383 research outputs found

    Zone clearance in an infinite TASEP with a step initial condition

    Full text link
    The TASEP is a paradigmatic model of out-of-equilibrium statistical physics, for which many quantities have been computed, either exactly or by approximate methods. In this work we study two new kinds of observables that have some relevance in biological or traffic models. They represent the probability for a given clearance zone of the lattice to be empty (for the first time) at a given time, starting from a step density profile. Exact expressions are obtained for single-time quantities, while more involved history-dependent observables are studied by Monte Carlo simulation, and partially predicted by a phenomenological approach

    Two dimensional outflows for cellular automata with shuffle updates

    Full text link
    In this paper, we explore the two-dimensional behavior of cellular automata with shuffle updates. As a test case, we consider the evacuation of a square room by pedestrians modeled by a cellular automaton model with a static floor field. Shuffle updates are characterized by a variable associated to each particle and called phase, that can be interpreted as the phase in the step cycle in the frame of pedestrian flows. Here we also introduce a dynamics for these phases, in order to modify the properties of the model. We investigate in particular the crossover between low- and high-density regimes that occurs when the density of pedestrians increases, the dependency of the outflow in the strength of the floor field, and the shape of the queue in front of the exit. Eventually we discuss the relevance of these results for pedestrians.Comment: 20 pages, 5 figures. v2: 16 pages, 5 figures; changed the title, abstract and structure of the paper. v3: minor change

    Properties of pedestrians walking in line - Fundamental diagrams

    Full text link
    We present experimental results obtained for a one-dimensional flow using high precision motion capture. The full pedestrians' trajectories are obtained. In this paper, we focus on the fundamental diagram, and on the relation between the instantaneous velocity and spatial headway (distance to the predecessor). While the latter was found to be linear in previous experiments, we show that it is rather a piecewise linear behavior which is found if larger density ranges are covered. Indeed, our data clearly exhibits three distinct regimes in the behavior of pedestrians that follow each other. The transitions between these regimes occur at spatial headways of about 1.1 and 3 m, respectively. This finding could be useful for future modeling.Comment: 9 figures, 3 table

    Flexible fiber batteries for applications in smart textiles

    Full text link
    Here we discuss two alternative approaches for building flexible batteries for applications in smart textiles. The first approach uses well-studied inorganic electrochemistry (Al-NaOCl galvanic cell) and innovative packaging in order to produce batteries in a slender and flexible fiber form that can be further weaved directly into the textiles. During fabrication process the battery electrodes are co-drawn within a microstructured polymer fiber, which is later filled with liquid electrolyte. The second approach describes Li-ion chemistry within solid polymer electrolytes that are used to build a fully solid and soft rechargeable battery that can be furthermore stitched onto a textile, or integrated as stripes during weaving process

    Properties of pedestrians walking in line: Stepping behavior

    Full text link
    In human crowds, interactions among individuals give rise to a variety of self-organized collective motions that help the group to effectively solve the problem of coordination. However, it is still not known exactly how humans adjust their behavior locally, nor what are the direct consequences on the emergent organization. One of the underlying mechanisms of adjusting individual motions is the stepping dynamics. In this paper, we present first quantitative analysis on the stepping behavior in a one-dimensional pedestrian flow studied under controlled laboratory conditions. We find that the step length is proportional to the velocity of the pedestrian, and is directly related to the space available in front of him, while the variations of the step duration are much smaller. This is in contrast with locomotion studies performed on isolated pedestrians and shows that the local density has a direct influence on the stepping characteristics. Furthermore, we study the phenomena of synchronization -walking in lockstep- and show its dependence on flow densities. We show that the synchronization of steps is particularly important at high densities, which has direct impact on the studies of optimizing pedestrians flow in congested situations. However, small synchronization and antisynchronization effects are found also at very low densities, for which no steric constraints exist between successive pedestrians, showing the natural tendency to synchronize according to perceived visual signals.Comment: 8 pages, 5 figure

    Properties of pedestrians walking in line without density constraint

    Full text link
    This article deals with the study of pedestrian behaviour in one-dimensional traffic situations. We asked participants to walk either in a straight line with a fast or slow leader, or to form a circle, without ever forcing the conditions of density. While the observed density results from individual decisions in the line case, both density and velocity have to be collectively chosen in the case of circle formation. In the latter case, interestingly, one finds that the resulting velocity is very stable among realizations, as if collective decision was playing the role of an average. In the line experiment, though participants could choose comfortable headways, they rather stick to short headways requiring a faster adaption - a fact that could come from a ``social pressure from behind''. For flows close to the jamming transition, the same operating point is chosen as in previous experiments where it was not velocity but density that was imposed. All these results show that the walking values preferred by humans in following tasks depend on more factors than previously considered.Comment: Main paper (11 pages, 13 figures) + Suppl. Mat. (8 pages, 9 figures

    Etude statistique des chemins de premier retour aux nombres de Knudsen intermédiaires : De la simulation par méthode de Monte Carlo à l'utilisation de l'approximation de diffusion

    Get PDF
    En présence de diffusions multiples, les algorithmes de Monte-Carlo sont trop coûteux pour être employés dans les algorithmes de reconstruction d'images de géométries tridimensionnelles réalistes. Pour des trajectoires de premiers retours, l'approximation de diffusion est communément employée afin de représenter la statistique des chemins aux nombres de Knudsen tendant vers zéro. En formulant des problèmes équivalents sur des trajectoires de premiers passages, l'usage de l'approximation est étendue en un développement théorique. Cette nouvelle formulation assure un bon niveau de précision, sur une large plage de valeurs du nombre de Knudsen en ce qui concerne l'évaluation des moments de la distribution des longueurs des chemins de premier retour. La résolution numérique du modèle formulé est confrontée aux simulations numériques type Monte- Carlo sur des géométries mono-dimensionnelles et un cas tridimensionel ouvrant des perspectives vers une généralisation aux applications réelles. ABSTRACT : For multiple scattering, Monte-Carlo algorithms are computationally too demanding for use in image reconstruction of 3D realistic geometries. In the study of first return path, the diffusion approximation is commonly used to represent their statistical behaviour when the Knudsen number tends to zero. With the formulation of equivalent problems for first passage path, the use of the approximation is extended in a theoretical development. The new model provides a good level of accuracy, for a wide distribution of Knudsen numbers when evaluating the moments distribution of the first return paths length. Numerical application of the model is confronted to Monte-Carlo simulations on one dimension geometries and a simple three-dimension case opening perspectives for the generalization to practical applications

    Vision-based macroscopic pedestrian models

    Get PDF
    International audienceWe propose a hierarchy of kinetic and macroscopic models for a system consisting of a large number of interacting pedestrians. The basic interaction rules are derived from earlier work where the dangerousness level of an interaction with another pedestrian is measured in terms of the derivative of the bearing angle (angle between the walking direction and the line connecting the two subjects) and of the time-to-interaction (time before reaching the closest distance between the two subjects). A mean-field kinetic model is derived. Then, three different macroscopic continuum models are proposed. The first two ones rely on two different closure assumptions of the kinetic model, respectively based on a monokinetic and a von Mises-Fisher distribution. The third one is derived through a hydrodynamic limit. In each case, we discuss the relevance of the model for practical simulations of pedestrian crowds
    • …
    corecore