182 research outputs found

    Joint Resource Allocation for eICIC in Heterogeneous Networks

    Full text link
    Interference coordination between high-power macros and low-power picos deeply impacts the performance of heterogeneous networks (HetNets). It should deal with three challenges: user association with macros and picos, the amount of almost blank subframe (ABS) that macros should reserve for picos, and resource block (RB) allocation strategy in each eNB. We formulate the three issues jointly for sum weighted logarithmic utility maximization while maintaining proportional fairness of users. A class of distributed algorithms are developed to solve the joint optimization problem. Our framework can be deployed for enhanced inter-cell interference coordination (eICIC) in existing LTE-A protocols. Extensive evaluation are performed to verify the effectiveness of our algorithms.Comment: Accepted by Globecom 201

    Correlating Heteroatoms Doping, Electronic Structures, and Photocatalytic Activities of Single‐Atom‐Doped Ag25(SR)18 Nanoclusters

    Get PDF
    Atomic‐level manipulation of catalysts is important for both fundamental studies and practical applications. Here, the central metal atom in an atomically precise Ag25 nanocluster (NC) is replaced with a single Pd, Pt, and Au atom, respectively, and employed as a model system to study the structure–property–activity relationship at the atomic level. While the geometric structures are well‐preserved after doping, the electronic structures of Ag25 NCs are significantly altered. The combination of Ag25 and TiO2 enhances the charge separation at the interface, exhibiting a 10 times higher hydrogen production rate in photocatalytic hydrogen evolution reaction compared to bare TiO2. Further results show that heteroatoms doping has a negative impact on performance, particularly in the cases of Pd and Au doping. Ultraviolet photoelectron spectroscopy measurements and density functional theory calculations suggest that the lower activities are due to an energy mismatch between the levels of doped NCs and TiO2. These findings not only reveal the impact of heteroatoms doping on the electronic properties and photocatalytic activities of NCs, but can also guide the design of heterometallic NCs for photocatalytic applications

    Correlating Heteroatoms Doping, Electronic Structures, and Photocatalytic Activities of Single‐Atom‐Doped Ag25(SR)18 Nanoclusters

    Get PDF
    Atomic‐level manipulation of catalysts is important for both fundamental studies and practical applications. Here, the central metal atom in an atomically precise Ag25 nanocluster (NC) is replaced with a single Pd, Pt, and Au atom, respectively, and employed as a model system to study the structure–property–activity relationship at the atomic level. While the geometric structures are well‐preserved after doping, the electronic structures of Ag25 NCs are significantly altered. The combination of Ag25 and TiO2 enhances the charge separation at the interface, exhibiting a 10 times higher hydrogen production rate in photocatalytic hydrogen evolution reaction compared to bare TiO2. Further results show that heteroatoms doping has a negative impact on performance, particularly in the cases of Pd and Au doping. Ultraviolet photoelectron spectroscopy measurements and density functional theory calculations suggest that the lower activities are due to an energy mismatch between the levels of doped NCs and TiO2. These findings not only reveal the impact of heteroatoms doping on the electronic properties and photocatalytic activities of NCs, but can also guide the design of heterometallic NCs for photocatalytic applications.Heteroatoms doping alters the electronic structures of Ag25 nanoclusters (NCs), while keeping the geometric structures unchanged. In this way, the geometrical effects and the electronic effects are clearly distinguished. The photocatalytic activities of as‐prepared NCs deposited onto TiO2 are investigated. The performances follow the order of Ag25 ≥ PtAg24 > PdAg24 ≥ AuAg24. image © 2023 WILEY‐VCH GmbHDFG http://dx.doi.org/10.13039/501100001659China Scholarship Council http://dx.doi.org/10.13039/501100004543Peer Reviewe

    Laser-Like Emission from a Sandwiched MoTe2 Heterostructure on a Silicon Single-Mode Resonator

    Get PDF
    Molybdenum ditelluride (MoTe2) has recently shown promise as a gain material for silicon photonics. Reliable single-mode operation and material stability remain two of the major issues that need to be addressed to advance this exciting technology, however. Here, laser-like emission from a sandwiched MoTe2 heterostructure on a silicon single-mode resonator is reported. The heterostructure consists of a layer of MoTe2 sandwiched between thin films of hexagonal boron nitride. It is known that tellurium compounds are sensitive to oxygen exposure, which leads to rapid degradation of the exposed layers in air. By encapsulating the MoTe2 gain material, much improved environmental stability is observed. Using a recently introduced single-mode resonator design, better control over the mode spectrum of the cavity is exercised and single-mode operation with a wide free spectral range is demonstrated. At room temperature, a Q-factor of 4500 and a threshold of 4.2 kW cm−2 at 1319 nm wavelength are achieved. These results lend further support to the paradigm of 2D material-based integrated light sources on the silicon platform

    Efficient Silicon Metasurfaces for Visible Light

    Get PDF
    Dielectric metasurfaces require high refractive index contrast materials for optimum performance. This requirement imposes a severe restraint; either devices have been demonstrated at wavelengths of 700 nm and above using high-index semiconductors such as silicon, or they use lower index dielectric materials such as TiO2 or Si3N4 and operate in the visible wavelength regime. Here, we show that the high refractive index of silicon can be exploited at wavelengths as short as 532 nm by demonstrating a crystalline silicon metasurface with a transmission efficiency of 71% at this wavelength and a diffraction efficiency of 95% into the desired diffraction order. The metasurfaces consist of a graded array of silicon posts arranged in a square lattice on a quartz substrate. We show full 2π phase control, and we experimentally demonstrate polarization-independent beam deflection at 532 nm wavelength. Our results open a new way for realizing efficient metasurfaces based on silicon for the technologically all-important display applications
    corecore