19 research outputs found

    Capturing Nano‐Scale Inhomogeneity of the Electrode Electrolyte Interface in Sodium‐Ion Batteries Through Tip‐Enhanced Raman Spectroscopy

    Get PDF
    A prime challenge in the development of new battery chemistries is the fundamental understanding of the generation of the electrode–electrolyte interface (EEI) and its evolution upon cycling. Tip-enhanced Raman spectroscopy (TERS) under an inert gas atmosphere is employed to study the chemical components of the anode/cathode electrolyte interface in a sodium-ion battery. After the first cycle, TERS reveals that the EEI mostly consists of organic carbonate/dicarbonate, oligoethylene oxides, α,β-unsaturated vinyl ketones/acetates, and inorganic species ClO4_4^−, ClO3_3^−, and Na2_2CO3_3. Whereas after 5× cycling, the EEI composition has evolved to contain long chain monodentate or bridging/bidentate carboxylates and alkoxides. The TERS map reveals the nano-scale heterogeneity present in the EEI layers and elucidates a multilayered nano-mosaic coating structure. The sheer volume of Raman signature present in the TERS signal can completely unravel the mysteries regarding the chemical composition and may shed light to the physicochemical behavior of the EEI

    Long Cycle‐Life Ca Batteries with Poly(anthraquinonylsulfide) Cathodes and Ca−Sn Alloy Anodes

    Get PDF
    Calcium (Ca) batteries are attractive post-lithium battery technologies, due to their potential to provide high-voltage and high-energy systems in a sustainable manner. We investigated herein 1,5-poly(anthraquinonylsulfide) (PAQS) for Ca-ion storage with calcium tetrakis(hexafluoroisopropyloxy)borate Ca[B(hfip)4_4]2_2 [hfip=OCH(CF3_3)2_2] electrolytes. It is demonstrated that PAQS could be synthesized in a cost-effective approach and be processed environmentally friendly into the electrodes. The PAQS cathodes could provide 94 mAh g1^{−1} capacity at 2.2 V vs. Ca at 0.5C (1C=225 mAh g1^{−1}). However, cycling of the cells was severely hindered due to the fast degradation of the metal anode. Replacing the Ca metal anode with a calcium-tin (Ca−Sn) alloy anode, the PAQS cathodes exhibited long cycling performance (45 mAh g1^{−1} at 0.5C after 1000 cycles) and superior rate capability (52 mAh g1^{−1} at 5C). This is mainly ascribed to the flexible structure of PAQS and good compatibility of the alloy anodes with the electrolyte solutions, which allow reversible quinone carbonyl redox chemistry in the Ca battery systems. The promising properties of PAQS indicate that further exploration of the organic cathode materials could be a feasible direction towards green Ca batteries

    Multi‐Electron Reactions enabled by Anion‐Based Redox Chemistry for High‐Energy Multivalent Rechargeable Batteries

    Get PDF
    The development of multivalent metal (such as Mg and Ca) based battery systems is hindered by lack of suitable cathode chemistry that shows reversible multi‐electron redox reactions. Cationic redox centres in the classical cathodes can only afford stepwise single‐electron transfer, which are not ideal for multivalent‐ion storage. The charge imbalance during multivalent ion insertion might lead to an additional kinetic barrier for ion mobility. Therefore, multivalent battery cathodes only exhibit slope‐like voltage profiles with insertion/extraction redox of less than one electron. Taking VS4 as a model material, reversible two‐electron redox with cationic–anionic contributions is verified in both rechargeable Mg batteries (RMBs) and rechargeable Ca batteries (RCBs). The corresponding cells exhibit high capacities of >300 mAh g−1 at a current density of 100 mA g−1 in both RMBs and RCBs, resulting in a high energy density of >300 Wh kg−1 for RMBs and >500 Wh kg−1 for RCBs. Mechanistic studies reveal a unique redox activity mainly at anionic sulfides moieties and fast Mg2+ ion diffusion kinetics enabled by the soft structure and flexible electron configuration of VS4

    A π‐Conjugated Porphyrin Complex as Cathode Material Allows Fast and Stable Energy Storage in Calcium Batteries

    Get PDF
    Rechargeable calcium batteries (RCB) are prospective candidates for sustainable energy storage, as they hold the promise of the high energy density of lithium-ion batteries (LIBs) while simultaneously combining it with highly abundant raw materials. However, for long time, calcium batteries have faced severe issues with regard to cycling stability, until recently developments demonstrated improved battery cycle life when employing CaSn alloy anodes with fluorinated alkoxyborate electrolytes. These findings opened up the possibility to study cathode materials for RCBs not only in a more comparable manner, but also in a practical full cell design. As representative of emerging organic electrode materials (OEMs), we investigated tetrakis(4-pyridyl) porphyrin as both free ligand (H2_2TPyP) and in the form of its copper MOF complex (CuTPyP−MOF) as active cathode species in RCBs. The cells demonstrated high capacities and excellent cycling stability at the same time. Even at elevated current densities of e. g., 2000 mA/g the full cells delivered stable capacities of ~90 mAh/g proving its excellent rate capability. This study explores the electrochemical performance of porphyrin active materials in calcium batteries and represents a significant step forward in the progress toward organic electrodes for multivalent energy storage systems

    Global incidence, prevalence, years lived with disability (YLDs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Detailed, comprehensive, and timely reporting on population health by underlying causes of disability and premature death is crucial to understanding and responding to complex patterns of disease and injury burden over time and across age groups, sexes, and locations. The availability of disease burden estimates can promote evidence-based interventions that enable public health researchers, policy makers, and other professionals to implement strategies that can mitigate diseases. It can also facilitate more rigorous monitoring of progress towards national and international health targets, such as the Sustainable Development Goals. For three decades, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) has filled that need. A global network of collaborators contributed to the production of GBD 2021 by providing, reviewing, and analysing all available data. GBD estimates are updated routinely with additional data and refined analytical methods. GBD 2021 presents, for the first time, estimates of health loss due to the COVID-19 pandemic. Methods: The GBD 2021 disease and injury burden analysis estimated years lived with disability (YLDs), years of life lost (YLLs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries using 100 983 data sources. Data were extracted from vital registration systems, verbal autopsies, censuses, household surveys, disease-specific registries, health service contact data, and other sources. YLDs were calculated by multiplying cause-age-sex-location-year-specific prevalence of sequelae by their respective disability weights, for each disease and injury. YLLs were calculated by multiplying cause-age-sex-location-year-specific deaths by the standard life expectancy at the age that death occurred. DALYs were calculated by summing YLDs and YLLs. HALE estimates were produced using YLDs per capita and age-specific mortality rates by location, age, sex, year, and cause. 95% uncertainty intervals (UIs) were generated for all final estimates as the 2·5th and 97·5th percentiles values of 500 draws. Uncertainty was propagated at each step of the estimation process. Counts and age-standardised rates were calculated globally, for seven super-regions, 21 regions, 204 countries and territories (including 21 countries with subnational locations), and 811 subnational locations, from 1990 to 2021. Here we report data for 2010 to 2021 to highlight trends in disease burden over the past decade and through the first 2 years of the COVID-19 pandemic. Findings: Global DALYs increased from 2·63 billion (95% UI 2·44–2·85) in 2010 to 2·88 billion (2·64–3·15) in 2021 for all causes combined. Much of this increase in the number of DALYs was due to population growth and ageing, as indicated by a decrease in global age-standardised all-cause DALY rates of 14·2% (95% UI 10·7–17·3) between 2010 and 2019. Notably, however, this decrease in rates reversed during the first 2 years of the COVID-19 pandemic, with increases in global age-standardised all-cause DALY rates since 2019 of 4·1% (1·8–6·3) in 2020 and 7·2% (4·7–10·0) in 2021. In 2021, COVID-19 was the leading cause of DALYs globally (212·0 million [198·0–234·5] DALYs), followed by ischaemic heart disease (188·3 million [176·7–198·3]), neonatal disorders (186·3 million [162·3–214·9]), and stroke (160·4 million [148·0–171·7]). However, notable health gains were seen among other leading communicable, maternal, neonatal, and nutritional (CMNN) diseases. Globally between 2010 and 2021, the age-standardised DALY rates for HIV/AIDS decreased by 47·8% (43·3–51·7) and for diarrhoeal diseases decreased by 47·0% (39·9–52·9). Non-communicable diseases contributed 1·73 billion (95% UI 1·54–1·94) DALYs in 2021, with a decrease in age-standardised DALY rates since 2010 of 6·4% (95% UI 3·5–9·5). Between 2010 and 2021, among the 25 leading Level 3 causes, age-standardised DALY rates increased most substantially for anxiety disorders (16·7% [14·0–19·8]), depressive disorders (16·4% [11·9–21·3]), and diabetes (14·0% [10·0–17·4]). Age-standardised DALY rates due to injuries decreased globally by 24·0% (20·7–27·2) between 2010 and 2021, although improvements were not uniform across locations, ages, and sexes. Globally, HALE at birth improved slightly, from 61·3 years (58·6–63·6) in 2010 to 62·2 years (59·4–64·7) in 2021. However, despite this overall increase, HALE decreased by 2·2% (1·6–2·9) between 2019 and 2021. Interpretation: Putting the COVID-19 pandemic in the context of a mutually exclusive and collectively exhaustive list of causes of health loss is crucial to understanding its impact and ensuring that health funding and policy address needs at both local and global levels through cost-effective and evidence-based interventions. A global epidemiological transition remains underway. Our findings suggest that prioritising non-communicable disease prevention and treatment policies, as well as strengthening health systems, continues to be crucially important. The progress on reducing the burden of CMNN diseases must not stall; although global trends are improving, the burden of CMNN diseases remains unacceptably high. Evidence-based interventions will help save the lives of young children and mothers and improve the overall health and economic conditions of societies across the world. Governments and multilateral organisations should prioritise pandemic preparedness planning alongside efforts to reduce the burden of diseases and injuries that will strain resources in the coming decades. Funding: Bill & Melinda Gates Foundation

    Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Understanding the health consequences associated with exposure to risk factors is necessary to inform public health policy and practice. To systematically quantify the contributions of risk factor exposures to specific health outcomes, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 aims to provide comprehensive estimates of exposure levels, relative health risks, and attributable burden of disease for 88 risk factors in 204 countries and territories and 811 subnational locations, from 1990 to 2021. Methods: The GBD 2021 risk factor analysis used data from 54 561 total distinct sources to produce epidemiological estimates for 88 risk factors and their associated health outcomes for a total of 631 risk–outcome pairs. Pairs were included on the basis of data-driven determination of a risk–outcome association. Age-sex-location-year-specific estimates were generated at global, regional, and national levels. Our approach followed the comparative risk assessment framework predicated on a causal web of hierarchically organised, potentially combinative, modifiable risks. Relative risks (RRs) of a given outcome occurring as a function of risk factor exposure were estimated separately for each risk–outcome pair, and summary exposure values (SEVs), representing risk-weighted exposure prevalence, and theoretical minimum risk exposure levels (TMRELs) were estimated for each risk factor. These estimates were used to calculate the population attributable fraction (PAF; ie, the proportional change in health risk that would occur if exposure to a risk factor were reduced to the TMREL). The product of PAFs and disease burden associated with a given outcome, measured in disability-adjusted life-years (DALYs), yielded measures of attributable burden (ie, the proportion of total disease burden attributable to a particular risk factor or combination of risk factors). Adjustments for mediation were applied to account for relationships involving risk factors that act indirectly on outcomes via intermediate risks. Attributable burden estimates were stratified by Socio-demographic Index (SDI) quintile and presented as counts, age-standardised rates, and rankings. To complement estimates of RR and attributable burden, newly developed burden of proof risk function (BPRF) methods were applied to yield supplementary, conservative interpretations of risk–outcome associations based on the consistency of underlying evidence, accounting for unexplained heterogeneity between input data from different studies. Estimates reported represent the mean value across 500 draws from the estimate's distribution, with 95% uncertainty intervals (UIs) calculated as the 2·5th and 97·5th percentile values across the draws. Findings: Among the specific risk factors analysed for this study, particulate matter air pollution was the leading contributor to the global disease burden in 2021, contributing 8·0% (95% UI 6·7–9·4) of total DALYs, followed by high systolic blood pressure (SBP; 7·8% [6·4–9·2]), smoking (5·7% [4·7–6·8]), low birthweight and short gestation (5·6% [4·8–6·3]), and high fasting plasma glucose (FPG; 5·4% [4·8–6·0]). For younger demographics (ie, those aged 0–4 years and 5–14 years), risks such as low birthweight and short gestation and unsafe water, sanitation, and handwashing (WaSH) were among the leading risk factors, while for older age groups, metabolic risks such as high SBP, high body-mass index (BMI), high FPG, and high LDL cholesterol had a greater impact. From 2000 to 2021, there was an observable shift in global health challenges, marked by a decline in the number of all-age DALYs broadly attributable to behavioural risks (decrease of 20·7% [13·9–27·7]) and environmental and occupational risks (decrease of 22·0% [15·5–28·8]), coupled with a 49·4% (42·3–56·9) increase in DALYs attributable to metabolic risks, all reflecting ageing populations and changing lifestyles on a global scale. Age-standardised global DALY rates attributable to high BMI and high FPG rose considerably (15·7% [9·9–21·7] for high BMI and 7·9% [3·3–12·9] for high FPG) over this period, with exposure to these risks increasing annually at rates of 1·8% (1·6–1·9) for high BMI and 1·3% (1·1–1·5) for high FPG. By contrast, the global risk-attributable burden and exposure to many other risk factors declined, notably for risks such as child growth failure and unsafe water source, with age-standardised attributable DALYs decreasing by 71·5% (64·4–78·8) for child growth failure and 66·3% (60·2–72·0) for unsafe water source. We separated risk factors into three groups according to trajectory over time: those with a decreasing attributable burden, due largely to declining risk exposure (eg, diet high in trans-fat and household air pollution) but also to proportionally smaller child and youth populations (eg, child and maternal malnutrition); those for which the burden increased moderately in spite of declining risk exposure, due largely to population ageing (eg, smoking); and those for which the burden increased considerably due to both increasing risk exposure and population ageing (eg, ambient particulate matter air pollution, high BMI, high FPG, and high SBP). Interpretation: Substantial progress has been made in reducing the global disease burden attributable to a range of risk factors, particularly those related to maternal and child health, WaSH, and household air pollution. Maintaining efforts to minimise the impact of these risk factors, especially in low SDI locations, is necessary to sustain progress. Successes in moderating the smoking-related burden by reducing risk exposure highlight the need to advance policies that reduce exposure to other leading risk factors such as ambient particulate matter air pollution and high SBP. Troubling increases in high FPG, high BMI, and other risk factors related to obesity and metabolic syndrome indicate an urgent need to identify and implement interventions

    Data for the publication titled " Improving Rechargeable Magnesium Batteries through Dual Cation Co-Intercalation Strategy"

    No full text
    <p>Data sets were obtained from GCPL, CV, ICP-OES, XRD, Raman spectroscopy, TEM, STEM-EDX, EELS for the publication.</p> <p>Abstract: The development of competitive rechargeable Mg batteries is hindered by the poor mobility of divalent Mg ions in cathode host materials. In this work, we have explored a novel dual cation co-intercalation strategy to mitigate the sluggishness of Mg2+ in model TiS2 material. The strategy involved pairing Mg2+ with Li+ or Na+ in dual-salt electrolytes in order to exploit their faster mobility with the aim to reach better electrochemical performance. A combination of experiments and theoretical calculations detailed the charge storage and redox mechanism of co-intercalating cationic charge carriers. Comparative evaluation revealed that the redox activity of Mg2+ can be improved significantly with the help of the dual cation co-intercalation strategy, although the ionic radius of the accompanying monovalent ion plays a critical role on the viability of the strategy. More specifically, a significantly higher Mg2+ quantity was intercalated with Li+ than with Na+ in TiS2. The reason being the absence of phase transition in the former case, which enabled improved Mg2+ storage. Our results highlight the dual cation co-intercalation strategy as an alternative approach to improve the electrochemical performance of rechargeable Mg batteries by opening the pathway to a rich playground of advanced cathode materials for multivalent battery applications.</p&gt
    corecore