23 research outputs found

    A next-generation sequencing method for overcoming the multiple gene copy problem in polyploid phylogenetics, applied to Poa grasses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Polyploidy is important from a phylogenetic perspective because of its immense past impact on evolution and its potential future impact on diversification, survival and adaptation, especially in plants. Molecular population genetics studies of polyploid organisms have been difficult because of problems in sequencing multiple-copy nuclear genes using Sanger sequencing. This paper describes a method for sequencing a barcoded mixture of targeted gene regions using next-generation sequencing methods to overcome these problems.</p> <p>Results</p> <p>Using 64 3-bp barcodes, we successfully sequenced three chloroplast and two nuclear gene regions (each of which contained two gene copies with up to two alleles per individual) in a total of 60 individuals across 11 species of Australian <it>Poa </it>grasses. This method had high replicability, a low sequencing error rate (after appropriate quality control) and a low rate of missing data. Eighty-eight percent of the 320 gene/individual combinations produced sequence reads, and >80% of individuals produced sufficient reads to detect all four possible nuclear alleles of the homeologous nuclear loci with 95% probability.</p> <p>We applied this method to a group of sympatric Australian alpine <it>Poa </it>species, which we discovered to share an allopolyploid ancestor with a group of American <it>Poa </it>species. All markers revealed extensive allele sharing among the Australian species and so we recommend that the current taxonomy be re-examined. We also detected hypermutation in the <it>trn</it>H-<it>psb</it>A marker, suggesting it should not be used as a land plant barcode region. Some markers indicated differentiation between Tasmanian and mainland samples. Significant positive spatial genetic structure was detected at <100 km with chloroplast but not nuclear markers, which may be a result of restricted seed flow and long-distance pollen flow in this wind-pollinated group.</p> <p>Conclusions</p> <p>Our results demonstrate that 454 sequencing of barcoded amplicon mixtures can be used to reliably sample all alleles of homeologous loci in polyploid species and successfully investigate phylogenetic relationships among species, as well as to investigate phylogeographic hypotheses. This next-generation sequencing method is more affordable than and at least as reliable as bacterial cloning. It could be applied to any experiment involving sequencing of amplicon mixtures.</p

    Using next-generation sequencing for molecular reconstruction of past arctic vegetation and climate

    No full text
    Palaeoenvironments and former climates are typically inferred from pollen and macrofossil records. This approach is time-consuming and suffers from low taxonomic resolution and biased taxon sampling. Here, we test an alternative DNA-based approach utilizing the P6 loop in the chloroplast trnL (UAA) intron; a short (13–158 bp) and variable region with highly conserved flanking sequences. For taxonomic reference, a whole trnL intron sequence database was constructed from recently collected material of 842 species, representing all widespread and/or ecologically important taxa of the species-poor arctic flora. The P6 loop alone allowed identification of all families, most genera (&gt;75%) and one-third of the species, thus providing much higher taxonomic resolution than pollen records. The suitability of the P6 loop for analysis of samples containing degraded ancient DNA from a mixture of species is demonstrated by high-throughput parallel pyrosequencing of permafrost-preserved DNA and reconstruction of two plant communities from the last glacial period. Our approach opens new possibilities for DNA-based assessment of ancient as well as modern biodiversity of many groups of organisms using environmental samples.<br/

    Maintaining ecosystem properties after loss of ash in Great Britain

    No full text
    1.Acute outbreaks of pests and disease are increasingly affecting tree populations around the world, causing widespread ecological effects. In Britain, ash dieback Hymenoscyphus fraxineus (Baral et al.) has severe impacts on common ash (Fraxinus excelsior L.) populations, and the emerald ash borer (Agrilus planipennis Fairmaire) is likely to add to the impact in future. This will cause significant changes to the character and functioning of many ecosystems. However, the nature of these changes and the best approach for conserving ecosystems after ash loss are not clear. 2.We present a method to locate those areas most ecologically vulnerable to loss of a major tree species (common ash) and identify the resultant damage to distinctive ecosystem properties. This method uses the functional traits of species and their distributions to map the potential degree of change in traits across space and recommend management approaches to reduce the change. An analytic hierarchy process is used to score traits according to ecological importance. 3.Our results indicate that in some areas of Britain, provision of ash‐associated traits could be reduced by over 50% if all ash is lost. Certain woodland types, and trees outside woodlands, may be especially vulnerable to ash loss. However, compensatory growth by other species could halve this impact in the longer term. 4.We offer management guidance for reducing ecosystem vulnerability to ash loss, including recommending appropriate alternative tree species to encourage through planting or management in particular areas and woodland types. 5.Synthesis and applications. The method described in this paper allows spatially explicit assessment of species traits to be used in the restoration of ecosystems for the first time. We offer practical recommendations for the ash dieback outbreak in Britain to help conserve functional traits in ecosystems affected by the loss of ash. This technique is widely applicable to a range of restoration and conservation scenarios and represents a step forward in the use of functional traits in conservation

    High‐throughput identification and diagnostics of pathogens and pests: Overview and practical recommendations

    No full text
    High-throughput identification technologies provide efficient tools for understanding the ecology and functioning of microorganisms. Yet, these methods have been only rarely used for monitoring and testing ecological hypotheses in plant pathogens and pests in spite of their immense importance in agriculture, forestry and plant community dynamics. The main objectives of this manuscript are the following: (a) to provide a comprehensive overview about the state-of-the-art high-throughput quantification and molecular identification methods used to address population dynamics, community ecology and host associations of microorganisms, with a specific focus on antagonists such as pathogens, viruses and pests; (b) to compile available information and provide recommendations about specific protocols and workable primers for bacteria, fungi, oomycetes and insect pests; and (c) to provide examples of novel methods used in other microbiological disciplines that are of great potential use for testing specific biological hypotheses related to pathology. Finally, we evaluate the overall perspectives of the state-of-the-art and still evolving methods for diagnostics and population- and community-level ecological research of pathogens and pests

    Data from: DNA from soil mirrors plant taxonomic and growth form diversity

    No full text
    Ecosystems across the globe are threatened by climate change and human activities. New rapid survey approaches for monitoring biodiversity would greatly advance assessment and understanding of these threats. Taking advantage of next-generation DNA sequencing, we tested an approach we call metabarcoding: high-throughput and simultaneous taxa identification based on a very short (usually less than 100 base pairs) but informative DNA fragment. Short DNA fragments allow the use of degraded DNA from environmental samples. All analyses included amplification using plant-specific versatile primers, sequencing and estimation of taxonomic diversity. We tested in three steps whether degraded DNA from dead material in soil has the potential of efficiently assessing biodiversity in different biomes. First, soil DNA from eight boreal plant communities located in two different vegetation types (meadow and heath) was amplified. Plant diversity detected from boreal soil was highly consistent with plant functional and structural diversity estimated from conventional above-ground surveys. Second, we assessed DNA persistence using samples from formerly cultivated soils in temperate environments. We found that number of crop DNA sequences retrieved strongly varied with years since last cultivation, and crop sequences were absent from nearby, uncultivated plots. Third, we assessed the universal applicability of DNA metabarcoding using soil samples from tropical environments: a large proportion of species and families from the study site was efficiently recovered. The results open unprecedented opportunities for large-scale DNA-based biodiversity studies across a range of taxonomic groups using standardized metabarcoding approaches

    Data from: DNA from soil mirrors plant taxonomic and growth form diversity

    No full text
    Ecosystems across the globe are threatened by climate change and human activities. New rapid survey approaches for monitoring biodiversity would greatly advance assessment and understanding of these threats. Taking advantage of next-generation DNA sequencing, we tested an approach we call metabarcoding: high-throughput and simultaneous taxa identification based on a very short (usually less than 100 base pairs) but informative DNA fragment. Short DNA fragments allow the use of degraded DNA from environmental samples. All analyses included amplification using plant-specific versatile primers, sequencing and estimation of taxonomic diversity. We tested in three steps whether degraded DNA from dead material in soil has the potential of efficiently assessing biodiversity in different biomes. First, soil DNA from eight boreal plant communities located in two different vegetation types (meadow and heath) was amplified. Plant diversity detected from boreal soil was highly consistent with plant functional and structural diversity estimated from conventional above-ground surveys. Second, we assessed DNA persistence using samples from formerly cultivated soils in temperate environments. We found that number of crop DNA sequences retrieved strongly varied with years since last cultivation, and crop sequences were absent from nearby, uncultivated plots. Third, we assessed the universal applicability of DNA metabarcoding using soil samples from tropical environments: a large proportion of species and families from the study site was efficiently recovered. The results open unprecedented opportunities for large-scale DNA-based biodiversity studies across a range of taxonomic groups using standardized metabarcoding approaches.,Yoccoz_et_al_Table_S1Supplementary Table with description of the results obtained for the Boreal site.Yoccoz_et_al_Table_S2Supplementary Table showing the results obtained for the Tropical site.Boreal_sequence_datafasta file.Tropical_sequence_dataFasta file.Temperate_sequence_dataFasta file.Temperate_sequence_data_filteredTab file.,</span

    Data from: DNA from soil mirrors plant taxonomic and growth form diversity

    No full text
    Ecosystems across the globe are threatened by climate change and human activities. New rapid survey approaches for monitoring biodiversity would greatly advance assessment and understanding of these threats. Taking advantage of next-generation DNA sequencing, we tested an approach we call metabarcoding: high-throughput and simultaneous taxa identification based on a very short (usually less than 100 base pairs) but informative DNA fragment. Short DNA fragments allow the use of degraded DNA from environmental samples. All analyses included amplification using plant-specific versatile primers, sequencing and estimation of taxonomic diversity. We tested in three steps whether degraded DNA from dead material in soil has the potential of efficiently assessing biodiversity in different biomes. First, soil DNA from eight boreal plant communities located in two different vegetation types (meadow and heath) was amplified. Plant diversity detected from boreal soil was highly consistent with plant functional and structural diversity estimated from conventional above-ground surveys. Second, we assessed DNA persistence using samples from formerly cultivated soils in temperate environments. We found that number of crop DNA sequences retrieved strongly varied with years since last cultivation, and crop sequences were absent from nearby, uncultivated plots. Third, we assessed the universal applicability of DNA metabarcoding using soil samples from tropical environments: a large proportion of species and families from the study site was efficiently recovered. The results open unprecedented opportunities for large-scale DNA-based biodiversity studies across a range of taxonomic groups using standardized metabarcoding approaches.</span

    Fifty thousand years of Arctic vegetation and megafaunal diet

    No full text
    Although it is generally agreed that the Arctic flora is among the youngest and least diverse on Earth, the processes that shaped it are poorly understood. Here we present 50 thousand years (kyr) of Arctic vegetation history, derived from the first large-scale ancient DNA metabarcoding study of circumpolar plant diversity. For this interval we also explore nematode diversity as a proxy for modelling vegetation cover and soil quality, and diets of herbivorous megafaunal mammals, many of which became extinct around 10 kyr bp (before present). For much of the period investigated, Arctic vegetation consisted of dry steppe-tundra dominated by forbs (non-graminoid herbaceous vascular plants). During the Last Glacial Maximum (25-15 kyr bp), diversity declined markedly, although forbs remained dominant. Much changed after 10 kyr bp, with the appearance of moist tundra dominated by woody plants and graminoids. Our analyses indicate that both graminoids and forbs would have featured in megafaunal diets. As such, our findings question the predominance of a Late Quaternary graminoid-dominated Arctic mammoth steppe
    corecore