55 research outputs found

    Modulation of radial blood flow during Braille character discrimination task

    Get PDF
    Purpose: Human hands are excellent in performing sensory and motor function. We have hypothesized that blood flow of the hand is dynamically regulated by sympathetic outflow during concentrated finger perception. To identify this hypothesis, we measured radial blood flow (RBF), radial vascular conductance (RVC), heart rate (HR), and arterial blood pressure (AP) during Braille reading performed under the blind condition in nine healthy subjects. The subjects were instructed to read a flat plate with raised letters (Braille reading) for 30 s by the forefinger, and to touch a blank plate as control for the Braille discrimination procedure. Results: HR and AP slightly increased during Braille reading but remained unchanged during the touching of the blank plate. RBF and RVC were reduced during the Braille character discrimination task (decreased by -46% and -49%, respectively). Furthermore, the changes in RBF and RVC were much greater during the Braille character discrimination task than during the touching of the blank plate (decreased by -20% and -20%, respectively). Conclusions: These results have suggested that the distribution of blood flow to the hand is modulated via sympathetic nerve activity during concentrated finger perception

    Economic evaluation of deep-brain stimulation for Tourette’s syndrome: an initial exploration

    No full text
    Deep-brain stimulation (DBS) can be effective in controlling medically intractable symptoms of Tourette's syndrome (TS). There is no evidence to date, though, of the potential cost-effectiveness of DBS for this indication

    Effect of change in blood volume in skin plus active muscle on heart rate drift during submaximal exercise

    Get PDF
    The purpose of the present study was to examine the effect of change in blood volume in skin plus active muscle on heart rate drift during moderate exercise and heavy exercise for 30 min. Total hemoglobin concentration (Total Hb) in the vastus lateralis muscle plus its skin was determined by near-infrared spectroscopy. Total Hb significantly increased and remained stable from 20 min in moderate exercise and from 10 min in heavy exercise. Heart rate (HR) rapidly increased until 3 min and showed a steady state in moderate exercise. HR at 30 min was significantly higher than that at 3 min in moderate exercise. HR rapidly increased until 3 min and then gradually but significantly increased in heavy exercise. Increase in total Hb was not significantly related with HR after 3 min of exercise when HR was around 120 beats per min in moderate exercise. Increase in total Hb was significantly related with HR from 3 min to 10 min in the heavy exercise (correlation coefficients ranged from 0.959 to 0.702). It is concluded that an increase in the blood volume in skin plus active muscle is not simply associated with HR drift
    corecore