57 research outputs found

    The ecology of algal assemblages across a gradient of acid mine drainage stress on the West Coast, South Island, New Zealand

    Get PDF
    Physicochemical factors, algal diversity, taxonomic composition and standing crop were investigated across a broad gradient of AMD stress in streams and rivers. 52 sites were surveyed in the vicinity of Greymouth, Reefton, Westport and Blackball, on the West Coast, South Island. Seven sites in the Reefton area were sampled from April 2006 - February 2007 to establish changes over time in benthic algal communities of AMD and reference streams. Longitudinal change and ecosystem recovery were also investigated by sampling eight sites down Devils Creek, Reefton, and two of its tributaries. AMD has negative impacts on algal diversity, generally increases the dominance of certain taxa and, where metal oxide deposition or hydraulic disturbance are not great, can lead to algal proliferations. These proliferations were chlorophyte dominated, predominantly by filamentous Klebsormidium acidophilum. From the general survey a total of 15 taxa were identified from the most severely impacted sites (pH <3.6), which included both acidophiles and acidotolerant algae. Multivariate analyses strongly suggest that pH was the dominant factor controlling taxonomic occurrence of diatoms, macroalgae and the structure of the total assemblage. Other factors such as conductivity, metal oxide deposition, temperature, depth, month, geographic location and altitude were also important. Algal communities changed over time and this became more marked as AMD impact decreased. This was presumably due to AMD stressors reducing diversity, and thus the available scope for assemblage change. Longitudinal differences in assemblage structure within Devils Creek appeared to be in response to dilution of AMD in upper reaches and to changes in natural physical features such as gradient in mid and lower reaches. After a distance of 7.2 km the physicochemical effects of AMD and suspended clay inputs were minimal. At this site and at several previous sites, the assemblage exhibited a degree of recovery towards that found at unimpacted sites. A range of algae found in the broad scale-survey are potentially useful 'sensitive' indicators. These included: Heteroleibleinia purpurascens; Achnanthes oblongella; Oedogonium sp. and Spirogyra sp. In contrast: Euglena mutabilis; Navicula cincta; K. acidophilum; Microspora quadrata and Microthamnion kuetzingianum may be useful 'tolerance' indicators. These data show that AMD has a range of negative impacts on algae, and algae may be a useful tool for monitoring these impacts in West Coast streams

    Genetic specification of left-right asymmetry in the diaphragm muscles and their motor innervation.

    Get PDF
    The diaphragm muscle is essential for breathing in mammals. Its asymmetric elevation during contraction correlates with morphological features suggestive of inherent left-right (L/R) asymmetry. Whether this asymmetry is due to L versus R differences in the muscle or in the phrenic nerve activity is unknown. Here, we have combined the analysis of genetically modified mouse models with transcriptomic analysis to show that both the diaphragm muscle and phrenic nerves have asymmetries, which can be established independently of each other during early embryogenesis in pathway instructed by Nodal, a morphogen that also conveys asymmetry in other organs. We further found that phrenic motoneurons receive an early L/R genetic imprint, with L versus R differences both in Slit/Robo signaling and MMP2 activity and in the contribution of both pathways to establish phrenic nerve asymmetry. Our study therefore demonstrates L-R imprinting of spinal motoneurons and describes how L/R modulation of axon guidance signaling helps to match neural circuit formation to organ asymmetry

    kakapo, a Gene Required for Adhesion Between and Within Cell Layers in Drosophila, Encodes a Large Cytoskeletal Linker Protein Related to Plectin and Dystrophin

    Get PDF
    Mutations in kakapo were recovered in genetic screens designed to isolate genes required for integrin-mediated adhesion in Drosophila. We cloned the gene and found that it encodes a large protein (>5,000 amino acids) that is highly similar to plectin and BPAG1 over the first 1,000ā€“amino acid region, and contains within this region an Ī±-actinin type actin-binding domain. A central region containing dystrophin-like repeats is followed by a carboxy domain that is distinct from plectin and dystrophin, having neither the intermediate filament-binding domain of plectin nor the dystroglycan/syntrophin-binding domain of dystrophin. Instead, Kakapo has a carboxy terminus similar to the growth arrestā€“specific protein Gas2. Kakapo is strongly expressed late during embryogenesis at the most prominent site of position-specific integrin adhesion, the muscle attachment sites. It is concentrated at apical and basal surfaces of epidermal muscle attachment cells, at the termini of the prominent microtubule bundles, and is required in these cells for strong attachment to muscles. Kakapo is also expressed more widely at a lower level where it is essential for epidermal cell layer stability. These results suggest that the Kakapo protein forms essential links among integrins, actin, and microtubules

    Neuropilin-1/GIPC1 Signaling Regulates Ī±5Ī²1 Integrin Traffic and Function in Endothelial Cells

    Get PDF
    Neuropilin 1 (Nrp1) is a coreceptor for vascular endothelial growth factor A165 (VEGF-A165, VEGF-A164 in mice) and semaphorin 3A (SEMA3A). Nevertheless, Nrp1 null embryos display vascular defects that differ from those of mice lacking either VEGF-A164 or Sema3A proteins. Furthermore, it has been recently reported that Nrp1 is required for endothelial cell (EC) response to both VEGF-A165 and VEGF-A121 isoforms, the latter being incapable of binding Nrp1 on the EC surface. Taken together, these data suggest that the vascular phenotype caused by the loss of Nrp1 could be due to a VEGF-A164/SEMA3A-independent function of Nrp1 in ECs, such as adhesion to the extracellular matrix. By using RNA interference and rescue with wild-type and mutant constructs, we show here that Nrp1 through its cytoplasmic SEA motif and independently of VEGF-A165 and SEMA3A specifically promotes Ī±5Ī²1-integrin-mediated EC adhesion to fibronectin that is crucial for vascular development. We provide evidence that Nrp1, while not directly mediating cell spreading on fibronectin, interacts with Ī±5Ī²1 at adhesion sites. Binding of the homomultimeric endocytic adaptor GAIP interacting protein C terminus, member 1 (GIPC1), to the SEA motif of Nrp1 selectively stimulates the internalization of active Ī±5Ī²1 in Rab5-positive early endosomes. Accordingly, GIPC1, which also interacts with Ī±5Ī²1, and the associated motor myosin VI (Myo6) support active Ī±5Ī²1 endocytosis and EC adhesion to fibronectin. In conclusion, we propose that Nrp1, in addition to and independently of its role as coreceptor for VEGF-A165 and SEMA3A, stimulates through its cytoplasmic domain the spreading of ECs on fibronectin by increasing the Rab5/GIPC1/Myo6-dependent internalization of active Ī±5Ī²1. Nrp1 modulation of Ī±5Ī²1 integrin function can play a causal role in the generation of angiogenesis defects observed in Nrp1 null mice

    Disposal of aluminium production : waste material - a resource-orientated view

    No full text

    Assessing global land requirement for surface copper mining

    No full text
    • ā€¦
    corecore