28,192 research outputs found

    From 3D Point Clouds to Pose-Normalised Depth Maps

    Get PDF
    We consider the problem of generating either pairwise-aligned or pose-normalised depth maps from noisy 3D point clouds in a relatively unrestricted poses. Our system is deployed in a 3D face alignment application and consists of the following four stages: (i) data filtering, (ii) nose tip identification and sub-vertex localisation, (iii) computation of the (relative) face orientation, (iv) generation of either a pose aligned or a pose normalised depth map. We generate an implicit radial basis function (RBF) model of the facial surface and this is employed within all four stages of the process. For example, in stage (ii), construction of novel invariant features is based on sampling this RBF over a set of concentric spheres to give a spherically-sampled RBF (SSR) shape histogram. In stage (iii), a second novel descriptor, called an isoradius contour curvature signal, is defined, which allows rotational alignment to be determined using a simple process of 1D correlation. We test our system on both the University of York (UoY) 3D face dataset and the Face Recognition Grand Challenge (FRGC) 3D data. For the more challenging UoY data, our SSR descriptors significantly outperform three variants of spin images, successfully identifying nose vertices at a rate of 99.6%. Nose localisation performance on the higher quality FRGC data, which has only small pose variations, is 99.9%. Our best system successfully normalises the pose of 3D faces at rates of 99.1% (UoY data) and 99.6% (FRGC data)

    Exploring jet-launching conditions for SFXTs

    Get PDF
    In the magneto-centrifugal mechanism for jet formation, accreting neutron stars are assumed to produce relativistic jets only if their surface magnetic field is weak enough (B∼108B \sim 10^8 G). However, the most common manifestation of neutron stars are pulsars, whose magnetic field distribution peaks at B∼1012B \sim 10^{12} G. If the neutron star magnetic field has at least this strength at birth, it must decay considerably before jets can be launched in binary systems. We study the magnetic field evolution of a neutron star that accretes matter from the wind of a high-mass stellar companion so that we can constrain the accretion rate and the impurities in the crust, which are necessary conditions for jet formation. We solved the induction equation for the diffusion and convection of the neutron star magnetic field confined to the crust, assuming spherical accretion in a simpliflied one-dimensional treatment. We incorporated state-of-the-art microphysics, including consistent thermal evolution profiles, and assumed two different neutron star cooling scenarios based on the superfluidity conditions at the core. We find that in this scenario, magnetic field decay at long timescales is governed mainly by the accretion rate, while the impurity content and thermal evolution of the neutron star play a secondary role. For accretion rates M˙≳10−10\dot{M}\gtrsim10^{-10} M⊙_{\odot} yr−1^{-1}, surface magnetic fields can decay up to four orders of magnitude in ∼\sim107^7 yr, which is the timescale imposed by the evolution of the high-mass stellar companion in these systems. Based on these results, we discuss the possibility of transient jet-launching in strong wind-accreting high-mass binary systems like supergiant fast X-ray transients.Comment: 8 pages, 8 figures. Accepted for publication in A&

    Kernel-based Inference of Functions over Graphs

    Get PDF
    The study of networks has witnessed an explosive growth over the past decades with several ground-breaking methods introduced. A particularly interesting -- and prevalent in several fields of study -- problem is that of inferring a function defined over the nodes of a network. This work presents a versatile kernel-based framework for tackling this inference problem that naturally subsumes and generalizes the reconstruction approaches put forth recently by the signal processing on graphs community. Both the static and the dynamic settings are considered along with effective modeling approaches for addressing real-world problems. The herein analytical discussion is complemented by a set of numerical examples, which showcase the effectiveness of the presented techniques, as well as their merits related to state-of-the-art methods.Comment: To be published as a chapter in `Adaptive Learning Methods for Nonlinear System Modeling', Elsevier Publishing, Eds. D. Comminiello and J.C. Principe (2018). This chapter surveys recent work on kernel-based inference of functions over graphs including arXiv:1612.03615 and arXiv:1605.07174 and arXiv:1711.0930

    The Kepler problem and non commutativity

    Full text link
    We investigate the Kepler problem using a symplectic structure consistent with the commutation rules of the noncommutative quantum mechanics. We show that a noncommutative parameter of the order of 10−58m210^{-58} \text m^2 gives observable corrections to the movement of the solar system. In this way, modifications in the physics of smaller scales implies modifications at large scales, something similar to the UV/IR mixing.Comment: 10 page

    High electrical conductance enhancement in Au-nanoparticle decorated sparse single-wall carbon nanotube networks

    Get PDF
    The authors thank the Engineering and Physical Science Research Council for funding through the Imperial College London/Queen Mary Unive

    Cosmological Constant and Noncommutativity: A Newtonian point of view

    Full text link
    We study a Newtonian cosmological model in the context of a noncommutative space. It is shown that the trajectories of a test particle undergo modifications such that it no longer satisfies the cosmological principle. For the case of a positive cosmological constant, spiral trajectories are obtained and corrections to the Hubble constant appear. It is also shown that, in the limit of a strong noncommutative parameter, the model is closely related to a particle in a G\"odel-type metric.Comment: 14 pages, 3 figures, Introduction was changed and references added. Final version accepted for publication in JMPL

    Spheromak formation and sustainment studies at the sustained spheromak physics experiment using high-speed imaging and magnetic diagnostics

    Get PDF
    A high-speed imaging system with shutter speeds as fast as 2 ns and double frame capability has been used to directly image the formation and evolution of the sustained spheromak physics experiment (SSPX) [E. B. Hooper et al., Nucl. Fusion 39, 863 (1999)]. Reproducible plasma features have been identified with this diagnostic and divided into three groups, according to the stage in the discharge at which they occur: (i) breakdown and ejection, (ii) sustainment, and (iii) decay. During the first stage, plasma descends into the flux conserver shortly after breakdown and a transient plasma column is formed. The column then rapidly bends and simultaneously becomes too dim to photograph a few microseconds after formation. It is conjectured here that this rapid bending precedes the transfer of toroidal to poloidal flux. During sustainment, a stable plasma column different from the transient one is observed. It has been possible to measure the column diameter and compare it to CORSICA [A. Tarditi et al., Contrib. Plasma Phys. 36, 132 (1996)], a magnetohydrodynamic equilibrium reconstruction code which showed good agreement with the measurements. Elongation and velocity measurements were made of cathode patterns also seen during this stage, possibly caused by pressure gradients or E×B drifts. The patterns elongate in a toroidal-only direction which depends on the magnetic-field polarity. During the decay stage the column diameter expands as the current ramps down, until it eventually dissolves into filaments. With the use of magnetic probes inserted in the gun region, an X point which moved axially depending on current level and toroidal mode number was observed in all the stages of the SSPX plasma discharge

    Understanding the Environmental and Genetic Influence on Fluctuating Asymmetry and Developmental Instability in Primates

    Get PDF
    This dissertation explored the impact of environmental factors on the development and perpetuation of fluctuating asymmetry (FA) and sought to understand the role evolution may play in the FA exhibited in two primate populations: the free-ranging Cayo Santiago rhesus macaques (Macaca mulatta) and the Southwest National Primate Research Center olive baboons (Papio hamadryas anubis). Demographic, ontogenetic, secular, external, and genetic factors were examined. Specifically, this dissertation investigated FA over all ontogenetic stages, across decades, between sexes, in association with ecological catastrophes, and with tooth pathology to try and tease apart factors that may influence FA and developmental instability. This dissertation also estimated the heritability and evolvability of FA and used FA levels over decades to examine the role of evolutionary mechanisms on FA. In all, results show that the age at which a macaque experiences a hurricane and baboon antemortem tooth loss impact levels of FA. They also show that sex-related differences are present in the population of baboons but not the macaques. Additionally, FA does not seem to change ontogenetically in either the macaque or baboon population, and secular changes were only found in male baboons where FA decreased over time. Lastly, the heritability and evolvability of FA in the macaque and baboon populations were extremely low, though higher in baboons than macaques. This work suggests that FA levels may be sex-specific in species with extreme sexual dimorphism, and FA generally seems not to change over ontogeny in these populations. Secular changes in FA appear possible in primates, although the pattern remains ambiguous. This work also shows that ecological catastrophes such as hurricanes are likely critical determinants of FA later in life if experienced in utero. Lastly, FA seems to have some additive genetic variation that is subject to selection, though minimal. Overall, this work offers additional resolution in teasing apart factors contributing to FA and points to minimal genetic influence on FA levels
    • …
    corecore