126 research outputs found

    The nature of delayed dream incorporation (‘dream-lag effect’): Personally significant events persist, but not major daily activities or concerns

    Get PDF
    Incorporation of details from waking life events into rapid eye movement (REM) sleep dreams has been found to be highest on the 2 nights after, and then 5–7 nights after, the event. These are termed, respectively, the day‐residue and dream‐lag effects. This study is the first to categorize types of waking life experiences and compare their incorporation into dreams across multiple successive nights. Thirty‐eight participants completed a daily diary each evening and a dream diary each morning for 14 days. In the daily diary, three categories of experiences were reported: major daily activities (MDAs), personally significant events (PSEs) and major concerns (MCs). After the 14‐day period each participant identified the correspondence between items in their daily diaries and subsequent dream reports. The day‐residue and dream‐lag effects were found for the incorporation of PSEs into dreams (effect sizes of .33 and .27, respectively), but only for participants (n = 19) who had a below‐median total number of correspondences between daily diary items and dream reports (termed “low‐incorporators” as opposed to “high‐incorporators”). Neither the day‐residue or dream‐lag effects were found for MDAs or MCs. This U‐shaped timescale of incorporation of events from daily life into dreams has been proposed to reflect REM sleep‐dependent memory consolidation, possibly related to emotional memory processing. This study had a larger sample size of dreams than any dream‐lag study hitherto with trained participants. Coupled with previous successful replications, there is thus substantial evidence supporting the dream‐lag effect and further explorations of its mechanism, including its neural underpinnings, are warranted

    Critical animal and media studies: Expanding the understanding of oppression in communication research

    No full text
    Critical and communication studies have traditionally neglected the oppression conducted by humans towards other animals. However, our (mis)treatment of other animals is the result of public consent supported by a morally speciesist-anthropocentric system of values. Speciesism or anthroparchy, as much as any other mainstream ideologies, feeds the media and at the same time is perpetuated by them. The goal of this article is to remedy this neglect by introducing the subdiscipline of Critical Animal and Media Studies. Critical Animal and Media Studies takes inspiration both from critical animal studies – which is so far the most consolidated critical field of research in the social sciences addressing our exploitation of other animals – and from the normative-moral stance rooted in the cornerstones of traditional critical media studies. The authors argue that the Critical Animal and Media Studies approach is an unavoidable step forward for critical media and communication studies to engage with the expanded circle of concerns of contemporary ethical thinking

    A vertically discretised canopy description for ORCHIDEE (SVN r2290) and the modifications to the energy, water and carbon fluxes

    Get PDF
    Since 70% of global forests are managed and forests impact the global carbon cycle and the energy exchange with the overlying atmosphere, forest management has the potential to mitigate climate change. Yet, none of the land surface models used in Earth system models, and therefore none of today’s predictions of future climate, account for the interactions between climate and forest management. We addressed this gap in modelling capability by developing and parametrizing a version of the land surface model ORCHIDEE to simulate the biogeochemical and biophysical effects of forest management. The most significant changes between the new branch called ORCHIDEE-CAN (SVN r2290) and the trunk version of ORCHIDEE (SVN r2243) are the allometric-based allocation of carbon to leaf, root, wood, fruit and reserve pools; the transmittance, absorbance and reflectance of radiation within the canopy; and the vertical discretisation of the energy budget calculations. In addition, conceptual changes were introduced towards a better process representation for the interaction of radiation with snow, the hydraulic architecture of plants, the representation of forest management and a numerical solution for the photosynthesis formalism of Farquhar, von Caemmerer and Berry. For consistency reasons, these changes were extensively linked throughout the code. Parametrization was revisited after introducing twelve new parameter sets that represent specific tree species or genera rather than a group of often distantly related or even unrelated species, as is the case in widely used plant functional types. Performance of the new model was compared against the trunk and validated against independent spatially explicit data for basal area, tree height, canopy strucure, GPP, albedo and evapotranspiration over Europe. For all tested variables ORCHIDEE-CAN outperformed the trunk regarding its ability to reproduce large-scale spatial patterns as well as their inter-annual variability over Europe. Depending on the data stream, ORCHIDEE-CAN had a 67% to 92% chance to reproduce the spatial and temporal variability of the validation data.JRC.H.5-Land Resources Managemen

    Software Citation Checklist for Developers

    Get PDF
    This document provides a minimal, generic checklist that developers of software (either open or closed source) used in research can use to ensure they are following good practice around software citation. This will help developers get credit for the software they create, and improve transparency, reproducibility, and reuse

    Modelling the impact of improving screening and treatment of chronic hepatitis C virus infection on future hepatocellular carcinoma rates and liver-related mortality.

    Get PDF
    BACKGROUND: The societal, clinical and economic burden imposed by the complications of chronic hepatitis C virus (HCV) infection - including cirrhosis and hepatocellular carcinoma (HCC) - is expected to increase over the coming decades. However, new therapies may improve sustained virological response (SVR) rates and shorten treatment duration. This study aimed to estimate the future burden of HCV-related disease in England if current management strategies remain the same and the impact of increasing diagnosis and treatment of HCV as new therapies become available. METHODS: A previously published model was adapted for England using published literature and government reports, and validated through an iterative process of three meetings of HCV experts. The impact of increasing diagnosis and treatment of HCV as new therapies become available was modelled and compared to the base-case scenario of continuing current management strategies. To assess the 'best case' clinical benefit of new therapies, the number of patients treated was increased by a total of 115% by 2018. RESULTS: In the base-case scenario, total viraemic (HCV RNA-positive) cases of HCV in England will decrease from 144,000 in 2013 to 76,300 in 2030. However, due to the slow progression of chronic HCV, the number of individuals with cirrhosis, decompensated cirrhosis and HCC will continue to increase over this period. The model suggests that the 'best case' substantially reduces HCV-related hepatic disease and HCV-related liver mortality by 2020 compared to the base-case scenario. The number of HCV-related HCC cases would decrease 50% by 2020 and the number progressing from infection to decompensated cirrhosis would decline by 65%. Therefore, compared to projections of current practices, increasing treatment numbers by 115% by 2018 would reduce HCV-related mortality by 50% by 2020. CONCLUSIONS: This analysis suggests that with current treatment practices the number of patients developing HCV-related cirrhosis, decompensated cirrhosis and HCC will increase substantially, with HCV-related liver deaths likely to double by 2030. However, increasing diagnosis and treatment rates could optimise the reduction in the burden of disease produced by the new therapies, potentially halving HCV-related liver mortality and HCV-related HCC by 2020

    Assembly and Development of the Pseudomonas aeruginosa Biofilm Matrix

    Get PDF
    Virtually all cells living in multicellular structures such as tissues and organs are encased in an extracellular matrix. One of the most important features of a biofilm is the extracellular polymeric substance that functions as a matrix, holding bacterial cells together. Yet very little is known about how the matrix forms or how matrix components encase bacteria during biofilm development. Pseudomonas aeruginosa forms environmentally and clinically relevant biofilms and is a paradigm organism for the study of biofilms. The extracellular polymeric substance of P. aeruginosa biofilms is an ill-defined mix of polysaccharides, nucleic acids, and proteins. Here, we directly visualize the product of the polysaccharide synthesis locus (Psl exopolysaccharide) at different stages of biofilm development. During attachment, Psl is anchored on the cell surface in a helical pattern. This promotes cell–cell interactions and assembly of a matrix, which holds bacteria in the biofilm and on the surface. Chemical dissociation of Psl from the bacterial surface disrupted the Psl matrix as well as the biofilm structure. During biofilm maturation, Psl accumulates on the periphery of 3-D-structured microcolonies, resulting in a Psl matrix-free cavity in the microcolony center. At the dispersion stage, swimming cells appear in this matrix cavity. Dead cells and extracellular DNA (eDNA) are also concentrated in the Psl matrix-free area. Deletion of genes that control cell death and autolysis affects the formation of the matrix cavity and microcolony dispersion. These data provide a mechanism for how P. aeruginosa builds a matrix and subsequently a cavity to free a portion of cells for seeding dispersal. Direct visualization reveals that Psl is a key scaffolding matrix component and opens up avenues for therapeutics of biofilm-related complications

    Domestication of Campylobacter jejuni NCTC 11168

    Get PDF
    Reference and type strains of well-known bacteria have been a cornerstone of microbiology research for decades. The sharing of well-characterized isolates among laboratories has run in parallel with research efforts and enhanced the reproducibility of experiments, leading to a wealth of knowledge about trait variation in different species and the underlying genetics. Campylobacter jejuni strain NCTC 11168, deposited at the National Collection of Type Cultures in 1977, has been adopted widely as a reference strain by researchers worldwide and was the first Campylobacter for which the complete genome was published (in 2000). In this study, we collected 23 C . jejuni NCTC 11168 reference isolates from laboratories across the UK and compared variation in simple laboratory phenotypes with genetic variation in sequenced genomes. Putatively identical isolates, identified previously to have aberrant phenotypes, varied by up to 281 SNPs (in 15 genes) compared to the most recent reference strain. Isolates also display considerable phenotype variation in motility, morphology, growth at 37 °C, invasion of chicken and human cell lines, and susceptibility to ampicillin. This study provides evidence of ongoing evolutionary change among C. jejuni isolates as they are cultured in different laboratories and highlights the need for careful consideration of genetic variation within laboratory reference strains. This article contains data hosted by Microreact
    • 

    corecore