475 research outputs found
Probing particle and nuclear physics models of neutrinoless double beta decay with different nuclei
Half-life estimates for neutrinoless double beta decay depend on particle
physics models for lepton flavor violation, as well as on nuclear physics
models for the structure and transitions of candidate nuclei. Different models
considered in the literature can be contrasted - via prospective data - with a
"standard" scenario characterized by light Majorana neutrino exchange and by
the quasiparticle random phase approximation, for which the theoretical
covariance matrix has been recently estimated. We show that, assuming future
half-life data in four promising nuclei (Ge-76, Se-82, Te-130, and Xe-136), the
standard scenario can be distinguished from a few nonstandard physics models,
while being compatible with alternative state-of-the-art nuclear calculations
(at 95% C.L.). Future signals in different nuclei may thus help to discriminate
at least some decay mechanisms, without being spoiled by current nuclear
uncertainties. Prospects for possible improvements are also discussed.Comment: Minor corrections in the text, references added. Matches published
version in Phys. Rev. D 80, 015024 (2009
Neutrino mass and mixing parameters: A short review
We present a brief review of the current status of neutrino mass and mixing
parameters, based on a comprehensive phenomenological analysis of neutrino
oscillation and non-oscillation searches, within the standard three-neutrino
mixing framework.Comment: 11 pages, including 7 figures. Presented at the 40th Rencontres de
Moriond on Electroweak Interactions and Unified Theories, La Thuile, Aosta
Valley, Italy, 5-12 Mar 200
Mantle geoneutrinos in KamLAND and Borexino
The KamLAND and Borexino experiments have observed, each at ~4 sigma level,
signals of electron antineutrinos produced in the decay chains of thorium and
uranium in the Earth's crust and mantle (Th and U geoneutrinos). Various pieces
of geochemical and geophysical information allow an estimation of the crustal
geoneutrino flux components with relatively small uncertainties. The mantle
component may then be inferred by subtracting the estimated crustal flux from
the measured total flux. To this purpose, we analyze in detail the experimental
Th and U geoneutrino event rates in KamLAND and Borexino, including neutrino
oscillation effects. We estimate the crustal flux at the two detector sites,
using state-of-the-art information about the Th and U distribution on global
and local scales. We find that crust-subtracted signals show hints of a
residual mantle component, emerging at ~2.4 sigma level by combining the
KamLAND and Borexino data. The inferred mantle flux slightly favors scenarios
with relatively high Th and U abundances, within +-1 sigma uncertainties
comparable to the spread of predictions from recent mantle models.Comment: Slight changes and improvements in the text & figures. Results
unchanged. To appear in Phys. Rev.
Combined analysis of KamLAND and Borexino neutrino signals from Th and U decays in the Earth's interior
The KamLAND and Borexino experiments have detected electron antineutrinos
produced in the decay chains of natural thorium and uranium (Th and U
geoneutrinos). We analyze the energy spectra of current geoneutrino data in
combination with solar and long-baseline reactor neutrino data, with
marginalized three-neutrino oscillation parameters. We consider the case with
unconstrained Th and U event rates in KamLAND and Borexino, as well as cases
with fewer degrees of freedom, as obtained by successively assuming for both
experiments a common Th/U ratio, a common scaling of Th+U event rates, and a
chondritic Th/U value. In combination, KamLAND and Borexino can reject the null
hypothesis (no geoneutrino signal) at 5 sigma. Interesting bounds or
indications emerge on the Th+U geoneutrino rates and on the Th/U ratio, in
broad agreement with typical Earth model expectations. Conversely, the results
disfavor the hypothesis of a georeactor in the Earth's core, if its power
exceeds a few TW. The interplay of KamLAND and Borexino geoneutrino data is
highlighted.Comment: 12 pages, including 6 figure
Hints of theta_13>0 from global neutrino data analysis
Nailing down the unknown neutrino mixing angle theta_13 is one of the most
important goals in current lepton physics. In this context, we perform a global
analysis of neutrino oscillation data, focusing on theta_13, and including
recent results [Neutrino 2008, Proceedings of the XXIII International
Conference on Neutrino Physics and Astrophysics, Christchurch, New Zealand,
2008 (unpublished)]. We discuss two converging hints of theta_13>0, each at the
level of ~1sigma: an older one coming from atmospheric neutrino data, and a
newer one coming from the combination of solar and long-baseline reactor
neutrino data. Their combination provides the global estimate sin^2(theta_13) =
0.016 +- 0.010 (1sigma), implying a preference for \theta_13>0 with
non-negligible statistical significance (~90% C.L.). We discuss possible
refinements of the experimental data analyses, which might sharpen such
intriguing indication.Comment: Minor changes in the text. Matches published version in PR
Golden Ratio Prediction for Solar Neutrino Mixing
It has recently been speculated that the solar neutrino mixing angle is
connected to the golden ratio phi. Two such proposals have been made, cot
theta_{12} = phi and cos theta_{12} = phi/2. We compare these Ansatze and
discuss a model leading to cos theta_{12} = phi/2 based on the dihedral group
D_{10}. This symmetry is a natural candidate because the angle in the
expression cos theta_{12} = phi/2 is simply pi/5, or 36 degrees. This is the
exterior angle of a decagon and D_{10} is its rotational symmetry group. We
also estimate radiative corrections to the golden ratio predictions.Comment: 15 pages, 1 figure. Matches published versio
Where we are on : addendum to "Global neutrino data and recent reactor fluxes: status of three-flavour oscillation parameters"
In this addendum to arXiv:1103.0734 we consider the recent results from
long-baseline searches at the T2K and MINOS experiments and
investigate their implications for the mixing angle and the
leptonic Dirac CP phase . By combining the indication for a
non-zero value of coming from T2K data with global neutrino
oscillation data we obtain a significance for of about
with best fit points for normal
(inverted) neutrino mass ordering. These results depend somewhat on assumptions
concerning the analysis of reactor neutrino data.Comment: 5 pages, 2 figures and 1 tabl
- âŚ