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ABSTRACT 

We report high electrical conductivity enhancement in sparse single-walled carbon nanotube networks 

by decoration with Au nanoparticles. The optimised hybrid network exhibited a sheet resistance of 

650 /sq: 1/1500 of the resistance of the host undecorated network, with a negligible optical 

transmission penalty (>90% transmittance at 550 nm wavelength).  The electrical transport at room 

temperature in host and decorated networks was dominated by 2-dimensional variable range hopping. 

The high conductance enhancement was due to positive charge transfer from the decorating Au 

nanoparticles in intimate contact with the host network causing a Fermi energy shift into the high 

density of states at a van Hove singularity and enhanced electron delocalisation relative to the host 

network which beneficially modifies the hopping parameters in such a way that the network behaves 

as an integral whole. The effect is most pronounced when the nanoparticle diameter is comparable to 

the electron mean free path in the bulk material at room temperature and there is minimum 

nanoparticle agglomeration. For higher than optimal values of nanoparticles per unit area or 

nanoparticle diameter, the conductivity enhancement is countered by metallic inclusions in the current 

pathways that are of higher resistance than the VRH-controlled elements. 

 

1. INTRODUCTION 

Individual single-walled carbon nanotubes (SWNTs) have desirable electrical, optical, thermal, and 

mechanical properties that suggest they are ideal elements for flexible transparent conducting 

networks with indium-doped tin oxide (ITO)-matching electrical and optical performance [1-3].  An 
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ideal SWNT network will have individual metallic SWNTs as the electrically conducting element, 

have zero inter-tube contact resistance, and be relatively ordered to minimise adverse electrical 

transport effects. The on- and off-tube optical transmission penalties for achieving the target sheet 

resistance of <100 /sq must be minimised to achieve the target optical transmission of 90 % at 550 

nm wavelength. Furthermore, the network must be chemically pristine to minimise device degradation 

and have a comparable work function and surface roughness to ITO films. 

 

Actual SWNT networks are non-ideal since individual SWNTs of both semiconducting and metallic 

conduction types are produced by conventional syntheses, and some impurities can escape (or be 

introduced by) purification and filtration. The basic element is invariably a bundle rather than an 

individual SWNT and the use of ultrasonication to de-bundle in solution causes defectiveness and 

shortening [4]. Consequently there are large energy barriers at metal-semiconductor interfaces and 

disorder is introduced by the impurities and processing. Therefore, both the electrical transport within 

the bundle and the inter-bundle contact resistance has greatest influence on the electrical transport 

within the network as a whole [5, 6]. Solution processing typically requires the use of surfactants 

which can adversely impact on inter-tube resistance.  

 

Handling in air also results in significant modification of electrical conductivity through exposure to 

oxygen and atmospheric humidity [7, 8] through donor- or acceptor-like charge transfer from weakly 

absorbed species which affects the position of the Fermi energy and hence the conductivity of the 

network. The absorption of gaseous species on the surface or inside of a nanotube bundle is stronger 

than that on an individual SWNT but is reversible [8, 9]. Oxygen-exposed networks have p-type 

characteristics due to transfer of 0.1e- in the charge transfer complex C+-O2
-7; subsequent adsorption 

of an electron from donor-like molecules will induce an increase of the resistance and the interaction 

with acceptor-like molecules will lead to a decrease of the resistance. In air-exposed networks, water 

molecules are donor-like and serve to compensate the electron acceptor effect of oxygen content [8-
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10]. Consequently, the gas exposure history of a nanotube networks plays a critical role in 

determining the value of room temperature sheet resistance. 

 

Many attempts have been made to optimise the room temperature conductance of nanotube networks 

by the chemical doping and hybridization with a host network of guest components by various 

methods, including acid treatment [11, 12], decoration by metal nanoparticles [3, 13], production of 

conducting polymer composite films [14] and graphene-SWNT networks [15].  

 

The electrical transport properties of SWNT networks have been successfully described by a multi-

component model involving metallic conduction interrupted by thin tunnel barriers, backscattering by 

zone-boundary phonons, fluctuation-assisted tunnelling, and variable-range hopping (VRH); the latter 

being tunnelling between localised states assisted by absorption of phonons. The relative contribution 

of each component is a function of network thickness: with VRH dominating the thinnest networks 

and metallic contribution increasing with thickness [16, 17]. The use of enriched metallic SWNT 

populations and purification through ultracentrifugation inevitably result in good electrical 

performance of SWNT networks through minimising both the semiconductor-metal junction density 

and disorder [7]. The high inter-bundle contact resistance is the main obstacle to enhancement of the 

electrical performance of SWNT networks [5, 6]. Inter-bundle contact resistances can be minimised 

by careful removal of residual surfactant [11].  

 

Modification of the inter-bundle contacts via metal-nanoparticle decoration of the SWNT surface to 

obtain hybrid networks is gaining interest. This approach is driven by the observation of a factor of 

nine reduction of contact resistance between two individual SWNTs by placing a gold nanoparticle 

physically proximate to the junction and the prediction of resonant tunnelling through nanoparticle 

states [18, 19]. The electronic interaction between the nanotube network and the metal nanoparticles 

is of great interest due to the promise of selective gas sensing by exploiting differential analyte-

nanoparticle reactivity and the consequent charge exchanges with the network [20], and useful 

plasmonic and thermoelectric benefits from such hybrid systems [21, 22]. However, the metal 
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nanoparticle-network interaction is poorly understood but the experimental data points to Au 

decoration of an individual SWNT resulting in electron transfer from the nanotube to the nanoparticle 

[13, 23, 24] and the formation of a potential barrier at the SWNT-metal interface where the barrier 

characteristics depend on the work function of the metal [25-27]. Computational predictions point to 

dramatic fluctuations in electronic density at the SWNT-metal interface being the origin of the 

potential barrier [28]. 

 

Many approaches for the preparation of such hybrid networks have been reported, including, physical 

evaporation of metal nanoparticles onto the SWNT network, nanoparticle attachment by chemical 

reaction with functionalised SWNTs, and electroless nanoparticle deposition methods [24, 29-33]. 

The room temperature sheet resistance of the resultant hybrid networks has been reported to be both 

increased [34, 35] and decreased [29] relative to the un-decorated SWNT network. The impact of 

nanoparticle decoration on the underlying electrical conduction mechanism of the host network is 

seldom elucidated beyond evocation of improved contact area between the elements of the network, 

general doping effects from SWNT nanoparticle bridging materials [36], work function increase 

through the doping effect of charge transfer from the nanoparticle [13], and disorder introduced by the 

processing [37].  

 

The best enhancement of electrical conductivity reported to date is a 1/25 reduction of room 

temperature sheet resistance of a few-walled carbon nanotube network by Pd-nanoparticle decoration 

with an optical transmittance of 81.65% below the target figure of 90% at 550 nm wavelength [13].  

The barrier to progress is largely conceptual: the room temperature sheet resistance is not a useful 

figure of merit since it embraces the many physical variables contained within the multiple 

component electrical conduction mechanism. A much better approach would be to drive optimisation 

by knowledge of the impact of nanoparticle decoration on each component of electrical conduction. 

Obtaining this knowledge is made difficult by the complex intra- and inter-bundle current pathways. 
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Here we present a systematic study of electrical transport in sparse SWNT networks decorated with 

Au nanoparticles relative to that of the host network. Sparse host networks were selected because the 

electrical transport was dominated by a single component, namely VRH. DFT calculations indicate 

that O2 dissociation at the Au nanoparticle surface is energetically unfavourable, therefore, the 

expectation was of reinforcement of the p-type character of undecorated networks (due to handling in 

air) by Au nanoparticle decoration (due to the Fermi energy shift caused by electron transfer from the 

SWNTs to the Au nanoparticle) with no additional C-O charge transfer complexes on the surface of 

the nanoparticle [28]. We investigate electrical transport as a function of nanoparticle diameter and 

coverage using an electroless and a spraying method of nanoparticle decoration. We found that a 

1/1500 reduction in room temperature sheet resistance of the host network can be achieved by 

optimised Au nanoparticle decoration through beneficial modification of the VRH transport caused by  

the Fermi energy shift, while maintaining over 90% optical transmittance at 550 nm wavelength. 

 

 2. EXPERIMENTAL 

 

2.1. Host SWNT Network Preparation 

Glass substrates, dimensions 20 mm × 20 mm, were cleaned by sonication in a solution of industrial 

detergent for 15 minutes followed by a further 15-minute sonication in isopropyl alcohol (Sigma-

Aldrich, >99.7% purity) before drying under a nitrogen flow.  

As-purchased SWNT powder (Unidym, diameter 0.8 -1.2 nm, length 100-1000 nm, <85% purity) was 

dispersed in 1:7 vol. solution of n-butylamine: tetrahydrofuran (both: Sigma Aldrich, >99% purity) 

then ultrasonicated (Sonics Ultrasonic Processor Model GE750 with CV 33 Probe, 750 W) for 1.5 

hours using a 2 s-on, 3 s-off cycle at 450 W with the solution stood in an ice bath.  The solution was 

sprayed with an Airbrush Pro series airbrush (model BD-133A) onto the substrates placed on a 

hotplate held at 379 K. The SWNT solution was sprayed onto each substrate through a 10 mm × 10 

mm shadow mask. The dimensions of the showdown mask were chosen to be less than those of the 

substrate in order to define the active area and minimise edge conduction effects. The airbrush was 

cleaned thoroughly with ultrapure water after every 5 ml of solution had been sprayed to minimise the 
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corrosive effects of the solution on the airbrush and prevent blockage formation. The substrate-

supported SWNT networks were then vacuum annealed for 1.5 hours at 400 K to remove residual 

solvent. This procedure was found to greatly improve the optical transparency and electrical 

conductivity of the networks relative to films deposited at room temperature without the annealing 

process. The room temperature conductance of the networks when exposed to the atmosphere varied 

from day to day by circa 10% due to physisorption of atmospheric dopants. When measured under 

vacuum, however, the sheet conductance was constant over a period of months.  

 

2.2. Preparation of hybrid networks 

We have applied two methodologies in order to independently investigate the effect that both Au 

nanoparticle diameter and nanoparticle number per unit area has on the electrical conduction 

mechanism of decorated sparse SWNT networks. 

2.2.1. Preparation of hybrid networks: electroless method 

Formation of Au nanoparticles on the host SWNT networks was achieved by the electroless reduction 

of Au cations by a redox reaction between Au3+ and the SWNT network. Chloroauric acid, 

HAuCl4:3H2O (Sigma Aldrich, > 99% purity) was dissolved in 50% ethanol (Sigma Aldrich, 98% 

purity) to produce a 1mM solution. The substrate-supported SWNT networks were immersed in the 

solution for varying time periods. The network was then removed from the solution and rinsed in 

ultrapure water (PURELAB Prima DV35 system) before drying in nitrogen. The resultant hybrid 

networks were finally vacuum annealed for 1.5 hours at 400 K. The thus produced hybrid networks 

are free of degradations originating from acid dopants as evidenced by the time constant for current 

stabilisation which is sensitive to ionic mobility of residual acid molecules. The room temperature 

sheet resistance of the hybrid networks was stable over a timescale of months.  

 

2.2.2. Preparation of hybrid networks: spraying method 

As-purchased aqueous Au nanoparticle-containing colloidal solution (BBY international) was sprayed 

using a BD-133A airbrush with the host SWNT networks placed on a hotplate at 400 K. A sequence 

of 1 second spraying time followed by a 10 second delay was found to be the best strategy for 



7 

 

production of optically uniform networks. The resultant hybrid networks were finally vacuum 

annealed for 1.5 hours at 400K. The additional annealing process was found to have no significant 

effect on SWNT networks sprayed under the same conditions with only deionised water and those not 

subjected to a spray coating. 

 

2.3. Characterisation 

Four-probe electrical conductance measurements were performed under a vacuum of 10-6 mbar in 

Cryogenic 3165 Measurement System connected to a Keithley 4200 SCS source-measure unit with a 

pulsed-mode current of duration of 0.1 s. Electrical contact was made by a pressure contact at the 

corners of the active area. The initial resistance typically decreased by 5% and reached a steady-state 

after a few minutes due to outgassing of weakly chemisorbed dopants introduced by handling in air. 

The temperature of the system was controlled by a Lakeshore 340 system. The sample was left to 

equilibrate overnight at the base temperature.  

 

The optical transmittance of each network was measured using a Hitachi U-3000 UV-vis spectrometer 

in high resolution mode in the wavelength range 400-800 nm.  

 

Analysis of the morphology i.e. nanoparticle diameter and, nanoparticles per unit area, for both the 

host and decorated networks was carried out by visual inspection of SEM micrographs obtained using 

an FEI Inspect-F scanning electron microscope.  

 

 

3.  RESULTS AND DISCUSSION 

The host sparse SWNT networks were deposited on glass substrates using a spraying method. The 

influence of surfactant on the host SWNT networks was minimised by using a volatile 1:7 volume 

mixture of n-butylamine: tetrahydrofuran as dispersant and solvent together with a post-deposition 

annealing process [38]. The resultant sparse networks comprised well-defined SWNT bundles of 

diameter 30±10 nm mainly confined to the plane of the substrate covering about 65% of the glass 
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surface, figure. 1. All electrical transport measurements were performed in equilibrium conditions 

under vacuum following an out-gassing procedure to minimise the role of weakly chemisorbed 

species introduced by handling in air. The method reproducibly resulted in a room temperature sheet 

resistance of Rs~1 Msq (conductance, G~ 1 S/sq) with an active area of 10 mm × 10 mm for many 

tens of samples. 

 

In agreement with a previous report, the temperature-dependant electrical transport measurements 

revealed a dominant VRH mechanism in the range T=4-225 K with a divergence in the range T=225-

300 K, figure. 2 [38]. This divergence has the form of an additional thermally activated component, 

 

𝐺(𝑇) = 𝐺0exp (− (
𝑇0

𝑇
)
𝛾
) + 𝐺𝑎exp (−

𝐸a

𝑘𝐵𝑇
) ,   (1) 

 

where the first term is the Mott hopping formula with  =1/(d+1) and d is the dimensionality of the 

hopping (i.e. d=1, 2 or 3) and the pre-exponential factor, G0, and T0 are constants 21. The second term 

in Eqn. (1) is the thermally activated component, where Ea in the thermal activation energy, kB is the 

Boltzmann constant, and Ga is a constant. The origin of this term is the presence of Schottky-like 

potential barriers at metallic-semiconductor junctions within current-carrying pathways [34].  

 

We found there to be no significant contribution from fluctuation-assisted tunnelling. However, this 

does not exclude the possibility of metallic inclusions in non-metallic current pathways, only that this 

has negligible effect on the temperature dependence of electrical conductance [17].  

 

We minimized the sum of the squares of the differences between the G(T) data points in the range 

T=4-225 K and the function .exp(−/T1/C with A, B, andC taken as three independent parameters. 

From fits to transport data from tens of samples we obtained C=3 which suggest 2-dimensional VRH 

(i.e. a single inter-bundle hopping system within the plane of the network),  T0≈3.25 × 104 K, and 

 G0≈ 100 S/sq.  According to the Mott model for 2-dimensional VRH, 
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𝐺0~(
1

𝐿loc
) (

𝑇0

𝑇
)
0.35

 ,   (2) 

 

and 

𝑇0 =
3

𝑘B𝑁(𝐸F)𝐿loc
2 ,  (3) 

 

where Lloc is the localisation length, N(EF) is the density of states at the Fermi energy, and kB is the 

Boltzmann constant [39]. The temperature dependence of G0 was neglected in the data fitting 

procedure since the variation produced by the first exponent in Eqn.(1) dominates that of the pre-

exponential factor. The uncertainty in the values of the extracted parameters for all experimental data 

sets were typically less than 10% with the exception of those for Ga, which were typically less than 

35%. 

 

The functional form of the divergence was found to be in agreement with the second term in Eqn.(1); 

the extracted value of Ea ≈ 330 meV was found to be close to the expected range of Schottky barrier 

heights at junctions between individual metallic and semiconducting nanotubes, namely 190–290 

meV [41]. The fractional contribution to the total conductance at 290 K from the activated term at was 

estimated to be 8% using the value Ga ≈ 0.4 mS/sq and Ea extracted from the fitting process. 

 

The effect of Au nanoparticle decoration on the electrical transport of host network as a function of 

nanoparticle diameter for an almost constant nanoparticle number per unit area was investigated using 

an electroless reduction process for nanoparticle decoration. The host networks were immersed in 

chloroauric acid for varying time periods before a rinsing process to remove acidic dopants. SEM 

micrographs reveal the formation of Au nanoparticles with a narrow distribution of diameters 

randomly distributed on the host SWNT network, figure 3. The narrow size distribution for a given 

immersion time is consistent with an initial seeding process followed by an increase in diameter with 
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increasing immersion time [13]. An approximate nanoparticle number per unit area of 50 m-2 was 

confirmed by direct observation.  

The immersion times are plotted against conductance of the networks measured after extraction from 

the solution, rinsing, and drying, figure 4. This showed an initial steep increase to reach a maximum 

after ~20 minutes immersion then a decrease with immersion time, figure 4. This trend is similar to 

that observed for electroless Au-decoration of few-walled carbon nanotube networks [29]. The mean 

diameter of the deposited nanoparticles was estimated from direct observation (SEM). The error on 

diameters obtained from the SEM micrographs was typically 5% and the full-width-half-maximum 

dispersion in nanoparticle diameter was <20%. The mean bundle diameter and junction density of the 

decorated network were comparable to those of the host network. The mean nanoparticle diameter 

that produced the maximum conductance enhancement was 47 nm. 

Au nanoparticles in aqueous suspension were sprayed onto host networks for various exposure 

(deposition) times and plotted against conductance as a function of nanoparticle diameter in figure 5. 

The general trend for all three nanoparticle diameters, 2 nm, 10 nm, and 40 nm, is for a rapid increase 

in conductance with deposition time followed by a gentle decrease back to the initial values (or 

slightly less than the initial conductance in the case of the 40 nm diameter nanoparticle). The trends 

are most pronounced for the 40 nm diameter nanoparticle decorated films. The minimum sheet 

resistance was achieved was 650 Ω/sq: 1/1500 of that of the undecorated host network. 

 

Inspection of the SEM micrographs for short- and long-exposure time for the 40 nm diameter 

nanoparticle-decorated networks revealed differing patterns of decoration. Essentially, the distribution 

in the short-exposure time is dominated by individual nanoparticles predominately located at the 

network junctions whereas the long-exposure distribution includes both individual nanoparticles in 

intimate contact with the host network and small agglomerations apparently templated by the 

underlying network (figure 6). For Au-nanoparticle coverage of >400/μm2, the agglomerations 

become extensive and close-packed, figure 7. 
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Temperature-dependant electrical transport measurements were carried out to investigate the effect of 

nanoparticle diameter (at a near constant nanoparticle number per unit area). Networks decorated with 

nanoparticle diameters of 47 nm and 473 nm revealed the same dominant two-component variation as 

observed in the host networks but with some metallic departure from (2-dimensional) VRH at low 

temperature for the larger nanoparticle decoration, figure 8. The parameter extracted from the fitting 

of the data to Eqn.(1) are summarised together with those for the host networks (i.e., 0 immersion 

time) in Table 1  

 

Table1. Diameter dependence of electrical transport parameters for host networks decorated by the 

electroless method. 

 

Immersion time 

(min) 

Mean 

diameter 

(nm) 

G(290 K) 

(S/sq) 

G0 

(S/sq) 

T0 

(K) 

Ga 

(S/sq) 

Ea 

(eV) 

0  - 1 106 32535 424 0.33 

20 47 20 100 945 97 0.17 

120 473 3.45 23 2000 7.31 0.11 

 

The twenty-fold increase in G(290 K) relative to the host network for the 47 nm diameter nanoparticle 

decoration is clearly entirely due to the thirty-fold reduction in T0 (since G0 remained almost identical 

to that for the host network, and,  using the extracted values of Ga and Ea, the calculated fractional 

contribution of the activated term to G(290 K) is negligible). Within the Mott hopping description, 

enhancement of the electron localisation length and/or the density of states at the Fermi energy are the 

factors that underpin the decrease in T0, Eqn. (2). 

 

A ten-fold increase in the diameter of the decorating nanoparticle to 473 nm results in a value of 

G(290 K) comparable to that of the host network but with G0 reduced  by a factor of five and T0 by a 

factor of fifteen; also, the activated term is reduced to 2% of G(290 K).  The low-temperature metallic 
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behaviour is manifest as a departure from VRH for T<125 K, figure 8. The nanoparticle diameter is 

three times greater than the intimate contact diameter, which is ~150 nm in this case (assuming a 

uniform distribution of seeding sites), so some contribution from all-metallic pathways can be 

expected to contribute to the total conductance.  

 

Since, via Eqns. 2, 3, G0 is proportional to T0, the G0 value for the 473 nm diameter nanoparticle 

decorated network must embrace a metallic term due to a significant contribution from metallic 

inclusions in the VRH network relative to the 47 nm diameter decorated network. G0 can be viewed as 

the conductance of the network at high temperature, i.e. a measure of the intrinsic conductance of the 

network in the absence of significant energy barriers to electrical conduction. The temperature 

variation introduced by the metallic inclusions in the VRH network is expected to be that of a Bloch–

Grüneisen-type power-law term for sheet resistance, ~Tn Ω/sq, where n=5 for electron-phonon 

interactions and n=2 for electron-electron interactions. The presence of significant metallic inclusions 

in the VRH pathways is, therefore, manifest as an effective negative offset to the G0 value of the host 

network if the sum of the resistances of the metallic inclusions is higher than that of the VRH 

components of the pathway. This is manifested as an increase in T0 but a decrease in G0 as the 

nanoparticle diameter is increased from 47 nm to 473 nm, Table 1. 

 

When considering the sources of this metallic component of conductance, there are two primary 

diameter-dependant effects at play. These are: i) the particle diameter at which, for a given number 

per unit area, the nanoparticles are in intimate contact and form a continuous metallic pathway larger 

than an individual nanoparticle, and ii) the diameter that is equal to electron mean free path within the 

individual nanoparticle. The electron mean free path in bulk Au is approximately 50 nm [42]. 

Therefore, metallic conduction within an individual nanoparticle is a rational explanation for the 

decrease in conductance with nanoparticle diameter in the range 50 nm – 150 nm. Metallic conduction 

pathways through multiple nanoparticles can be expected for diameters greater than ~150 nm.   
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From the extracted values of Ga and Ea we conclude there is no significant contribution to G(290 K) 

from the activated term, the second term in Eqn.1, for both the 47 nm and the 473 nm nanoparticle 

diameter decorated films. The diminution in this term occurs by an apparent lowering of both Ga and 

Ea. The lowering of Ea is consistent with modification of metal-semiconductor interfacial energy 

barriers through displacement of EF toward the valence band in a p-type system, i.e. the host network. 

The lowering of Ga is consistent with the formation of a depletion region in those bundles in intimate 

contact with an Au nanoparticle, which results in an obstacle for hole transport and reduces hole 

mobility. This is consistent with observations on the scale of individual SWNTs intimately coupled to 

Au clusters in the gas sensing literature [25, 28].  

 

In summary, the conclusions drawn from the data in figure 4. are: i) the rapid increase in conductance 

with particle diameter is due to enhancement of either of both electron delocalisation and the density 

of states at the Fermi energy, i.e. a decrease in the T0 parameter relative to that of the host network, ii) 

for diameters >50 nm, the decrease in conduction is due to metallic conduction within an individual 

nanoparticle or multiple nanoparticles, iii) the inter-nanoparticle electronic transport is metallic and 

the intra-metallic island electron transport is by a 2-dimensional VRH, and iv) nanoparticles in 

intimate contact with the bundles of the host network are acceptor-like and possibly introduce 

significant depletion regions. 

 

Temperature-dependant electrical transport measurements were performed on the 40 nm diameter 

nanoparticle-decorated networks and the results fitted to Eqn.1. The extracted parameters are 

summarised in Table 2. 

 

Table 2. 40 nm-diameter nanoparticle coverage dependence of electrical transport parameters for host 

networks decorated by the spraying method. 

 

Exposure 

time (s) 

Nanoparticles 

(m-2) 

G(290 K) 

(S/sq) 

G0 

(S/sq) 

T0 

(K) 

Ga 

(S/sq) 

Ea 

(eV) 
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0 0 1 106 32535 424 0.33 

6 5 11.5 18 341 66 0.14 

8 8 1530 3400 153 - - 

60 100 3.43 7.31 209 5.8 0.09 

100 170 1.9 5.7 903 48 0.11 

180 343 0.9 4.46 1710 99 0.17 

 

 

The networks with exposure times of 8 s (8 nanoparticles/m2 randomly dispersed, maximum 

conductance enhancement) and 180 s (343 nanoparticles/m2 agglomerated, conductance comparable 

to that of the host network)   revealed both to be dominated by 2-dimensional VRH at room 

temperature, figures 9, 10.  However, while the former is entirely VRH for the full range of 

temperature, the latter showed an additional metallic behaviour at low temperature (as observed for 

the 473 nm diameter nanoparticle-decorated networks produced by the electroless method, figure 8), 

see figure 10. The functional form of the resistance of this additional term was found to vary as T5 

indicating 3-dimensional Bloch–Grüneisen-type metallic conduction dominated by electron–phonon 

interactions. In the case of the agglomerated nanoparticle network, the calculated activated term is 5% 

of the total conductance at room temperature whereas there is zero contribution in the case of the 

optimally decorated network. 

 

By consideration of the trends in G0 and T0 in Table 2, it is clear that for densities of ≥10 

nanoparticles/m2, the decrease in G(290 K) is mainly due to enhancement of the metallic inclusions 

in VRH pathways. The VRH parameters for the optimally decorated network follow the expected 

trend in G0 and T0 relative to the host network indicating a much lower metallic component than the 

other nanoparticle densities.  

 

The absence of a significant activated term for the optimally decorated film also indicates that the 

system is a single VRH network. The trends in Ga and Ea are indicative of a rapid reduction of both 
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the energy barrier and Ga with nanoparticle decoration for densities <10/m2 and a gradual reversal of 

this these trends for <10/m2. A logical explanation for the trends in the activated term as the 

nanoparticle density tends to 10/m2 would be a diminution of the mean energy barrier at a metal-

semiconductor junction as the interfacial energy barrier is lowered by positive charge transfer to the 

bundles at intimate nanoparticle-bundle junctions. The reversal of this trend for densities >10/m2 is 

likely to be a due to compensating nanoparticle-nanoparticle charge transfer with the onset of 

agglomeration or n-type doping originating from the water in which the nanoparticles are suspended 

during spraying.  The variation of Ga with nanoparticle density follows the inverse of G(290 K) so is 

likely to be an indication of the number of pathways (i.e. the fractional contribution to the total 

conductance). The zero metal-semiconductor energy barrier for the optimally decorated network is 

synonymous with a greatly enhanced density of states at the Fermi energy in the semiconductor 

regions in a p-type system as EF coincides with a van Hove singularity, resulting in the observed all-

VRH system with enhanced G0  (through Eqn.2) and diminished T0 (through Eqn.3) relative to the 

host network. 

4. CONCLUSION 

In conclusion, the resistance of the host sparse SWNT networks was lowered by a factor of 1500 by 

decoration with 40 nm diameter Au-nanoparticles with coverage of ~10 nanoparticles/m2. The 

electrical transport at room temperature in host and decorated networks was dominated by 2-

dimensional Mott VRH. The high conductance enhancement was due to positive charge transfer from 

the decorating Au-nanoparticles in intimate contact with the host network causing a Fermi energy 

shift into the high density of states at a van Hove singularity and enhanced electron delocalisation 

relative to the host network which beneficially modifies the VRH parameters in such a way that the 

network behaves as an integral whole. The effect is most pronounced when the nanoparticle diameter 

is comparable to the electron mean free path in the bulk material, ~50 nm in this case, and there is 

minimum nanoparticle agglomeration. For higher than optimal values of nanoparticles per unit area or 

nanoparticle diameter, the conductivity enhancement is countered by metallic inclusions in the current 

pathways that are of higher resistance than the VRH-controlled elements. 
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Figures 

Figure 1 

 

Scanning electron micrograph of a typical host network on a flat glass substrate. The apparent uneven 

surface morphology of the glass surface is an artefact caused by the difference between the high 

electrical conductivity of the network and the low value of that of the glass substrate. 
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Figure 2 
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A typical temperature variation of conductance for a host network. The solid line is the 2-dimensional 

Mott VRH component (the first term in Eqn. (1)) extracted from the data fitting procedure. The inset 

shows the T>225 K departure from VRH; the dashed line is the fit to the activated term (second term 

in Eqn. (2)). 
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Figure 3 

 

Scanning electron micrograph of a host network decorated with Au nanoparticles by the electroless 

method. The mean nanoparticle diameter is 47 nm. 
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Figure 4 
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The conductance of Au-nanoparticle decorated networks prepared by the electroless method, 

measured after rinsing and drying, versus the immersion time. 
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Figure 5 
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The conductance of Au-nanoparticle decorated networks prepared by the spraying method, measured 

after rinsing and drying, versus the exposure time as a function of nanoparticle diameter. 
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Figure 6 

 

Scanning electron micrograph of host network decorated with 40 nm diameter Au nanoparticles by 

the spraying method. The number of nanoparticles per unit area is 100/m2 averaged over a 50 m × 

50 m area. 
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Figure 7 

 

Scanning electron micrograph of host network decorated with 40 nm diameter Au nanoparticles by 

the spraying method. The number of nanoparticles per unit area is 170/m2 averaged over a 50 m × 

50 m area. 
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Figure 8 
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Typical temperature variation of conductance for networks decorated with Au nanoparticles by the 

electroless method. The mean nanoparticle diameter for the filled-circle data points is 47 nm and that 

for the open-circle points is 473 nm. The solid line is the 2-dimensional Mott VRH component 

extracted from the data fitting procedure. 
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Figure 9 
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Typical temperature variation of conductance for networks decorated with 40 nm diameter Au 

nanoparticles by the spaying method with a coverage of 8 nanoparticles/m2. The solid line is the 2-

dimensional Mott VRH component extracted from the data fitting procedure.  
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Figure 10 
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Typical temperature variation of conductance for networks decorated with 40 nm diameter Au 

nanoparticles by the spaying method with a coverage of 343 nanoparticles/m2. The solid line is the 

2-dimensional Mott VRH component extracted from the data fitting procedure. The dashed line is an 

additional ~T5 Bloch–Grüneisen-type metallic component. 

 


