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The Baltic Sea is one of the largest brackish water bodies in the world. Eutroph-
ication is a major concern in the Baltic Sea due to the leakage of nutrients to
the sea with agriculture being the primary source. Wheat (Triticum aestivum
L.) is the most widely grown crop in the countries surrounding the Baltic Sea
and thus promoting sustainable agriculture practices for wheat cultivation will
have a major impact on reducing pollution in the Baltic Sea. This approach
requires identifying and addressing key challenges for sustainable wheat pro-
duction in the region. Implementing new technologies for climate-friendly
breeding and digital farming across all surrounding countries should promote
sustainable intensification of agriculture in the region. In this review, we high-
light major challenges for wheat cultivation in the Baltic Sea region and discuss
various solutions integrating transnational collaboration for pre-breeding and
technology sharing to accelerate development of low input wheat cultivars
with improved host plant resistance to pathogen and enhanced adaptability
to the changing climate.

Abbreviations – DDT, dichlorodiphenyltrichloroethane; DK, Denmark; ECPGR, European Cooperative Programme for Plant
Genetic Resources; EE, Estonia; FI, Finland; HCB, hexachlorobenzene; HCH, hexachlorocyclohexane; ICM, Integrated Crop
Management; IWYP, International wheat yield potential; LT, Lithuania; N, Nitrogen; NPPN, Nordic plant phenotyping network;
NUE, nitrogen use efficiency; PL, Poland; PPP, plant protection product; SE, Sweden; STB, Septoria tritici Blotch; WUE, water
use efficiency.
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Introduction

The Baltic Sea is a brackish (low-salinity) water body and
is considered to have obtained its present shape about
4000 years ago with over 250 rivers supplying freshwa-
ter (Ruskule et al. 2009). Marine pollution is a problem
worldwide, but it is particularly acute in semi-closed
seas. Baltic Sea is surrounded by land and is more at
risk of pollution than open marine areas, due to industry
and industrial agriculture, e.g. fertilizers and pesticides.
One of the main concerns with the Baltic Sea is eutroph-
ication – enrichment of water by nutrient compounds,
causing an accelerated growth of algae and higher forms
of plant life (Elmgren and Larsson 2001, Rönnberg and
Bonsdorff 2004, Andersen et al. 2017). Eutrophication
has increased in the Baltic Sea since 1950 and results
in the reduction of dissolved oxygen thereby harming
benthic organisms including fish and other aquatic life
(Elmgren and Larsson 2001). Agriculture is one of the
main sources for eutrophication due to nitrogen and
phosphorous runoff from fields and emissions from fertil-
izers and manure (Elmgren and Larsson 2001, HELCOM
2011). The main pathways for leakage of nutrients into
the sea are riverine inputs through the transportation of
nutrients from rivers into the sea (Stalnacke et al. 1999).

Toxic pollution by pesticides and disinfectants is
considered to be one of the main problems in the Baltic
Sea which has a major impact on its biological diver-
sity. Pesticides such as dichlorodiphenyltrichloroethane
(DDT), triazine derivatives, hexachlorobenzene (HCB)
or hexachlorocyclohexane (HCH) are toxic to aquatic
organisms (Rheinheimer 1998, Reindl et al. 2015). These
chemicals accumulate in food chains and can lead to
various damages including reproduction impairment,
and as a result they have been banned in the EU. In most
countries, work is currently underway to minimize the
use of pesticides in agriculture and to replace risky prod-
ucts with less toxic and easily degradable ones. After
the prohibition of DDT, concentration of this organic
pollutant in seals have fallen (Nyman et al. 2002). Con-
centrations of DDT in Baltic herring have now decreased
and reach only 5% of what they were in 1970s (Sapota
2006) but the work toward a minimal or even a zero-use
has to continue. How close to zero will depend, among
other things, on selecting crops and cropping systems
with less need for plant protection products.

According to the data supplied by European Crop Pro-
tection Association, the total amount of PPP used in the
EU increased steadily in the 1990s, stabilizing in the late
1990s and then declined (EUROSTAT 2007). However,
the total quantity of pesticides sold, expressed in active
substances, increased between 2011 and 2014. During
last decades, production techniques that use lower levels

of PPPs have been increasingly applied, especially in
organic farming. In parallel, new production techniques
that have a lower impact on health and environment also
have been introduced into the agronomic management
of crops. In particular, Integrated Crop Management
(ICM) is an approach that helps in reducing the depen-
dency on PPPs. Increasing genetic diversity of cultivars
will lead to considerable decrease in the pesticide use.

Based on the records available at the European statis-
tical system – EUROSTAT (The European Commission
2017), the total area under cereal cultivation in the eight
European countries (Denmark, Estonia, Finland, Ger-
many, Latvia, Lithuania, Poland and Sweden) bordering
the Baltic Sea was 19 million hectares (ha) in 2016,
of which, wheat (Triticum aestivum L.) is grown on 8
million ha, making it the most important cereal in the
region. The total area under wheat cultivation has grown
steadily with an increase of 11.8% from 2007 to 2016
resulting in an average increase of 1.18% per annum.
Wheat production in the region also increased by 12.6%
between 2007 and 2016 with an average increase of
1.26% per annum and the production reached 49
million tons in 2016. This increase in production is
attributed to the increase in acreage and improved
wheat breeding and agronomic practices. Winter wheat
has a larger share of the total wheat production in the
Baltic Sea region countries. Winter wheat usually pro-
duces higher yields than spring wheat, and winter wheat
production is expected to increase in the near future thus
making it an important crop for the region. However,
agricultural land is limited and thus sustained high grain
yields of wheat and especially winter wheat should be
produced with limited impact on the environment. This
requires addressing the challenges hindering sustainable
intensification of wheat production.

Key challenges for sustainable
wheat production

The climate in the Baltic Sea countries varies from mild
climate and high cultivation potential in Denmark, Ger-
many, Poland and southern Sweden to more challenging
climate in the northern parts of Finland and Sweden.
In addition to the natural variability in climate, global
warming has been observed during the past century. The
warming trend for the entire globe was about 0.05∘C per
decade from 1861 to 2000, while the trend for the Baltic
Sea basin has been upwards by 0.08 ∘C per decade (von
Storch et al. 2015). The length of the frost-free season
has increased in the Baltic Sea basin during this period
consequently increasing the length of the growing sea-
son (Ingver et al. 2016). A general increase in annual
precipitation is expected in certain areas, especially
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Table 1. Wheat traits relevant for Baltic Sea costal countries and their phenotyping needs. DK, Denmark; EE, Estonia; FI, Finland; LT, Lithuania; PL,
Poland; SE, Sweden.

Trait

Importance for
the entire

region
Country-specific

relevance

Current
phenotyping
approaches Current phenotyping limitations

1. Growth and development
Early vigor Low All Manual scoring Time-consuming to score large

number of plots
Root architecture High All Soil scoring Invasive, laborious
Heading time High All Manual scoring Time-consuming to score large

number of plots
Lodging High All Manual scoring Time-consuming to score large

number of plots
2. Physiology

Nutrient use efficiency High All Yield determination Complex trait, difficult to phenotype
Water use efficiency Medium All Yield determination Complex trait, difficult to phenotype

3. Abiotic stress tolerance
Winter hardiness High All Manual scoring Time-consuming to score large

number of plots
Drought tolerance Medium All Yield determination Time-consuming to score large

number of plots
4. Biotic stress resistance

Septoria tritici blotch (Zymoseptoria tritici) High All Manual scoring Difficult to separate from other
necrotrophes

Yellow rust (Puccinia striiformis) High DK, PL, SE Manual scoring Need nurseries to ensure good
scoring

Powdery mildew (Blumeria graminis) Medium DK, FI, LT Manual scoring Early season, time-consuming to
score large number of plots

Fusarium head blight (Fusarium spp.) High All Manual scoring Late season, toxin estimation is costly
Tan spot (Pyrenophora tritici-repentis) Medium to

High
DK, FI, LT Manual scoring Difficult to separate from other

necrotrophes
Septoria glume blotch (Stagonospora nodorum) Low All Manual scoring Difficult to separate from other

necrotrophes
Pink snow mold (Microdochium nivale) Medium All Manual scoring Can easily be confused with other

pathogens

in the northern parts of the Baltic Sea basin, while in
other parts, such as Denmark, the annual distribution
of the precipitation is changing. These precipitation
changes will affect the runoff into the Baltic Sea, with
potential increases in mean annual river flow occurring
from the northernmost regions together with decreases
in the southernmost regions (HELCOM 2007). These
challenges will affect the productivity of adapted wheat
cultivars to this region (Table 1).

Nutrient use efficiency and farm
management practices

Nitrogen (N) use efficiency (NUE) is defined as grain
production per unit of N available in the soil (Moll
et al. 1982). Wheat cultivars with high NUE are of
particular importance to reduce the amount of N left in
crop residue in field after harvest (Weih et al. 2011). The
development of high-NUE cultivars over the last 30 years
has been promising, partially spurred by national restric-
tions on the use of N-fertilizer (e.g. in Denmark), but

further improvements are needed (van Grinsven et al.
2012). Another important factor for an increased NUE in
wheat cultivation is the adjustment of N rate to the crop
needs and the conditions in the field (Raun et al. 2002).
High variation is found in N-optimum needs among
years, fields and also among different parts in the same
field. Several tools such as N-sensor (Yara International
ASA, Oslo, Norway), ISARIA sensor system (Fritzmeier
Umwelttechnik, Großhelfendorf, Germany), N-Tester
(Yara International ASA, Oslo, Norway), Greenseeker
(Trimble Agriculture, Sunnyvale, CA), Crop Circle (Hol-
land Scientific, Lincoln, NE) and CropScan (Cropscan
Inc., Rochester, NY) are available to assist farmers to
optimize the N-level during the season with the variable
N-rate technology. Use of such digital farming tools
for N optimization makes it possible for the farmers to
obtain high grain yields with low residual N in soil, thus
leading to lower environmental impacts in terms of N
leaching (Muñoz-Huerta et al. 2013). In some countries
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around the Baltic Sea, the new techniques are becom-
ing popular. For example in Sweden, as of 2017, 220
Yara N-Sensors are used on 18% of total winter wheat
acreage, while in some other countries, the N strategy
does adapt to the circumstances. N applications, late in
the growing season, are important for high grain yield,
although such applications also influence the grain
quality (Johansson et al. 2004, Johansson et al. 2013).
Thus, breeding for cultivars with known physiological
traits and the ability to obtain grain yield in a way that
promotes the possibility of adjustments to N rate, late in
the growing season, would be beneficial. It would then
increase the possibility to use different tools to predict
the actual N demand according to grain yield potential,
quality requirements and soil N delivery.

Abiotic stresses

Abiotic stresses such as winter and frost damage, flood-
ing and drought affect grain yield in the Baltic region,
and thus, cultivars adapted to the local abiotic stresses
are required (Ingver et al. 2010). The ability of winter
wheat to acclimate (harden) during autumn to survive the
extreme conditions in winter determines their northern
limit of distribution. Overwintering plants must be toler-
ant to both abiotic (frost, ice or water cover, soil heav-
ing, desiccation, plant starvation) and biotic [e.g. pink
snow mold caused by Microdochium nivale (Fr.) Samuels
& I.C. Hallett] stress factors. The winterkill factors vary
from region to region and from year to year. Winter
wheat acclimates at low non-freezing temperatures dur-
ing autumn but above-zero temperatures in the winter
cause de-acclimation and reduction in freezing toler-
ance and thus hampering overwintering. Typical prob-
lems with wheat overwintering are related to soil heaving
and damaging roots, ice encasement causing anoxia, too
deep snow cover increasing pathogen problems or lack
of snow resulting in freezing of plants and de-acclimation
(Bergjord et al. 2010, Jamalainen 1978). Extreme win-
ter spells after thawing cause up to 90% yield loss in
different regions, particularly in combination with low
snow coverage (Armonienė et al. 2013, Vico et al. 2014,
Gorash et al. 2017). In countries with colder weather
conditions, major winterkill factors are low freezing tem-
peratures (especially without snow cover) and pink snow
mold. The exceptionally short growing season with long
days, typically from 120 to 180 days, is limited by late
spring and early autumn frosts as well as solar availabil-
ity and uneven precipitation with dry spring and rainy
autumn (Mukula and Rantanen 1987). Due to global
warming, these thaw periods may become frequent and
unpredictable in many locations of the Baltic Sea region
(Vico et al. 2014). Hence, it is necessary to develop

freezing tolerant winter wheat cultivars that can with-
stand freezing temperature following thaw periods in the
region. Moreover, the presence of winter hardy wheat
cultivars on agricultural fields reduces nutrient leaching
to the ambient environment, thereby contributing to the
efforts to tackle further eutrophication of the Baltic Sea.

In coming decades, drought is expected to expand
globally due to the effects of increased evaporation and
reduced rainfall or changes in the spatial and tempo-
ral distribution of rainfall (Dai 2012). Late spring and
early summer drought (April, May and June) is observed
regularly in the region and is one of the main abi-
otic stresses decreasing grain yield dramatically (Mukula
and Rantanen 1987, Doroszewski et al. 2012, Tao et al.
2015). The likelihood of late spring drought periods is
also increasing in Sweden and Denmark in combina-
tion with more precipitations in the early spring and
late summer (The Swedish Commission on Climate and
Vulnerability 2007, Arheimer and Lindström 2015). Late
spring drought is particularly damaging for spring wheat
because, unlike winter wheat, roots in spring wheat are
not well developed at that time thus restricting access
to water from the deeper soil layers. In some regions of
Poland, up to 30% yield loss was observed in extreme
drought (Doroszewski et al. 2012). Hence, breeding for
both drought tolerance and high-yielding nutritionally
reach cultivars is necessary for spring wheat. Water use
efficiency (WUE) is the measure of the capacity of plants
to utilize the available water for producing biomass and
grain yield (Stanhill 1986). WUE increases the produc-
tivity of plants under water limited conditions (Passioura
2006, Reynolds and Tuberosa 2008). WUE was shown
to be higher in spikes than leaves and contributes with
up to 40% more carbon fixation under moisture stress
(Evans et al. 1972). Thus, WUE has important appli-
cations in breeding. In Poland, there are many areas
with nutrient poor soils where high yields cannot be
obtained (Fotyma 2000). Thus, field trials on such soils
are necessary to select for breeding lines well adapted to
poor soils. Screening of wheat genotypes in field trials,
high-throughput phenotyping facilities, freezing cham-
bers and genetic tools (mutagenesis or linkage and asso-
ciation mapping) are required to identify genotypes with
higher abiotic stress tolerance. New abiotic stress toler-
ant varieties can also be developed through approaches
that involve mutagenesis.

Biotic stresses

Another factor affecting the grain yield in cereals is
pathogens causing diseases of economic importance.
Several wheat diseases are common in the Baltic Sea
region including Septoria tritici Blotch (STB) (Zymosep-
toria tritici Desm.), tan spot [Pyrenophora tritici-repentis
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(Died.) Drechs.], Septoria glume blotch (Stagonospora
nodorum Berk.), leaf or brown rust (Puccinia triticina
Eriks.), yellow or stripe rust (Puccinia striiformis Westend
f. sp. tritici Erikss.), Fusarium head blight (Fusarium spp.),
powdery mildew [Blumeria graminis (DC.) Speer f. sp.
tritici Em. Marchal], and pink snow mold [M. nivale (Fr.)
Samuels & I.C. Hallett]. Depending on the season and
the location, the impact of these diseases on grain yield is
highly variable (Jørgensen et al. 2014). Major differences
in grain yield losses in the region were observed depend-
ing on the resistance of cultivars to diseases and STB was
found to be a major cause for yield loss in untreated trials
(Jørgensen et al. 2014). In recent years, new races of yel-
low rust were detected in Northern Europe increasing the
risk of new disease epidemics in the region (Hovmøller
et al. 2016). In Europe, stem rust (Puccinia graminis f.
sp. tritici Eriks. & E. Henn) was detected after several
decades on a single plant in the United Kingdom in 2013
(Lewis et al. 2018), and bigger sporadic outbreaks in cen-
tral Germany in 2013 (Olivera Firpo et al. 2017), Sicily in
2016 (Bhattacharya 2017) and in central Sweden in 2017
(Berlin 2017). Thus, major diseases, invasion of exotic
pathogen races and new emerging diseases are a major
threat to grain yield stability.

Another key challenge is knowing the appropriate
timing and dosage of fungicides for a given situation
(Jørgensen et al. 2017). Fungicides are used in a varying
extent in different countries with applications varying
from 1 to 3 treatments per season. Without fungicide
application, grain yields of up to 7 or 9 t ha−1 are
achievable in winter wheat but fungicide application
can increase the grain yield by up to 3 t ha−1 depend-
ing on the year and cultivar (Jørgensen et al. 2014).
Fungicide application in most cases could increase
grain quality like thousand grain weight and specific
weight/hectoliter weight. However, fungicides are gen-
erally seen as a cost-effective tool for farmers (Wiik and
Rosenqvist 2010).

Despite many attempts to improve thresholds for
applying fungicides, major uncertainties still exist and
also major barriers in adopting decision support systems
within the farming community have been recognized
(Jørgensen et al. 2008). A recent survey addressing fungi-
cide resistance confirmed widespread resistance in the Z.
tritici population to QoI fungicides and also an increas-
ing buildup of mutations related to azoles (Heick et al.
2017). The general desire to be less dependent on fungi-
cides and the increasing problems with fungicide resis-
tance, collectively calls for the more widespread use of
integrated pest management measures such as growing
cultivars with good resistance to major pathogens and
pests. In general, cultivars are developed with resistance
to some of the major diseases, yet fungicide application is

still a necessity on many occasions to minimize losses in
grain yields due to prevalence of mutliple diseases in the
region. The necessity is to develop reliable tools for accu-
rate disease forecasting that could help wheat growers in
choosing right product and application timing. In addi-
tion, high yielding cultivars are required with improved
resistance to various pathogens and pests in the region.

Optimizing phenotyping for disease resistance can be
done more effectively by including both field and green-
house methods. Some localities have climatic condition
more supportive for screening for specific pathogens
than others (e.g. snow mold in northern countries).
For other diseases, artificial inoculation with relevant
pathogens representative for the Baltic sea region can
be organized in either field trials or under greenhouse
conditions in order to optimize the selection for more
resistant cultivars.

Transnational Nordic-Baltic collaboration

For sustainable wheat cultivation in the region, wheat
cultivars with tolerance to low-temperature, freezing and
drought stress, improved NUE, WUE and improved resis-
tance to pathogens are necessary. These new cultivars
should also have stable and high yields and be adapted
to the environmental conditions of the Baltic Sea region.
Such cultivars in combination with efficient agronomic
practices can significantly reduce the impact of wheat
cultivation on the environment. However, develop-
ing such cultivars requires transnational collaboration
among researchers, breeders, farmers and policymakers.
A network focused on wheat breeding was established
recently with stakeholders from the Baltic Sea region
countries to address the issues on the sustainable cul-
tivation of wheat in the region (BalticWheat Network
2017). The network aims to identify strategies to develop
wheat cultivars for sustainable agriculture, involving
transnational collaboration with academia and industry
and utilizing existing resources and modern breeding
techniques.

Collaboration on genetic resources

Pre-breeding activities can significantly benefit from
transnational collaboration. Plant genetic resources hold
the key for adaptation of plants to climate change and
new disease pressures (Moose and Mumm 2008). Gene
banks in the Baltic Sea region have ex situ collections that
can be used in pre-breeding and for crop improvement
(Ingver et al. 2016). Local and exotic landraces, crop
wild relatives, and re-synthesized wheat can be deployed
in pre-breeding efforts, whereas advanced breeding lines
and cultivars can be used directly for crop improvement.
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In addition, breeding lines from regional breeding enter-
prises, and available cultivars in the market can also
be evaluated. The European Cooperative Programme for
Plant Genetic Resources (ECPGR) is a collaborative effort
among European countries to preserve, promote and uti-
lize plant genetic resources in Europe and maintains.
The Nordic Genetic Resource Centre (NordGen, Alnarp,
Sweden) is a Nordic gene bank that preserves landraces
and genotypes for promoting genetic diversity and sus-
tainable use of the material. Accessions deposited at
NordGen were evaluated earlier for several agronomic
traits. The spring wheat accessions at NordGen were ana-
lyzed for morphological traits and diversity was observed
for various traits including plant height, spike length,
seed shattering, days to heading and lodging (Diederich-
sen et al. 2012). In another study, winter wheat acces-
sions from NordGen displayed variation for plant height,
grain yield and monomeric sugars (Bellucci et al. 2015).
These studies further highlight the importance of these
genotypes and the potential for their use for commercial
breeding in the Baltic Sea region.

Collaboration for the use of experimental
infrastructures and analytical platforms

For the evaluation of plant genetic resources, several
high-throughput phenotyping greenhouse facilities are
available in the Nordic region such as the Finnish
National Plant Phenotyping (NaPPI) facility at the
University of Helsinki, Finland and the PhenoLab at
the University of Copenhagen, Denmark. These auto-
mated facilities allow assessment of plant growth rates
and developmental timing in time course experiments
(Pavicic et al. 2017). These experiments can also be
complemented with (a)biotic challenges and other
environmental treatments for assessing physiologi-
cal responses in the cultivar collections. Some special
screening facilities have also been established such as the
semi-field facility RadiMax for screening for deep rooting
genotypes (University of Copenhagen, Denmark). Some
of these facilities can be the first steps for screening
large numbers of genotypes for automated evaluation of
early vigor, NUE, WUE, abiotic stresses, deep rooting as
well as other morphological and physiological traits. For
a fewer number of accessions, high-precision growth
facilities in Sweden such as the Biotron and Phytotron
at the Swedish University of Agricultural Sciences (SLU)
can be used for characterizing them for abiotic and
biotic stresses; and facilities at the Aarhus University
in Denmark for biotic stresses, fungicide resistance
and 3D imaging of plants. The freezing chambers at
Lithuanian Research Centre for Agriculture and Forestry
(LAMMC) in Lithuania can provide further evaluation

of wheat genotypes for winter hardiness. A Nordic
university hub called NordPlant with five Nordic uni-
versities was recently established to collaborate and
share the experimental infrastructures in the Nordic
region for research and education and to meet future
challenges in agriculture (www.nordplant.org). Nordic
plant phenotyping network (NPPN) was established with
Nordic and Baltic partners to develop and share tech-
nological advancements in plant phenotyping (www
.nordicphenotyping.org). The European plant pheno-
typing network (EPPN2020) was established to promote
transnational access to phenotyping infrastructures
across Europe (www.eppn2020.plant-phenotyping.eu/).

Plant phenotypes also have plasticity that causes trait
variation in response to environmental conditions and
agricultural management practices (Gratani 2014). To
assess agronomic traits, phenotyping experiments need
to be performed in field conditions (Großkinsky et al.
2015a), where proximal and aerial field phenotyping are
available for example at SLU (Sweden) and Copenhagen
University (Denmark). For some of the traits, DNA mark-
ers can be developed for further selection of the progeny
lines by genomic selection (Desta and Ortiz 2014,
Bassi et al. 2016). Integrating multi-omics techniques
and physiological phenotyping can help in unraveling
complex molecular mechanisms underlying quantitative
traits (Großkinsky et al. 2018). The need to integrate
physiological phenotyping into a holistic phenomics
approach (Großkinsky et al. 2015b) assessing the under-
lying mechanisms is addressed by the establishment of
semi-high-throughput analytical assay for the determina-
tion of activity signatures of key enzymes of carbohydrate
and antioxidant metabolism (Jammer et al. 2015), phy-
tohormone profiles (Grosskinsky et al. 2011) and online
monitoring of photosystem II activity by PAM chlorophyll
fluorescence (University of Copenhagen, Denmark). Var-
ious omics techniques can be used to identify candi-
date genes for the underlying traits (Chawade et al. 2012,
Chawade et al. 2013) for developing gene specific mark-
ers (Chawade et al. 2016) or silencing the candidate
genes in new genotypes with targeted mutagenesis tech-
niques such as CRISPR/CAS9 (Kim et al. 2017).

Overall, key traits can be evaluated in hundreds
of genotypes by efficiently utilizing modern facilities
and advanced techniques and a fewer selected geno-
types can then undergo field trials at various Baltic Sea
region or be used in breeding for introgression of such
traits depending on the source of the desirable traits.
Taken together, the facilities that are available for the
BalticWheat Network offer an opportunity to assess the
plant genetic resources for selecting genotypes with key
trait variation adapted to the local conditions and future
climate scenarios.
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Collaboration for multi-environment trials

Wheat breeding in the region is conducted at com-
panies in Denmark (Sejet and Nordic Seed), Finland
(Boreal Plant Breeding Ltd), Norway (Graminor), Sweden
(Lantmännen Lantbruk) and also at institutions in Esto-
nia (ECRI), and Lithuania (LAMMC). In Poland, conven-
tional breeding is done mainly by the commercial breed-
ing stations Danko, Poznań Plant Breeding, Strzelce,
Smolice supported by Plant Breeding and Acclimatiza-
tion Institute – National Research Institute and univer-
sities. Although many of these organizations conduct
field trials in more than one country, identifying climate
change hotspots with key environmental differences in
different regions will help in resourceful trials and effi-
cient selection of breeding lines. For example, yellow
rust has been a major disease in Sweden and Den-
mark for years but only recently increased in Estonia.
Drought in late spring was mainly noted in Poland and
Estonia in recent years and water stress in Estonia is
expected to increase by 2040 (Luo et al. 2015). Strong
winters are observed in the Baltic countries while they
are relatively milder in southern Sweden and Denmark
(Peltonen-Sainio et al. 2015). These hotspots in differ-
ent countries can be efficiently explored in field trials
for selecting climate-resilient breeding lines with high
yield and grain quality. Several international collabora-
tive efforts have been initiated to tackle challenges with
wheat breeding. In Europe, a transnational collaborative
project Whealbi was initiated to increase the diversity
of wheat cultivars in Europe (www.whealbi.eu). Inter-
national wheat initiative was launched to coordinate
worldwide research efforts for wheat improvement (www
.wheatinitiative.org). International wheat yield potential
initiative (IWYP) was launched to increase the wheat
yield potential by 50% in the next two decades (www
.iwyp.org). Lessons learned from these international ini-
tiatives will aid defining collaborative tasks for improving
wheat cultivars for the Baltic region.

Organic farming based on low input cultivars or agri-
cultural techniques can reduce the eutrophication of the
Baltic Sea (Granstedt 2012). Wide adaptation of organic
farming methods would further reduce the spread of
chemicals on farmland, benefit biodiversity and stim-
ulate social and economic development in rural areas
in the Baltic Sea region (Granstedt 2012). Lantmännen
in Sweden has a small breeding program specifically
for organic farming as the program incorporates com-
mon bunt (Tilletia tritici Bjerk.) and dwarf bunt (Tilletia
controversa Kühn) resistance. NordGen has tested a
subset of their wheat collection for host plant resistance
to common bunt in collaboration with organic breeders.
For organic production, Tilletia resistance is important

as it is the only means of controlling the seed trans-
mitted fungi when there is no chemical seed treatment
available. Organic wheat trials are also carried out at
ECRI, Estonia since 2005. A few promising breeding lines
have been included in the Estonian trials and recommen-
dations for suitability to cultivate in organic conditions
are included in the characteristics of new cultivars. The
material tested in local organic trials can be tested fur-
ther for multi-environment trials and evaluation in the
neighboring countries. In spite of the ongoing efforts
aimed at breeding cultivars for organic production, the
majority of Value for Cultivation or Use tests (VCU) are
done in conventional conditions with limited nitrogen
and fungicide applications. Very often, organic produc-
tion of wheat is based on old cultivars, most of which are
cultivated in parallel with cultivars developed by conven-
tional crossbreeding programs. Hence, the establishment
of a network of field trials for organic farming can moti-
vate breeders to test their breeding material.

Joining forces to create synergism for a
holistic, multidimensional pre-breeding
research: taking omics to the fields

The improvement of wheat cultivars for the Baltic region
in terms of, for instance, enhanced NUE will target plant
processes at the molecular and individual plant scales,
while the intended effects from cultivar improvement
include the reduced eutrophication in the Baltic Sea area
and therefore relate to the landscape and regional scales.
Research is required to link these different scales, which
can be achieved by investigating key physiological pro-
cesses at the molecular level (e.g. in high-throughput
phenotyping facilities), and assessing the effects of plant
physiological modifications on the NUE of field-grown
plants and crops at higher scales (Weih et al. 2017).
For example, the environmental impact of improved N
uptake in barley cultivars through plant breeding was
assessed in a Swedish scenario study (Tidåker et al.
2016). Similar research should be performed for assess-
ing the environmental consequences of NUE-improved
wheat cultivars on nutrient inputs into surface waters of
the Baltic Sea region.

Working across disciplines and environments is
necessary to describe, understand and predict how
to grow wheat in the changing climate. It is impor-
tant to define the research priorities (‘hotspots’) in the
Baltic Sea region. Not only the classical agronomic
considerations (grain yield potential, length of grow-
ing period, lodging resistance), and quality aspects
(protein and gluten contents in the grain) are of interest
in cultivar selection by farmers but in the future also
production characteristics (end-use grain quality) and
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the demands within climate change scenarios (grain
yield and quality stability) will need to be increasingly
considered. The success of collaboration depends on
the engagement of researchers and stakeholders in the
region. They should gain a better understanding of culti-
var× environment×management system interactions to
identify genotypes better adapted to the Baltic Sea coun-
tries through multi-environment field trials and shared
use of special infrastructures and analytical platforms
and expertise.

Conclusions and future perspectives

Obtaining high yields while reducing the impact of
wheat production on the environment requires increas-
ing the genetic diversity of cultivated wheat in the
region and applying modern breeding techniques for
selection. Participatory breeding approaches utilizing
environmental hotspots and climate change scenarios
will facilitate selection of breeding lines adapted to the
local environment and the changing climate. Precision
farming with improved agronomic practices, integrated
pest management and supportive governmental policies
are necessary to reduce the impact of agriculture on
the environment. Thus, a transnational and holistic
approach for pre-breeding, breeding and farming will
enable the stakeholders to reach the goal of sustainable
intensification of wheat production in the Baltic Sea
region. The developed strategies could then serve as a
model for a cross-border, multinational collaboration to
solve geographically localized challenges in agriculture
that affect several neighboring countries.
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