191 research outputs found
Recommended from our members
LCāMS Lipidomics: Exploiting a Simple High-Throughput Method for the Comprehensive Extraction of Lipids in a Ruminant Fat Dose-Response Study
Typical lipidomics methods incorporate a liquidāliquid extraction with LCāMS quantitation; however, the classic sample extraction methods are not high-throughput and do not perform well at extracting the full range of lipids especially, the relatively polar species (e.g., acyl-carnitines and glycosphingolipids). In this manuscript, we present a novel sample extraction protocol, which produces a single phase supernatant suitable for high-throughput applications that offers greater performance in extracting lipids across the full spectrum of species. We applied this lipidomics pipeline to a ruminant fat doseāresponse study to initially compare and validate the different extraction protocols but also to investigate complex lipid biomarkers of ruminant fat intake (adjoining onto simple odd chain fatty acid correlations). We have found 100 lipids species with a strong correlation with ruminant fat intake. This novel sample extraction along with the LCāMS pipeline have shown to be sensitive, robust and hugely informative (>450 lipids species semi-quantified): with a sample preparation throughput of over 100 tissue samples per day and an estimated ~1000 biological fluid samples per day. Thus, this work facilitating both the epidemiological involvement of ruminant fat, research into odd chain lipids and also streamlining the field of lipidomics (both by sample preparation methods and data presentation)
Role of Nutrition in Alcoholic Liver Disease: Summary of the Symposium at the ESBRA 2017 Congress.
The symposium, "Role of Nutrition in Alcoholic Liver Disease", was held at the European Society for Biomedical Research on Alcoholism Congress on 9 October 2017 in Crete, Greece. The goal of the symposium was to highlight recent advances and developments in the field of alcohol and nutrition. The symposium was focused on experimental and clinical aspects in relation to the role of different types of dietary nutrients and malnutrition in the pathogenesis of alcoholic liver disease (ALD). The following is a summary of key research presented at this session. The speakers discussed the role of dietary fats and carbohydrates in the development and progression of alcohol-induced multi-organ pathology in animal models of ALD, analyzed novel nutrition-related therapeutics (specifically, betaine and zinc) in the treatment of ALD, and addressed clinical relevance of malnutrition and nutrition support in ALD. This summary of the symposium will benefit junior and senior faculty currently investigating alcohol-induced organ pathology as well as undergraduate, graduate, and post-graduate students and fellows
Ethanol Impairs Estrogen Receptor Signaling Resulting in Accelerated Activation of Senescence Pathways, Whereas Estradiol Attenuates the Effects of Ethanol in Osteoblasts
Epidemiological and animal studies have suggested that chronic alcohol consumption is a major risk factor for osteoporosis. Using bone from cycling female rats infused chronically with ethanol (EtOH) in vivo and osteoblastic cells in vitro, we found that EtOH significantly increased estrogen receptor Ī± (ERĪ±) and Ī² (ERĪ²) mRNA and ERĪ± protein levels. Treatment with 17Ī²-estradiol (E2) in vivo and in vitro interfered with these effects of EtOH on bone and osteoblastic cells. ERĪ± agonist propylpyrazoletriol (PPT) and ERĪ² agonist diarylpropionitrile (DPN) attenuated EtOH-induced ERĪ± and ERĪ² gene overexpression, respectively. Similar to the ER antagonist ICI 182780, EtOH blocked nuclear translocation of ERĪ±-ECFP in the presence of E2 in UMR-106 osteoblastic cells. EtOH also downregulated ERE-luc reporter activity. On the other hand, EtOH by itself upregulated some common ERĪ±- and ERĪ²-mediated genes apparently by an ER-independent pathway. EtOH also transactivated the luciferase activity of the p21 promoter region independent of additional exogenous ERĪ±, activated p21 and p53, and stimulated senescence-associated Ī²-galactosidase activity in rat stromal osteoblasts. E2 treatment attenuated these EtOH actions. We conclude that inhibitory cross-talk between EtOH and E2 in osteoblasts on ERs, p53/p21, and cell senescence provides a pathophysiologic mechanism underlying bone loss and the protective effects of estrogens in alcohol-exposed females
Potential role of gut microbiota, the proto-oncogene PIKE (Agap2) and cytochrome P450 CYP2W1 in promotion of liver cancer by alcoholic and nonalcoholic fatty liver disease and protection by dietary soy protein
We have previously demonstrated promotion of diethylnitrosamine (DEN) initiated liver tumorigenesis after feeding diets high in fat or ethanol (EtOH) to male mice. This was accompanied by hepatic induction of the proto-oncogene PIKE (Agap2). Switch of dietary protein from casein to soy protein isolate (SPI) significantly reduced tumor formation in these models. We have linked EtOH consumption in mice to microbial dysbiosis. Adoptive transfer studies demonstrate that microbiota from mice fed ethanol can induce hepatic steatosis in the absence of ethanol suggesting that microbiota or the microbial metabolome play key roles in development of fatty liver disease. Feeding SPI significantly changed gut bacteria in mice increasing alpha diversity (P < 0.05) and levels of Clostidiales spp. Feeding soy formula to piglets also resulted in significant changes in microbiota, the pattern of bile acid metabolites and in inhibition of the intestinal-hepatic FXR/FGF19-SHP pathway which has been linked to both steatosis and hepatocyte proliferation. Moreover, feeding SPI also resulted in induction of hepatic PPAR alpha signaling and inhibition of PIKE mRNA expression coincident with inhibition of steatosis and cancer prevention. Feeding studies in the DEN model with differing dietary fats demonstrated tumor promotion specific to the saturated fat, cocoa butter relative to diets containing olive oil or corn oil associated with microbial dysbiosis including dramatic increases in Lachnospiraceae particularly from the genus Coprococcus. Immunohistochemical analysis demonstrated that tumors from EtOH-fed mice and patients with alcohol-associated HCC also expressed high levels of a novel cytochrome P450 enzyme CYP2W1. Additional adoptive transfer experiments and studies in knockout mice are required to determine the exact relationship between soy effects on the microbiota, expression of PIKE, CYP2W1, PPAR alpha activation and prevention of tumorigenesis
Stability of scaling regimes in developed turbulence with weak anisotropy
The fully developed turbulence with weak anisotropy is investigated by means
of renormalization group approach (RG) and double expansion regularization for
dimensions . Some modification of the standard minimal substraction
scheme has been used to analyze stability of the Kolmogorov scaling regime
which is governed by the renormalization group fixed point. This fixed point is
unstable at ; thus, the infinitesimally weak anisotropy destroyes above
scaling regime in two-dimensional space. The restoration of the stability of
this fixed point, under transition from to has been demonstrated
at borderline dimension . The results are in qualitative agreement
with ones obtained recently in the framework of the usual analytical
regularization scheme.Comment: 23 pages, 2 figure
Recommended from our members
Neither soyfoods nor isoflavones warrant classification as endocrine disruptors: a technical review of the observational and clinical data
Soybeans are a rich source of isoflavones, which are classified as phytoestrogens. Despite numerous proposed benefits, isoflavones are often classified as endocrine disruptors, based primarily on animal studies. However, there are ample human data regarding the health effects of isoflavones. We conducted a technical review, systematically searching Medline, EMBASE, and the Cochrane Library (from inception through January 2021). We included clinical studies, observational studies, and systematic reviews and meta-analyses (SRMA) that examined the relationship between soy and/or isoflavone intake and endocrine-related endpoints. 417 reports (229 observational studies, 157 clinical studies and 32 SRMAs) met our eligibility criteria. The available evidence indicates that isoflavone intake does not adversely affect thyroid function. Adverse effects are also not seen on breast or endometrial tissue or estrogen levels in women, or testosterone or estrogen levels, or sperm or semen parameters in men. Although menstrual cycle length may be slightly increased, ovulation is not prevented. Limited insight could be gained about possible impacts of in utero isoflavone exposure, but the existing data are reassuring. Adverse effects of isoflavone intake were not identified in children, but limited research has been conducted. After extensive review, the evidence does not support classifying isoflavones as endocrine disruptors
Scaling, renormalization and statistical conservation laws in the Kraichnan model of turbulent advection
We present a systematic way to compute the scaling exponents of the structure
functions of the Kraichnan model of turbulent advection in a series of powers
of , adimensional coupling constant measuring the degree of roughness of
the advecting velocity field. We also investigate the relation between standard
and renormalization group improved perturbation theory. The aim is to shed
light on the relation between renormalization group methods and the statistical
conservation laws of the Kraichnan model, also known as zero modes.Comment: Latex (11pt) 43 pages, 22 figures (Feynman diagrams). The reader
interested in the technical details of the calculations presented in the
paper may want to visit:
http://www.math.helsinki.fi/mathphys/paolo_files/passive_scalar/passcal.htm
A transnational and holistic breeding approach is needed for sustainable wheat production in the Baltic Sea region
The Baltic Sea is one of the largest brackish water bodies in the world. Eutrophication is a major concern in the Baltic Sea due to the leakage of nutrients to the sea with agriculture being the primary source. Wheat (Triticum aestivum L.) is the most widely grown crop in the countries surrounding the Baltic Sea and thus promoting sustainable agriculture practices for wheat cultivation will have a major impact on reducing pollution in the Baltic Sea. This approach requires identifying and addressing key challenges for sustainable wheat production in the region. Implementing new technologies for climate-friendly breeding and digital farming across all surrounding countries should promote sustainable intensification of agriculture in the region. In this review, we highlight major challenges for wheat cultivation in the Baltic Sea region and discuss various solutions integrating transnational collaboration for pre-breeding and technology sharing to accelerate development of low input wheat cultivars with improved host plant resistance to pathogen and enhanced adaptability to the changing climate.Peer reviewe
Differential Effects of Short Term Feeding of a Soy Protein Isolate Diet and Estrogen Treatment on Bone in the Pre-Pubertal Rat
BACKGROUND: Previous reports suggest that beneficial effects of soy on bone quality are due to the estrogenic actions of isoflavone phytochemicals associated with the protein. However, mechanistic studies comparing the effects of soy diet and estrogens on bone, particularly in rapidly growing animals are lacking. METHODOLOGY AND PRINCIPAL FINDINGS: We studied the effects of short term feeding of soy protein isolate (SPI) on bone in comparison to the effects of 17Ī²-estradiol (E2) in pre-pubertal rats. Female rats were weaned to one of 4 treatments: 1) a control casein-based diet (CAS); 2) CAS with subcutaneous E2 (10 Āµg/kg/d) (CAS+E2); 3) a SPI-containing diet (SPI); or 4) SPI with subcutaneous E2 (SPI) or SPI with 10 Āµg/kg/d E2 (SPI+E2) for 14 days beginning on postnatal day 20. SPI increased while E2 decreased bone turnover compared to CAS. In contrast, both treatments decreased serum sclerostin levels. Microarray analysis of RNA isolated from bone revealed 652 genes regulated by SPI, 491 genes regulated by E2, and 266 genes regulated by both SPI diet and E2 compared to CAS. The expression of caveolin-1, a protein localized in the cell membrane, was down-regulated (p<0.05) in rats fed SPI, but not by E2 compared to rats fed casein. Down-regulation of caveolin-1 by SPI was associated with increased BMP2, Smad and Runx2 expression in bone and osteoblasts (p<0.05). CONCLUSIONS/SIGNIFICANCE: These results suggest SPI and E2 have different effects on bone turnover prior to puberty. Approximately half of the genes are regulated in the same direction by E2 or SPI, but in combination, SPI blocks the estrogen effects and returns the profile towards control levels. In addition, there are E2 specific and SPI-specific gene changes related to regulation of bone formation
- ā¦