461 research outputs found

    A cautionary note on thermal runaway reactions in mixtures of 1-alkyl-3-methylimidazolium ionic liquids and N-methylmorpholine-N-oxide

    Get PDF
    Nicht verfĂŒgbarN-Methylmorpholine-N-oxide (NMMO) cannot be completely separated by extraction from mixtures with common 1,3-dialkylimidazolium ionic liquids (ILs) due to strong ionic interactions between the two components. At elevated temperatures, above approx. 90 C, especially under dry conditions and in the presence of acid, alkylating or acylating agents, remaining NMMO in ILs tends to undergo autocatalytic degradation. This is a highly exothermic, unstoppable process that results in explosions, flames, and complete charring of the reaction mixtures. Thus, caution must be exercised when drying or heating ILs that were in previous contact with NMMO, and the absence of amine oxide must be confirmed to avoid potential danger.(VLID)192930

    Upper Plate Response to a Sequential Elastic Rebound and Slab Acceleration During Laboratory‐Scale Subduction Megathrust Earthquakes

    Get PDF
    An earthquake‐induced stress drop on a megathrust instigates different responses on the upper plate and slab. We mimic homogenous and heterogeneous megathrust interfaces at the laboratory scale to monitor the strain relaxation on two elastically bi‐material plates by establishing analog velocity weakening and neutral materials. A sequential elastic rebound follows the coseismic shear‐stress drop in our elastoplastic‐frictional models: a fast rebound of the upper plate and the delayed and smaller rebound on the elastic belt (model slab). A combination of the rebound of the slab and the rapid relaxation (i.e., elastic restoration) of the upper plate after an elastic overshooting may accelerate the relocking of the megathrust. This acceleration triggers/antedates the failure of a nearby asperity and enhances the early slip reversal in the rupture area. Hence, the trench‐normal landward displacement in the upper plate may reach a significant amount of the entire interseismic slip reversal and speeds up the stress build‐up on the upper plate backthrust that emerges self‐consistently at the downdip end of the seismogenic zones. Moreover, the backthrust switches its kinematic mode from a normal to reverse mechanism during the coseismic and postseismic stages, reflecting the sense of shear on the interface

    Chiroptical properties of an alternatingly functionalized cellotriose bearing two porphyrin groups.

    Get PDF
    Right-handedness derived from bisporphyrins attached to a cellotriose backbone at O-6 and O''-6 positions is revealed for the first time. This cellotriose is proposed as a model of alternatingly functionalized cellulosics, which have promising properties for applications in optoelectronics and molecular receptors owing to the chirality and rigid backbone effects

    The 2013 cholesterol guideline controversy: Would better evidence prevent pharmaceuticalization?

    Get PDF
    AbstractCardiovascular disease (CVD) remains the leading cause of death globally. A class of medications, known as statins, lowers low-density lipoprotein cholesterol levels, which are associated with CVD. The newest 2013 U.S. cholesterol guideline contains an assessment of risk that greatly expands the number of individuals without CVD for whom statins are recommended. Other countries are also moving in this direction. This article examines the controversy surrounding these guidelines using the 2013 cholesterol guidelines as a case study of broader trends in clinical guidelines to use a narrow evidence base, expand the boundaries of disease and overemphasize pharmaceutical treatment.We find that the recommendation in the 2013 cholesterol guidelines to initiate statins in individuals with a lower risk of CVD is controversial and there is much disagreement on whether there is evidence for the guideline change. We note that, in general, clinical guidelines may use evidence that has a number of biases, are subject to conflicts of interest at multiple levels, and often do not include unpublished research. Further, guidelines may contribute to the “medicalization” or “pharmaceuticalization” of healthcare.Specific policy recommendations to improve clinical guidelines are indicated: these include improving the evidence base, establishing a public registry of all results, including unpublished ones, and freeing the research process from pharmaceutical sector control

    Exploring Alkyl-O-Alkyl Ether Structures in Softwood Milled Wood Lignins

    Get PDF
    Recent studies have suggested that there are significant amounts of various alkyl ether (Alk-O-Alk; Alk = alkyl) moieties in a spruce native lignin preparation, milled wood lignin (SMWL). However, the comprehensive NMR assignment to these moieties has not been addressed yet. This study focused on investigating different types of Alk-O-Alk structures at the alpha-and gamma-positions of the lignin side chain in an heteronuclear single-quantum coherence (HSQC) spectrum of SMWL using experimental NMR data of lignin and synthesized model compounds. Ambiguous structural features were predicted by computer simulation of 1H and 13C NMR spectra to complement the experimental NMR data. As a result, specific regions in the HSQC spectrum were attributed to different Alk-O-Alk moieties of Alk-O-Alk/beta-O-4 and Alk-O-Alk/beta-beta ' structures. However, the differences between the specific regions were rather subtle; they were not well separated from each other and some major lignin moieties. Furthermore, SMWL contained a large variety of Alk-O-Alk moieties but in minute individual amounts, resulting in rather broad, superimposing resonances. Thus, evaluation did not allow assigning individual types of Alk-O-Alk moieties from the HSQC spectra; instead, they were quantified as total (alpha-and gamma-linked) Alk-O-Alk based on the balance of structural units in the 13C NMR spectra. At last, potential formation mechanisms of various Alk-O-Alk ether structures in lignin biosynthesis, lignin aging, and during ball milling of wood were and discussed.Peer reviewe

    Unique reactivity of nanoporous cellulosic materials mediated by surface-confined water

    Get PDF
    The remarkable efficiency of chemical reactions is the result of biological evolution, often involving confined water. Meanwhile, developments of bio-inspired systems, which exploit the potential of such water, have been so far rather complex and cumbersome. Here we show that surface-confined water, inherently present in widely abundant and renewable cellulosic fibres can be utilised as nanomedium to endow a singular chemical reactivity. Compared to surface acetylation in the dry state, confined water increases the reaction rate and efficiency by 8 times and 30%, respectively. Moreover, confined water enables control over chemical accessibility of selected hydroxyl groups through the extent of hydration, allowing regioselective reactions, a major challenge in cellulose modification. The reactions mediated by surface-confined water are sustainable and largely outperform those occurring in organic solvents in terms of efficiency and environmental compatibility. Our results demonstrate the unexploited potential of water bound to cellulosic nanostructures in surface esterifications, which can be extended to a wide range of other nanoporous polymeric structures and reactions. The efficiency of chemical reactions in biological systems is often connected to the properties of confined water, but the developments and applications of artificial mimicking systems are impeded by the complexity of the biological systems. Here, the authors show how surface bound water in nanoporous cellulosic fibers can increase the reaction rate of surface acetylation reactions and enable regioselectivity of the reactionPeer reviewe

    Getting Closer to Absolute Molar Masses of Technical Lignins

    Get PDF
    Determination of molecular weight parameters of native and, in particular, technical lignins are based on size exclusion chromatography (SEC) approaches. However, no matter which approach is used, either conventional SEC with a refractive index detector and calibration with standards or multi-angle light scattering (MALS) detection at 488nm, 633nm, 658nm, or 690nm, all variants can be severely erroneous. The lack of calibration standards with high structural similarity to lignin impairs the quality of the molar masses determined by conventional SEC, and the typical fluorescence of (technical) lignins renders the corresponding MALS data rather questionable. Application of MALS detection at 785nm by using an infrared laser largely overcomes those problems and allows for a reliable and reproducible determination of the molar mass distributions of all types of lignins, which has been demonstrated in this study for various and structurally different analytes, such as kraft lignins, milled-wood lignin, lignosulfonates, and biorefinery lignins. The topics of calibration, lignin fluorescence, and lignin UV absorption in connection with MALS detection are critically discussed in detail, and a reliable protocol is presented. Correction factors based on MALS measurements have been determined for commercially available calibration standards, such as pullulan and polystyrene sulfonate, so that now more reliable mass data can be obtained also if no MALS system is available and these conventional calibration standards have to be resorted to.Peer reviewe

    Challenges facing the United States of America in implementing universal coverage

    Get PDF
    In 2010, immediately before the United States of America (USA) implemented key features of the Affordable Care Act (ACA), 18% of its residents younger than 65 years lacked health insurance. In the USA, gaps in health coverage and unhealthy lifestyles contribute to outcomes that often compare unfavourably with those observed in other high-income countries. By March 2014, the ACA had substantially changed health coverage in the USA but most of its main features - health insurance exchanges, Medicaid expansion, development of accountable care organizations and further oversight of insurance companies - remain works in progress. The ACA did not introduce the stringent spending controls found in many European health systems. It also explicitly prohibits the creation of institutes - for the assessment of the cost-effectiveness of pharmaceuticals, health services and technologies - comparable to the National Institute for Health and Care Excellence in the United Kingdom of Great Britain and Northern Ireland, the Haute Autorite de Sante in France or the Pharmaceutical Benefits Advisory Committee in Australia. The ACA was - and remains - weakened by a lack of cross-party political consensus. The ACA\u27s performance and its resulting acceptability to the general public will be critical to the Act\u27s future

    Precipitation of Hemicelluloses from DMSO/Water Mixtures Using Carbon Dioxide as an Antisolvent

    Get PDF
    Supercritical antisolvent precipitation is a relatively recent technology which can be used for controlled preparation of polymer particles from solutions. This is done by the addition of an antisolvent to a polymer solution causing supersaturation of the polymer, especially under supercritical conditions. The particle size of the precipitates can be adjusted mainly by the rate of supersaturation. Spherical xylan or mannan particles having a narrow particle size distribution were precipitated from hemicellulose solutions in dimethyl-sulfoxide (DMSO) or DMSO/water mixtures by carbon dioxide as an antisolvent. By depending on the type of hemicellulose, the DMSO/H2O ratio, and the precipitation conditions such as pressure and temperature, the resulting particle size can be adjusted within a wide range from less than 0.1 to more than 5 m. Nano- and microstructured native xylans and mannans as obtained can be used in many applications such as encapsulation of active compounds, slow release agents, or chromatographic separation materials
    • 

    corecore