 

1. My participation in the project is entirely voluntary; 
 

2. I am free to withdraw from the project at any time without any disadvantage; 
 

3. The data will be destroyed at the conclusion of the project but any raw data on 
which the results of the project depend will be retained in secure storage and 
coded to endure anonymity; 

 
4. I am aware that I may experience a short, bout of mild muscle soreness 

following the squatting exercise protocol. 
 

5. The results of the project may be published but my anonymity will be 
preserved. 

 
 
I agree to take part in this project. 
 
 
..........................................................................   Date …../…../….. 
(Signature of participant)       
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APPENDIX 4 

Protocol for the management of exercise-induced muscle damage 

It is likely that you may experience a short bout of muscle soreness during your 
participation in this study. This will be most evident approximately two days following 
the resistance exercise, after which symptoms of soreness will subside and will have 
disappeared after one week. Please note that this response is quite normal in people 
who commence new exercise routines or suddenly increase the volume of intensity 
of their training.  

Although you are asked to refrain from using any methods to alleviate the symptoms 
of muscle damage, the following details may be of use in the days following muscle-
damaging exercise to assist in the management of the symptoms.  

 

1) Avoid participation in strenuous exercise, other than that required as part 
of this study. 

 
2) Immediately following and at 24 and 48 hours following the resistance 

exercise, the muscles that have been damaged are likely to be at their 
sorest and weakest (please note that this will be about 80-85% of their 
normal strength). You should be mindful that activities requiring use of the 
legs (e.g. walking, running, descending/climbing stairs) may be slightly 
more difficult, but not to the point that will affect your everyday activities. 

 
3) Avoid the use of non-steroidal anti-inflammatory medication (e.g. 

ibuprofen), ice treatment or compression garments, this will not only 
invalidate the study but there is also no clear evidence that the use of such 
interventions can speed the recovery process.  
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APPENDIX 5  
 

Ethical approval for Study 1 
 

University of Chester 
Faculty of Applied and Health Sciences 

Research Ethics Committee 
 
Dean Burt 
Sport and Exercise Science Department CTW 507 
University of Chester 
Parkgate Road 
Chester 
CH1 4BJ 
 
2nd July 2009 
 
Dear Dean,  

 
Study title:  The effects of exercise-induced muscle damage on fixed-intensity 
running and cycling performance.    

FREC reference:  318/09/DB/SES   

Version number:  1   

Thank you for sending the above-named application to the Faculty of Applied and 
Health Sciences Research Ethics Committee for review. 

The application has been considered by the Faculty Research Ethics Committee. 

On behalf of the Committee, I am pleased to confirm a favourable ethical opinion for 
the above research on the basis described in the application form and supporting 
documentation. 

The favourable opinion is given provided that you comply with the conditions set out 
in the attached document. You are advised to study the conditions carefully. 

The final list of documents reviewed and approved by the Committee is as follows: 

 

Document Version Date 

Response to the Committee 1 June 2009 

Pre-test Health Questionnaire 2 June 2009 

Informed Consent form 2 June 2009 
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With the Committee’s best wishes for the success of this project.  

Yours sincerely, 

Mohammed Saeed 

Chair, Faculty Research Ethics Committee 

Enclosures Standard conditions of approval.  
 
c.c. Supervisor  

FREC Representative 
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Ethical approval for Studies 2 and 3 
 

University of Chester 
Faculty of Applied and Health Sciences 

Research Ethics Committee 
 

Dean Burt 
c/o Department of Sport and Exercise Sciences 
Faculty of Applied and Health Sciences 
University of Chester 
Chester campus 
 
29 April 2010 
 
Dear Dean 

Study title: The effects of repeated bouts of muscle damaging 
exercise on sub-maximal endurance performance and 
post-exercise oxygen consumption 

FREC reference: 400/10/DB/SES 

Version number: 2 

Thank you for sending the above-named application to the Faculty of Applied and 
Health Sciences Research Ethics Committee for review. 

The application has been considered on behalf of the Committee by Mohammed 
Saeed as Lead Reviewer and reported to the Faculty Research Ethics Committee. 

On behalf of the Committee, I am pleased to confirm a favourable ethical opinion for 
the above research on the basis described in the application form and supporting 
documentation. 

The favourable opinion is given provided that you comply with the conditions set out 
in the attached document. You are advised to study the conditions carefully. 

The final list of documents reviewed and approved by the Committee is as follows: 

Document Version Date 

Application Form 1 March 2010 

List of references 1 March 2010 

Summary CV of applicant - March 2010 

Participant information sheet 2 April 2010 

Consent form 1 March 2010 
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Protocol for managing DOMS 1 March 2010 

Risk assessment forms 1 March 2010 

Pre-test health questionnaire 2 April 2010 

Schematic of research 2 April 2010 

Response to FREC request for clarification/additional 
information 

1 April 2010 

 

With the Committee’s best wishes for the success of this project.  

Yours sincerely, 

 
 
 
    
Prof. Cynthia Burek 

Chair, Faculty Research Ethics Committee 

Enclosures Standard conditions of approval.  
 

c.c. Supervisor 
FREC Representative 
 

 

 

 

 

 

 

 

 

 

 

 
Ethical approval for Study 4 
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            Faculty of Applied Sciences 
Research Ethics Committee 

Tel   01244 511740                           
Fax   01244 511302 
frec@chester.ac.uk 

Dean Burt 
Department of Sport and Exercise Science 
University of Chester 
Parkgate Road 
Chester 
CH1 4BJ 
 
10th August 2011 
 
Dear Dean, 

Study title:  Does a lower volume of muscle-damaging exercise confer 
protection against a higher volume of muscle-damaging exercise 
and the detrimental effects on endurance running?  

FREC reference: 597/11/DB/SES 

Version number: 1 

Thank you for sending your application to the Faculty of Applied Sciences Research Ethics 
Committee for review. 

I am pleased to confirm ethical approval for the above research, provided that you comply 
with the conditions set out in the attached document, and adhere to the processes described 
in your application form and supporting documentation.   

The final list of documents reviewed and approved by the Committee is as follows: 

Document Version Date 

Application Form 1 July 2011

Appendix 1 – List of References 1 July 2011

Appendix 2 – C.V. for Lead Researcher 1 July 2011

Appendix 3 – Participant Information Sheet 1 July 2011

Appendix 4 – Participant Consent Form 1 July 2011

Appendix 5 – Information Sheet – Protocol for the management 
of exercise-induced muscle damage. 

1 July 2011

Appendix 6 – Risk Assessment Form 1 July 2011
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Appendix 7 – Pre-test Health Questionnaire 1 July 2011

 

With the Committee’s best wishes for the success of this project.  

Yours sincerely, 

 
    
Simon Alford 

Chair, Faculty Research Ethics Committee 
 
Enclosures: Standard conditions of approval.  
 
C.c. Supervisor 

FREC Representative 
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APPENDIX 6 

Tukey test modified for repeated measures 

The post hoc Tukey test modified for repeated measures is described by Stevens 
(2002) and has been used successfully in previous research to determine where 
significant differences occurred before and after muscle-damaging exercise (Davies 
et al., 2009). 
 
In brief, two means were declared significantly different at the 0.05 alpha level if the 
following occurred: 
 
Mean 1 – Mean 2 > q √MSres ⁄ n 
 
where q is the studentized range statistic (computed from the number of means 
being compared and the error degrees of freedom), MSres is the mean square error 
and n is the number of participants.     
 
A working example for muscle soreness: 
 
q = 4.56 (based on number of means compared being 6 and the error degrees of 
freedom being 16), MSres = 0.679 (based on the Mean Square error value), n = 9 
(number of participants). 
 
4.56 √0.679/9 = 1.25 
 
From this, any two means with a difference greater than 1.25 were significantly 
different at the 0.05 alpha level. Therefore, as shown in the table below, there is a 
significant difference within each bout (i.e. Baseline vs 24h; Baseline vs 48h) and 
between each bout (i.e. Bout 1 24h vs Bout 2 24h; Bout 1 48h vs Bout 2 48h).  
 
Table. Muscle soreness responses after repeated bouts of muscle damage 
 
Bout 1 Bout 2 
Baseline 24 h  48 h Baseline  24 h  48 h 
0.2 ±  0.5 5.5 ± 1.6 6.2 ± 2.1 0.0 ± 0.1 2.1 ± 1.0 1.3 ± 0.9 
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APPENDIX 7 

RATING OF PERCEIVED EXERTION 

 

6  NO EXERTION AT ALL 

7 
EXTREMELY LIGHT 

8   

9  VERY LIGHT 

10 

11  LIGHT 

12 

13  SOMEWHAT HARD 

14 

15  HARD (HEAVY) 

16 

17  VERY HARD 

18   

19  EXTREMELY HARD 

20  MAXIMAL EXERTION 

Borg RPE scale (Borg, 1998)  
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Instructions for Borg’s RPE scale 

Whilst exercising, I want you to rate your perceived level of exertion. This rating 

should reflect how heavy and strenuous you perceive the exercise to be. Your 

perception of exertion should combine all sensations of strain and fatigue felt in your 

muscles and any feelings of breathlessness or aches in your chest. Try not to base 

your perceived exertion on any single factor, such as feelings of breathlessness, and 

instead provide an overall feeling of exertion that encompasses all sensations and 

feelings experienced during the exercise. 

 

Looking at the rating scale, you will notice that it ranges from 6 to 20, where 6 

corresponds to ‘no exertion at all’ and 20 refers to ‘maximal exertion’. When required 

to do so, look at the scale and the corresponding written cues and point to a number 

that best describes your rating of perceived exertion. Please try to rate your feelings 

of exertion as honestly as possible, without thinking about what the actual physical 

load is. Remember it is your own feelings of exertion that are important, not how it 

compares to others. Please see below for example definitions of the RPE scale. 

 

9 refers to ‘very light’ exercise. For a healthy individual, it is like walking slowly 
at their own pace for some minutes 

13 on the RPE scale is ‘somewhat hard’ exercise, but still feels OK to continue. 

17 ‘very hard’ refers to very strenuous exercise. A healthy individual can still 
exercise, but they really have to push themselves. The exercise feels very 
heavy and the individual is very tired. 

19 refers to ‘extremely hard’ exercise. For most individuals, this is the most 
strenuous exercise they have ever experienced.   

 

Taken and adapted from Borg (1998)
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APPENDIX 8 

 

VISUAL ANALOGUE SCALE 
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Instructions for rating muscle soreness using the visual analogue scale 

After squatting (with hands on your hips) to an approximate knee angle of 90 

degrees, you will be asked to rate the perceived muscle soreness experienced in 

your quadriceps by moving a marker along a visual analogue scale (VAS).  

The VAS is numbered from 0 to 10 (on the reverse of the scale, unseen by you), 

which correspond to three written cues. For instance, 0 corresponds to ‘no muscle 

soreness’, 5 signifies that the ‘muscles is sore up movement’ and 10 indicates that 

the ‘muscle is too sore to move’. When required to do so, look at the VAS and move 

the marker along the continuum to a written cue that best describes your rating of 

perceived muscle soreness. Please rate your perception of muscle soreness as 

honestly as possible. Remember, this raiting should reflect the overall pain felt in 

your quadriceps after squatting.    


