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Abstract

We propose a hierarchy of kinetic and macroscopic models for a system consisting
of a large number of interacting pedestrians. The basic interaction rules are derived
from [44] where the dangerousness level of an interaction with another pedestrian is
measured in terms of the derivative of the bearing angle (angle between the walking
direction and the line connecting the two subjects) and of the time-to-interaction
(time before reaching the closest distance between the two subjects). A mean-field
kinetic model is derived. Then, three different macroscopic continuum models are
proposed. The first two ones rely on two different closure assumptions of the kinetic
model, respectively based on a monokinetic and a von Mises-Fisher distribution.
The third one is derived through a hydrodynamic limit. In each case, we discuss
the relevance of the model for practical simulations of pedestrian crowds.
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1 Introduction

Crowd simulation has become a major subject of research with a wide field of applications.
These include safety for preventing crowd disasters or assessing evacuation scenarios, ar-
chitecture for assessing the level of service of public spaces, or urban design for ensuring
traffic efficiency and comfort. In spite of these very important issues, the status of re-
search in crowd dynamics is still rather preliminary and is certainly less mature than the
comparable field of vehicular traffic.

In this paper, we propose a hierarchy of models derived from the vision-based Individual-
Based Model (IBM) of [44]. In this model, the pedestrians make an assessment of the
dangerousness of an encounter with the other pedestrians and take decisions of turning or
slowing down based on this assessment. To make this assessment, each pedestrian senses
the Derivative of the Bearing Angle (DBA) and the Time-To-Interaction (TTI) of each
of his interaction partners. The bearing angle is the angle between the walker’s direction
and the line connecting the two interaction partners. Its time derivative provides a sensor
of the likeliness of a collision, a constant bearing angle in time being associated with a
risk of future collision. The TTI is the time to closest approach between the pedestrians
assuming linear motion. Combined DBA and TTI information gives access to an assess-
ment of the risk of collisions in the future, and how imminent these collisions may be.
The psychological literature shows that these two quantities can be visually perceived by
the pedestrian from his optical flow [14]. The assumption that the subjects control their
trajectories based on an evaluation of these indicators has solid grounds [54]. In addition,
the IBM model of [44] suggests that agents deviate in order to avoid future collision while
they decelerate to avoid imminent collision.

Specifically, in this paper, we propose a Kinetic Model (KM) and three Continuum
Models (CM) derived from the IBM of [44]. The CM are respectively based on monokinetic
and von Mises-Fisher (VMF) closures for the first two ones, and on a hydrodynamic
limit for the third one. We apply the same methodology as in a previous work [16].
In this reference, following [40], the decision-making phase takes the form of a game
where the subjects choose the local optimal trajectory towards their goal while avoiding
collisions with the other pedestrians. Here, the decision-making phase is based on avoiding
collision-threatening situations. From the cognitive viewpoint, it is not clear which of the
mechanisms of [40] or [44] is more realistic. The collision sensors are different: they
are made of the pair (TTI, DBA) in [44] and by the pair (TTI, DTI) in [40], where the
Distance-To-Interaction (DTI) is the distance to the point where a collision is anticipated,
assuming that each pedestrian moves at a constant speed. The DBA used in [44] is a
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variable which is directly perceived by the pedestrian from his visual field. The DTI is
estimated from the knowledge of the velocities of the pedestrians, but the model of [40]
does not invoke the way by which these velocities are estimated. In spite of their different
hypotheses, these two approaches lead to fairly similar macroscopic models, as will be
seen in the present paper, by comparison with [16]. The models of [16] and of the present
paper have the same mathematical structure and they only differ through the modeling
details of the interactions.

The force term used by [40] has a potential structure, which results from the game-
theoretic framework of the model, and which is extensively used in [16]. By contrast, as
we will see in the present paper, the model of [44] does not have such a potential structure
and leads to more complex macroscopic models. However, the game-theoretic framework
of [40] can be easily translated to the model of [44] by slightly modifying the avoidance
rules. We refer to this modification as the ’potential-driven dynamics’. This modification
will allows us to implement the same type of methodologies as in [16].

Indeed, while the first two fluid closures, the monokinetic and VMF closures are im-
plementable in the original framework of [44], the third one, based on the hydrodynamic
limit, requires the use of the potential-driven dynamic in a spatially local approximation.
It relies on the use of a Local Thermodynamic Equilibrium (LTE) which can be viewed
as a Nash equilibrium for a game using this potential as a cost function. This is a special
example of a general framework relating game theory and kinetic theory which has been
proposed in [20] and which bears analogies with the so-called Mean-Field Games [36].
This framework has been applied to the context of pedestrians for the first time in [16].

A recent review on crowd modeling can be found in [5]. Crowd simulation models are
mostly built on IBM [25, 27, 28, 45, 49, 50, 51, 53] or on cellular automata [43]. The
model discussed here [44] belongs to the class of vision-based models, which describe the
response of the subjects to the visual scene in front of them. According to various types of
stimuli, pedestrians anticipate the occurrence of collisions with partners and decide to turn
away in response to the most threatening ones [23, 45, 47, 54]. In [44], the formulation of
the collision threat is made in terms of variables that are more immediately accessible to
pedestrians through the analysis of their visual field, namely the TTI and the DBA. Once
the collision threat is evaluated, the pedestrians perform an optimisation in order to avoid
collisions while keeping close to their desired trajectory. Several types of optimisations
can be performed, and it is not clear yet which one is the most relevant [24, 30, 40]. The
differences between the models is more thoroughly discussed in section 2.3. Other IBM’s
are based on traffic models [37].

CM have been pioneered by [29] and the link to the underlying IBM, explored in
[1, 9, 10, 13, 26, 52]. Direct derivation of CM from optimization rules can be developed
[31, 32, 33, 35]. The analogy with car traffic has also been extensively developed [2, 4,
6, 11, 12, 41, 48]. One difficulty with crowd simulations at very high densities is the
handling of the volume exclusion constraint. This specific question has been investigated
in several references [18, 19, 39, 42]. The mathematical theory of some crowd CM’s
has been initiated in [21]. KM, which are intermediate between IBM and CM have not
received much attention in the context of crowd modeling so far [5, 3].

The outline of the paper is as follows. The IBM of [44] is reviewed in section 2. The
passage to the subsequent KM is performed in section 3. The derivation of the continuum
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models is realized in section 4. The obtained models are discussed mostly in reference to
[16] in section 5 (a thorough discussion with the literature can be found in [16]). Finally,
a conclusion is drawn in section 6.

2 The vision-based Model of pedestrian motion

2.1 collision perception phase

Figure 1 gives a schematic picture of the geometry of the interaction between two pedes-
trians. We consider a pedestrian i located at a position xi(t), with a velocity vi. He
interacts with another pedestrian j located at a position xj(t) who has velocity vj . The
first indicator of the dangerousness of the collision measured by pedestrian i is the time
Derivative of the Bearing Angle (DBA). The bearing angle αij under which pedestrian i
sees his collision partner j is the angle between vi and xj − xi:

αij = ̂(vi, xj − xi).

The DBA α̇ij is the time derivative of αij , i.e. α̇ij = dαij/dt. Small values of α̇ij

indicate that a collision between the two pedestrians is very likely, as shown below. If
the pedestrians were point particles, their trajectory would interesect if and only if the
DBA were exactly zero. Since pedestrians have a finite size, the intersection occurs for
small but non-zero values of the DBA. As we will see later on, the DBA is proportional
to the square of the reciprocal of the distance between the agents. Therefore, when the
pedestrians are very close, collisions happen even if the DBA is fairly large.

The second ’indicator’ of the dangerousness of a collision is the Time-To-Interaction
(TTI) denoted by τij . We first define the interaction point as the point on the subject’s
future trajectory where the distance to his collision partner is minimal. This Minimal
Distance (MD) is denoted by Dij . The TTI is the time needed by the subject to reach
this interaction point from his current position. The TTI and MD are computed by the
agents assuming that both agents move in straight lines with constant speeds i.e. that
vi and vj are constant vectors in time. It is not unlikely that pedestrians are able to
anticipate more complex motions such as circular motion but this aspect is left to future
work.

The expressions of the DBA and TTI are given below. The TTI can also be found
in [16] but we recall its computation below for the sake of completeness. We introduce
the following notations: for two 2-dimensional vectors A = (a1, a2) and B = (b1, b2), we
denote by

(A · B) = a1b1 + a2b2 = |A| |B| cos (̂A,B),

the scalar product of A and B. We denote by A × B the vector product, which, in the
present 2-dimensional context, is defined as the following scalar:

A× B = a1b2 − a2b1 = (A ·B⊥) = |A| |B| sin (̂A,B) = det{A,B}. (2.1)

Here, B⊥ = (b2,−b1) is the vector obtained from B by a rotation of an angle π/2, ’det’
denotes the determinant, and {A,B} is the matrix whose columns are respectively A and
B.
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αij

vi

u⊥
i

xi
ui

vj − vi
vj

xj kij

k⊥ij

divided by |vj − vi|
TTI = this distance

MD =
this distance

Figure 1: Geometry of a collision. The MD is the smallest distance which separates the
two pedestrians i and j supposing that they cruise on a straight line at constant velocities
vi and vj . The point on pedestrian i’s trajectory where the minimal distance is attained is
the interaction point xi int of pedestrian i in his interaction with pedestrian j. The MD is
the distance between xi int and xj int. The DTI is the distance which separates the current
pedestrian position xi to the interaction point xi int. The Time-To-Interaction (TTI) is
the time needed by pedestrian i to reach the interaction point from his current position.
Clearly, TTI = DTI/|vi|.

Lemma 2.1 We have (see Fig. 1):

α̇ij =
(xj − xi)× (vj − vi)

|xj − xi|2
, (2.2)

τij = −(xj − xi) · (vj − vi)

|vj − vi|2
, (2.3)

Dij =
(
|xj − xi|2 −

(
(xj − xi) ·

vj − vi
|vj − vi|

)2)1/2

. (2.4)

Proof. We introduce the unit vector kij of the line connecting the two agents, the
relative velocity vij of agent j relative to i and the distance dij between the agents. These
quantities are defined by the following relations:

dij(t) = |xj(t)− xi(t)|, kij(t) =
xj(t)− xi(t)

dij(t)
, vij = vj − vi. (2.5)

We also introduce the unit vector k⊥
ij , orthogonal to kij and such that (kij, k

⊥
ij) is a direct

ortho-normal frame. We denote by ui = vi/|vi| the unit vector in the direction of vi and
define its orthonormal complement u⊥

i which is a unit vector making the pair (ui, u
⊥
i ) a

direct ortho-normal frame (see Fig. 1).
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Now, by the definition of the bearing angle αij , we can write:

kij = ui cosαij + u⊥
i sinαij .

Taking the time derivative of this relation and using the fact that ui and u⊥
i are constant

(since the motion of pedestrian i is supposed rectilinear with constant speed) leads to

k̇ij = α̇ij (−ui sinαij + u⊥
i cosαij) = α̇ijk

⊥
ij .

On the other hand, taking the time derivative of the first equation (2.5), and after some
easy computations, we find

k̇ij(t) =
d

dt

(xj(t)− xi(t)

dij(t)

)

=
1

dij(t)

(
vij − (vij · kij(t)) kij(t)

)

=
1

dij(t)
(vij · k⊥

ij(t)) k
⊥
ij(t).

Identifying these two relations and using (2.1), we get

α̇ij =
1

dij(t)
(vij · k⊥

ij(t)) =
1

dij(t)
(vij × kij(t)),

which gives rise to formula (2.2) for the DBA.
Now, we turn to the computation of the TTI τij and the MD Dij . Here, we follow

the proof of [16]. Starting from time t, we compute the distance dij(t
′) at later times

t′ > t supposing that the motion is rectilinear with constant speed, i.e. that vi and vj are
constant. The distance dij(t

′) is given by:

d2ij(t
′) = |xj + vjt

′ − (xi + vit
′)|2

= |vij |2
(
t′ +

(xj − xj) · vij
|vij|2

)2

+ |xj − xj |2 −
(
(xj − xj) · vij

)2

|vij|2
, (2.6)

denoting by xi and xj the positions of the two particles at time t. This quadratic function
of time is minimal at the time t′ = τij given by (2.3), which gives the value of the TTI.
Finally, the MD Dij is given by the minimal value of (2.6), i.e. Dij = dij(τij), which leads
to (2.4) and ends the proof of the Lemma.

The interaction is threatening only if the TTI is positive. Indeed, if the TTI is negative,
the distance to the encounter is an increasing function of time (the squared distance being
a quadratic function) and there is no threat of collision in the future times. The TTI is
positive if and only if (xj − xi) · (vj − vi) < 0. Furthermore, if the MD is larger than
a certain threshold R identified as the diameter of the individuals, plus a certain safe-
keeping distance, the interaction is no longer perceived as a collision threat. Therefore,
there is no interaction unless both following conditions are simultaneously satisfied:

τij ≥ 0 and Dij ≤ R. (2.7)
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Remark 2.1 In view of (2.2) and (2.4) the DBA can be related to the MD by

|α̇ij| =
|vij|
d2ij

Dij.

Therefore, if there is a collision threat, i.e. if Dij ≤ R, then |α̇ij| ≤ |vij |

d2ij
R. Consequently,

collision threatening situations are associated to small DBA’s. The collision avoidance
manoeuver consists in turning to increase the magnitude of the DBA as we will see in the
next section.

2.2 Decision-making phase

The decision-making model of [44] is made of two components: collision avoidance on the
one hand and satisfaction of the goal on the other hand. We will add a third compo-
nent, namely, noise, in order to take into account some uncertainty and variability of the
subjects’ responses to a given situation. We successively examine these various aspects.

2.2.1 Collision avoidance

In the collision avoidance model of [44], the agents have two control variables, their
direction of motion and their speed. The agents avoid “future collisions”, defined by a
moderate positive value of the TTI and a low value of the DBA, by turning, i.e. changing
their direction of motion. However, the “imminent collisions”, defined by a low positive
value of the TTI are avoided by slowing down. Here, we make the assumption that all
pedestrians move with constant speed equal to c. This assumption is made for simplicity
only and will be waived in future work. Thus, we discard the speed as a control variable,
and consequently, we assume that the imminent collisions are scarce. Indeed, acting
on the direction of motion only is not sufficient to prevent imminent collisions (as the
centripetal force that the pedestrians are able to develop in order to turn has an upper
bound related to their muscular capacity). Therefore, the present constant speed model
cannot completely rule out the fact that pedestrians might actually interpenetrate each
other, which is obviously unrealistic. This implicitly restricts the model to low density
crowds, where the imminent collisions are less likely. By ignoring the speed as a control
variable, we simplify the model and allow us to focus on the directional changes only.
Consequently, in the remainder of the paper, we suppose that |vi| = |vj| = c. Then, we
have vi = c ui, vj = c uj with |ui| = |uj| = 1. We will also assume that there are no fixed
obstacles and thus, the only obstacles consist of other pedestrians.

In this section, we describe the response of pedestrian i to the perception of the DBA
α̇ij and the TTI τij of a single other pedestrian j. The model follows the lines of [44], with
some simplifications of the expressions of the collision avoidance response. We assume
that pedestrian i reacts to the likeliness of a collision with j by rotating with angular
velocity ωij , and similarly for his collision partner j, with an angular velocity ωji. We
note that the collision indicators, α̇ij and τij are the same for i and j. Therefore, we
expect that the responses of the two collision partners to be symmetric, i.e. ωji = ωij .
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This leads to the following equations of motion:

ẋi = c ui, u̇i = ωiju
⊥
i , (2.8)

ẋj = c uj, u̇j = ωiju
⊥
j . (2.9)

We now establish the expression ωij , following [44]. First, the fact that there is no in-
teraction unless condition (2.7) is satisfied implies that ωij involves a factor H(τij)H(R2−
D2

ij), where H is the Heaviside function (i.e. the indicator function of the set of positive
real numbers). The second observation is that collision avoidance is obtained by increas-
ing the magnitude of the DBA α̇ij . So, ωij must have an opposite sign to α̇ij . Finally, ωij

must increase when the risk of collision increases, through a function Φ(|α̇ij|, |τij|) ≥ 0 to
be determined below. Therefore, we can write

ωij = −Sign(α̇ij)H(τij)H(R2 −D2
ij) Φ(|α̇ij|, |τij|) . (2.10)

In the next lemma, we verify that this expression tends to increase the DBA and therefore,
decreases the likeliness of the collision, as seen in remark 2.1.

Lemma 2.2 Suppose that R2 −D2
ij ≥ 0 and τij > 0 and that pedestrians i and j follow

the dynamic (2.8), (2.9) with ωij given by (2.10). Then, there exists a function λij(t) ≥ 0
such that the DBA α̇ij between the two pedestrians satisfies:

α̈ij = cλij α̇ij . (2.11)

As a consequence of the nonnegativity of λij(t), the function |α̇ij(t)| is increasing with
time.

Proof. We can write, using eqs. (2.2), (2.8), (2.9), (2.10):

c−1α̈ij =
(xj − xi)× (u̇j − u̇i)

|xj − xi|2

−2c((xj − xi) · (uj − ui))
(xj − xi)× (uj − ui)

|xj − xi|4

=
ωij

|xj − xi|2
((xj − xi)× (u⊥

j − u⊥
i )) + 2c

|uj − ui|2
|xj − xi|2

τij α̇ij

=
ωij

|xj − xi|2
((xj − xi) · (uj − ui)) + 2c

|uj − ui|2
|xj − xi|2

τij α̇ij

= c
|uj − ui|2
|xj − xi|2

τij(−ωij + 2α̇ij)

= c
|uj − ui|2
|xj − xi|2

τij

(
1

|α̇ij|
Φ(|α̇ij|, |τij|) + 2

)
α̇ij

= λij α̇ij,

with

λij = c
|uj − ui|2
|xj − xi|2

τij

(
1

|α̇ij|
Φ(|α̇ij |, |τij|) + 2

)
> 0,
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which shows (2.11). The second statement is obvious.

Now, we specify the function Φ. In [44], the following form is proposed:

Φ(|α̇ij|, |τij|) = Φ0 max{σ(|τij|)− |α̇ij |, 0}, (2.12)

with

σ(|τij |) = a+
b

(|τij|+ τ0)c
, (2.13)

where φ0, τ0, a, b, c are positive constants. In [44], φ0 = 1 and τ0 = 0 are used. The
constants a = 0, b = 0.6, and c = 1.5 have been determined in [44] from fitting against
experimental data. Formula (2.12) states that if the DBA is larger than a certain threshold
σ, there is no threat of collision and Φ is set to zero. On the other hand, if the DBA is
smaller than this threshold, the subject turns at an angular speed which is proportional
to the difference between this threshold and the actual DBA. The constant Φ0 is the
proportionality constant. Now, the threshold depends on the TTI and gets larger as
the TTI becomes smaller. The reason is that the range of DBA’s which are felt as a
threat increases as the TTI decreases and the available time range to perform a maneuver
becomes smaller.

The constant τ0 > 0 is there to ensure that σ and consequently Φ remain bounded,
and to avoid the divergence of certain integrals in the continuum models (see section 3).
Indeed, in realistic situations, if τij ≤ τ0, the collision threat is such that the pedestrians
not only act on the direction of their motion, but they also slow down or even stop. In
this constant velocity model, we cannot take into account this feature. Therefore, we just
bound the magnitude of the pedestrian angular velocity. This seems reasonable because
the magnitude of the force that the pedestrians are able to exert in order to change
direction is bounded by the muscular capacity. Fig. 2 provides a perspective view of the
function (|α̇|, τ) ∈ [0,+∞]2 → Φ(|α̇|, τ).

To summarize, the collision avoidance model consists of eqs. (2.8), (2.9) for the pedes-
trian positions and velocity, together with (2.10), (2.12), (2.13) for the expression of the
angular velocity.

2.2.2 Target

In their motion, the pedestrians have a goal. In [44], the goal is considered to be a given
point, attached to each pedestrian. Navigation to the goal means that the DBA α̇ig of
pedestrian i relative to the goal g should be small. The satisfaction of this constrained is
realized by modifying the angular velocity (2.10) in the following way:

ωij =

{
−Sign(α̇ij)H(τij)H(R2 −D2

ij) Φ(|α̇ij|, |τij|) if |α̇ig| < Φ(|α̇ij |, |τij|),
α̇ig if |α̇ig| > Φ(|α̇ij|, |τij|).

(2.14)

The rationale of this formula is as follows: We first note that (2.10) gives the minimal
angular velocity necessary to avoid collisions. However larger angular velocities may be
chosen (bottom of (2.14)) if this allows the subject to come closer to his goal. Indeed,
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τ

Φ

Φ = Φ0σ(τ )

Φ = Φ0σ0

|α̇| = σ0

|α̇| = σ(τ )

|α̇|

Φ = 0

Figure 2: Perspective view of the function (|α̇|, τ) ∈ [0,+∞]2 → Φ(|α̇|, τ) in the case
a = 0. The value σ0 corresponds to σ0 = σ(0) = b

τc0
(in the case a = 0). The function Φ is

identically zero, except for the dashed area, where it is linear. The introduction of τ0 > 0
makes it bounded from above by σ0.

pedestrians reach their goal by ensuring that their DBA to the goal α̇ig is close to zero (in
the same way that they try to avoid other pedestrians by ensuring that their DBI to their
collision partner is large, as seen in section 2.2.1). Therefore, taking ωij = α̇ig ensures
that ωij has the same sign as α̇ig and thus that |α̇ig| will further decrease, as can be shown
bu the same reasoning that of the proof of Lemma 2.2. However, collision avoidance is
always the priority. So, in the event where the DBI to the target is smaller than the
minimal DBI needed to avoid collisions, expressed by the function Φ(|α̇ij |, |τij|), then the
latter is chosen as angular velocity ωij, which is what the top relation (2.14) expreses.

2.2.3 Noise

In [44], no stochasticity is considered. However, obviously, the motion of pedestrians is not
fully deterministic. When some decisions need to be made in front of several alternatives,
the response of the subjects is subject-dependent. We can model this inherent uncertainty
by adding a Brownian motion in velocity:

dui = (
√
2d ◦ dBi

t) · u⊥
i ,

where
√
2d is the noise intensity and where dBi

t are standard white noises on the plane,
which are independent from one pedestrian to another one. The circle means that the
stochastic differential equation must be understood in the Stratonovich sense. This for-
mula projects the white noise on the tangent plane to the circle |ui| = 1 and the inte-
gration of this stochastic differential equation generates a Brownian motion on this circle
[34]. This stochastic term adds up to the previous ones. Later on, this noise term will be
crucial in two of the three macroscopic closures that will be proposed: the VMF closure
(section 4.3) and the hydrodynamic limit (section 4.4). By contrast, the first closure,
namely the monokinetic closure (section 4.2) will require zero noise.
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2.3 N-pedestrian model

In this section, we now consider N interacting pedestrians. The key question is how
the binary encounters are combined and provide the final response of the pedestrian. In
the social force model [25, 27, 28], the binary responses are summed up linearly. By
contrast, in [44] and the present work, the binary responses add up nonlinearly. In the
present section, we review how this combination is performed in [44]. We now consider N
pedestrians with positions (xi(t))i=1,...,N , velocity directions (ui(t))i=1,...,N (with |ui| = 1,
∀i = 1, . . . , N), angular velocities (ωi(t))i=1,...,N and target points (ξi)i=1,...,N . The target
points are supposed independent of time for the sake of simplicity.

Each pedestrian is subject to the following equations of motion:

ẋi = c ui, dui = ωi u
⊥
i dt+ (

√
2d ◦ dBi

t) · u⊥
i , (2.15)

where the white noises dBi
t are independent. To compute ωi, we define:

Φ+i = max
j | α̇ij>0

{H(τij)H(R2 −D2
ij) Φ(|α̇ij |, |τij|)}, (2.16)

Φ−i = max
j | α̇ij<0

{H(τij)H(R2 −D2
ij) Φ(|α̇ij |, |τij|)}, (2.17)

It should be noted that, in performing the evaluations (2.16), (2.17), all pedestrians are
taken into account, i.e. there is no exclusion of a blind zone behind the pedestrian. This
feature could be easily added in the model but will be discarded here for simplicity.

We consider two cases:

1. The current deviation to the goal is small. This means that |α̇ig| is smaller than the
reaction induced by collision avoidance, i.e.

−Φ−i ≤ α̇ig ≤ Φ+i. (2.18)

Then:

ωi = −Φ+i H
(∣∣Φ−i − |α̇ig|

∣∣−
∣∣Φ+i − |α̇ig|

∣∣)

+Φ−i H
(∣∣Φ+i − |α̇ig|

∣∣−
∣∣Φ−i − |α̇ig|

∣∣) , (2.19)

where H is again the Heaviside function. This formula states that the pedestrian
determines the worst case in each direction (formulas (2.16) and (2.17)) and then
chooses the turning direction as the one which produces the smallest deviation to
the goal (this selection is provided by the Heaviside functions in (2.19)).

2. The deviation to the goal is large, i.e.

α̇ig < −Φ−i or Φ+i < α̇ig. (2.20)

Then,

ωi = α̇ig. (2.21)

In this case, the deviation to the goal is larger than the reaction to collisions and
the decision is to restore a direction of motion more compatible to the goal.
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We shortly discuss the analogies and differences with [40]. In both the present work and
in [40], the combination of the interactions is nonlinear. Indeed, in [40], the minimal DTI
among all the particles is computed. Here and in [44], the response to the most collision-
threatening situation is chosen. Therefore, both involve some kind of minimization (or
maximization) process. However, while the collision perception is similar in the two
models, the decision-making process is different. In [40], the pedestrians compute the
best compromise between their goal and the necessity of avoiding the other pedestrians.
In the present model and in [44], their decision is made in reaction to the dangerousness of
an encounter. In this sense, it is likely that the process of [44] is less efficient than that of
[40]. Indeed, in [44], the successful direction might be found as the result of a succession
of reactions (with possibilities of over-reactions). In [40] the resolution of the collision
problem results from a geometrical reasoning based on the current situation with an
extrapolation to future trajectories. However, it is not clear whether pedestrians are fully
able to anticipate what is the ’best’ choice, in particular, in a very crowded environment
where the scene is very complex. It is more likely that they use a combination of ’intuitive’
immediate reactions like reflexes in particular in the presence of unanticipated collisions,
and of an ’intelligent’ decision-making process based on a logical (although unconscious)
analysis of what is their best route.

In an attempt to reconcile the two viewpoints, we propose a modification of the
decision-making of [44] which, while using the same collision sensors, introduces some
concept of ’optimal choice’. We develop it in the next section

2.4 Modified N-pedestrian model with potential-driven dynam-

ics

The decision making procedure described in the last section is very rough, particularly
through (2.19). Indeed, suppose that the level of the reactions to pedestrians coming from
the left and the right are approximately the same. Then, the choice of turning towards
the left or the right is very sensitive to perturbations, which results in a fairly unstable
dynamics. Additionally, while the choice of one of the two possible turning directions
decreases the threat of collisions with pedestrians coming from one side, it increases the
threat of collisions with those coming from the other side. It is unlikely that, in real life,
pedestrians make such radical choices. More likely, they try a third possibility.

For this reason, while keeping the rationale of the model of [44], we modify the decision-
making procedure, by introducing some optimal control idea, in the spirit of [24, 30, 40].
For this purpose, we change the interpretation of the functions Φ±i and rather view them
as ’quantifiers’ of what would be the optimal action. In the framework of optimal control
theory, one rather speaks of cost functions. So, we will work with the negative of this
quantifier.

With this aim, we first need a generic definition of the DBA, TTI and MD. Let a
particle be located at position x ∈ R2 with velocity direction u ∈ S1. Then, in its
encounter with another particle located at position y ∈ R2 with velocity direction v ∈ S1,
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we can define the DBA α̇(x, u, y, v), the TTI τ(x, u, y, v) and the MD D(x, u, y, v) by:

α̇(x, u, y, v) = c
(y − x)× (v − u)

|y − x|2 , (2.22)

τ(x, u, y, v) = −1

c

(y − x) · (v − u)

|v − u|2 , (2.23)

D2(x, u, y, v) = |y − x|2 −
(
(y − x) · v − u

|v − u|
)2

. (2.24)

Similarly, we define the DBA with respect to the goal ξ by an analogous formula to (2.22):

α̇g(x, u, ξ) = −c
(ξ − x)× u

|ξ − x|2 , (2.25)

where we have assumed that the target point ξ is immobile. Of course, we have

α̇ij(t) = α̇(xi(t), ui(t), xj(t), uj(t)), τij(t) = τ(xi(t), ui(t), xj(t), uj(t)),

Dij(t) = D(xi(t), ui(t), xj(t), uj(t)), α̇ig = α̇g(xi(t), ui(t), ξi).

We introduce the cost of undergoing collisions with other pedestrians, according to:

Φc(x, u, t) = −max
j

{
H
(
τ(x, u, xj(t), uj(t))

)
H
(
R2 −D(x, u, xj(t), uj(t))

)

Φ(
∣∣α̇(x, u, xj(t), uj(t))

∣∣,
∣∣τ(x, u, xj(t), uj(t))

∣∣)
}
. (2.26)

We also introduce the cost of walking away from the goal ξ:

Φt(x, u, ξ) = χ
(
α̇g(x, u, ξ)

)
, (2.27)

where the function χ is large when |α̇g| is large. For instance, inspired by the function σ
(2.13), we can take:

χ(α̇g) =
b̃

(|α̇g|+ α̇0)c̃
, (2.28)

where the constants b̃ > 0, c̃ > 0 and α̇0 must be calibrated by comparison with experi-
mental data. Finally, we introduce the total cost

Φ(x, u, ξ, t) = Φc(x, u, t) + Φt(x, u, ξ). (2.29)

The game for each pedestrian consists in minimizing his own cost, i.e. finding the optimal
velocity ui(t) such that

ui(t) = argmin
u∈S1

Φ(xi(t), u, ξi, t). (2.30)

where argmin denotes the velocity u at which Φ(xi(t), u, ξi, t) is minimum. To approach
this minimum by means of a continuous process, one possibility is to use the steepest
descent method, i.e. changing velocities in the direction opposite to the gradient of the
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cost function. Therefore, in our modified dynamic, we propose to choose ωi proportional
and opposite to the gradient of the cost function, i.e. according to the formula:

ωiu
⊥
i (t) = −k∇uΦ(xi(t), ui(t), ξi, t). (2.31)

where k is a constant characterizing the reaction time of the pedestrians. Note that by
appropriately choosing the constants in the expression of Φ, we can assume that k = 1
without loss of generality.

Finally, the modified IBM consists of the equations of motion (2.15), supplemented
with the expression (2.31) of the force. We will refer to this IBM as the ’potential-driven
dynamics’.

This model bears analogies with the time continuous version of the model of [40]
proposed in [16]. There are still differences in the way the pedestrians find their optimum.
In this respect, the present model bears stronger analogies with [24, 30] in the construction
of a cost function. In [40], the other pedestrians act as constraints, and the pedestrians find
the best satisfaction of their goal subject to these constraints. Here, collision avoidance
and satisfaction of the goal are treated on an equal footing by constructing the multi-
target cost function (2.29). Another difference from [40] is that we do not consider a
blind zone, i.e. the observation region around each pedestrian is isotropic. A blind zone
could be included easily, but, similar to [40], the motion would no longer be expressible
in terms of the gradient of the potential function. Indeed, here as well as in [40] when
the observation is supposed isotropic, the dynamics can be derived from a potential [16].
This has important consequences for the possibility of performing a hydrodynamic limit
(see section 4.4).

3 Mean-field kinetic models

3.1 Derivation of the model

We now formally derive a mean-field kinetic model for the particle system presented in the
previous section. We introduce the probability distribution function f(x, u, ξ, t) of parti-
cles of position x ∈ R2, velocity direction u ∈ S1, target point ξ ∈ R2 at time t. We recall
that S1 denotes the set of vectors of R2 of unit norm. The quantity f(x, u, ξ, t) dx du dξ
is the probability of finding pedestrians in a small physical volume dx about point x,
within an angular neighborhood du of velocity direction u, and within a neighborhood dξ
of target point ξ at time t. The distribution function f satisfies the following mean-field
kinetic equation

∂tf + cu · ∇xf +∇u · (Ff f) = d∆uf. (3.1)

The operator at the left hand-side of (3.1) describes the motion of particles at velocity c u
and their acceleration by the force Ff (which depends on f itself). The diffusion operator
at the right-hand side comes from the noise. Let θ be the angle between u and the first
coordinate direction. Then, u = (cos θ, sin θ), u⊥ = (− sin θ, cos θ), and

u · ∇xf = cos θ ∂x1f + sin θ ∂x2f, ∇u · (Ff f) = ∂θ(ωff), ∆uf = ∂2
θf,
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where

Ff (x, u, ξ, t) = ωf(x, u, ξ, t) u
⊥, (3.2)

and ωf is a scalar quantity, to be determined below. Because the velocity u is of constant
norm (|u| = 1), the force term Ff is orthogonal to u, i.e. is a vector proportional to u⊥,
as expressed by (3.2). There is no operator acting on the ξ-dependence of f . This is
because the target point ξ is a fixed quantity attached to each pedestrian which does not
change in time. In the case of a given external force field F , eq. (3.1) just follows from
the stochastic particle system (2.15) by the application of Ito’s formula. In the case of a
self-consistent force field such as the one given by (2.19), (2.21), the rigorous derivation
is an open problem (see e.g. [7] for the derivation of a mean-field model in a different but
related context).

To find an expression for ωf , we first recall the expressions (2.22), (2.23), (2.24) and
(2.25) of the DBA, TTI, MD and DBA relative to the target, respectively denoted by
α̇(x, u, y, v), τ(x, u, y, v), D(x, u, y, v) and α̇g(x, u, ξ). Now, we have to define the analogs
of Φ+i and Φ−i for a continuum of particles. Litterally, eqs. (2.16), (2.17) should be
transformed into

Φ±(x, u, t) = max
(y,v)∈Supp(f(t)) | ±α̇(x,u,y,v)>0

{H(τ(x, u, y, v))H(R2 −D(x, u, y, v))

Φ(|α̇(x, u, y, v)|, |τ(x, u, y, v)|)},
where Supp(f(t)) indicates the support of the function (y, v) → f(y, v, t). But for a
continuum model, this maximum is likely to be infinite as soon as there exists an (even
very small) non-zero density f(y, v, t) for large values of the function Φ(|α̇(x, u, y, v)|,
|τ(x, u, y, v)|). So, we replace the maximum by an average. We define:

S±(x, u) =
{
(y, v) ∈ R

2 × S
1
∣∣ ± α̇(x, u, y, v) > 0, τ(x, u, y, v) > 0,

D2(x, u, y, v) < R2, |α̇(x, u, y, v)| < σ(|τ(x, u, y, v)|)
}
. (3.3)

We note that, because of the last condition in (3.3), we have Φ(|α̇|, |τ |) > 0 on the set
S±(x, u). We then let Φ±(x, u, t) the averages of Φ(|α̇|, |τ |) over the set S±(x, u), weighted
by the distribution function of the pedestrians, namely:

Φ±(x, u, t) =

∫
(y,v)∈S±(x,u), η∈R2 Φ(|α̇(x, u, y, v)|, |τ(x, u, y, v)|) f(y, v, η, t) dydv dη

∫
(y,v)∈S±(x,u), η∈R2 f(y, v, η, t) dy dv dη

,

(3.4)

We can now define ωf(x, u, ξ, t) by the following alternative:

1. Small deviation to goal: If

−Φ−(x, u, t) ≤ α̇g(x, u, ξ) ≤ Φ+(x, u, t). (3.5)

Then:

ωf (x, u, ξ, t) =

−Φ+(x, u, t)H
(∣∣Φ−(x, u, t)− |α̇g(x, u, ξ)|

∣∣−
∣∣Φ+(x, u, t)− |α̇g(x, u, ξ)|

∣∣)

+Φ−(x, u, t)H
(∣∣Φ+(x, u, t)− |α̇g(x, u, ξ)|

∣∣−
∣∣Φ−(x, u, t)− |α̇g(x, u, ξ)|

∣∣) , (3.6)
where H is again the Heaviside function.
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2. Large deviation to the goal:

α̇g(x, u, ξ, t) < −Φ−(x, u, t) or Φ+(x, u, t) < α̇g(x, u, ξ, t). (3.7)

Then,

ωf(x, u, ξ, t) = α̇g(x, u, ξ). (3.8)

Finally, the mean-field kinetic model consists of the kinetic equation (3.1) for the
distribution function f(x, u, ξ, t), coupled with the mean-field force Ff (x, u, ξ, t) given by
(3.2). The mean-field force is the elementary force acting on the particles located at x,
with velocity u and goal ξ at time t. Its expression is given either by (3.6) or by (3.8)
according to whether the corresponding particles have small or large deviation to the goal
(respectively defined by the inequalities (3.5) and (3.7)). This alternative depends on
the mean-field evaluation of the average response towards pedestrians coming from the
left or from the right given by (3.4). The expression of the force itself (3.6) depends on
this response. The decision of making a left or right turn, reflected by the two Heaviside
functions in (3.6) is the one which minimizes the deviation to the goal.

So far, we have taken the set of target point ξ equal to the whole space R2. In practice,
it is probably enough to deal with a finite number of target points. In this case, we would
replace the continuous dependence of f upon ξ by a coupled system of a finite number of
equations for fi(x, u, t), where i = 1, . . . , I is the index of target points, and I their total
number. Most of the model equations would remain unchanged, except for (3.4) where
the integrals over η would be replaced by discrete summations.

This description shows that the mean-field kinetic model is a direct statistical trans-
lation of the Individual-Based model described in section 2.3, up to the transformation
of the maximum operation in (2.16) and (2.17) into a mean-field average in (3.4). In
section 4, we use this kinetic model to derive several macroscopic models.

3.2 Mean-field kinetic model for the potential-driven dynamics

Here, we investigate how the mean-field kinetic model of section 3.1 must be adapted in
the case of the potential-driven dynamics of section 2.4. The only modification is the
expression of the force (3.2). Following section 2.4, but using the averaging procedure
of section 3.1 instead of the ’max’, we define the cost function Φc(x, u, t) for the cost of
undergoing collisions with other pedestrians. We first introduce

S(x, u) = {(y, v) ∈ R
2 × S

1
∣∣ τ(x, u, y, v) > 0, D(x, u, y, v)2 < R2,

|α̇(x, u, y, v)| < σ(|τ(x, u, y, v)|)}. (3.9)

We then let Φc(x, u, t) be the average of Φ(|α̇|, |τ |) over the set S(x, u), weighted by the
distribution function of the pedestrians, namely:

Φc(x, u, t) = −
∫
(y,v)∈S(x,u), η∈R2 Φ(|α̇(x, u, y, v)|, |τ(x, u, y, v)|) f(y, v, η, t) dydv dη

∫
(y,v)∈S(x,u), η∈R2 f(y, v, η, t) dy dv dη

,

(3.10)
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The cost of walking away from the target direction αg is still given by (2.27). The total
cost is then defined by

Φ(x, u, ξ, t) = Φc(x, u, t) + Φt(x, u, ξ). (3.11)

The force is obtained through:

Ff(x, u, ξ, t) = ωf(x, u, ξ, t)u
⊥ = −∇uΦ(x, u, ξ, t). (3.12)

Finally, the modified mean-field kinetic model for the potential-driven dynamics con-
sists of eq.(3.1), supplemented with the expression (3.12) of the force.

3.3 Local approximations to the mean-field kinetic models

We now propose spatially local approximations of the mean-field models for both the
original and the potential-driven dynamics. We start with the original dynamics (section
3.1).

If we observe the system at a large distance, the various length scales involved in the
interaction terms appear to be small. Therefore, under this assumption, it is legitimate
to assume that there exists a small dimensionless quantity λ ≪ 1 such that

R = λR̂, Φ0 = λΦ̂0, a =
1

λ
â, τ0 = λτ̂0, b = λc−1b̂, σ =

1

λ
σ̂ (3.13)

where all ’hat’ quantities are assumed to be O(1). The scaling (3.13) is tailored to make
the interaction force spatially local, while maintaining its temporal scale of order O(1),
as we will see below. We introduce the change of variables y = x+ λζ , with ζ ∈ R2 in all
expressions involving y. We get the following expressions:

α̇(x, u, y, v) =
1

λ
̂̇α(ζ, v − u), ̂̇α(ζ, v − u) = c

ζ × (v − u)

|ζ |2 , (3.14)

τ(x, u, y, v) = λτ̂(ζ, v − u), τ̂(ζ, v − u) = −1

c

ζ · (v − u)

|v − u|2 , (3.15)

D(x, u, y, v) = λD̂(ζ, v − u), D̂2(ζ, v − u) = |ζ |2 −
(
ζ · v − u

|v − u|
)2

. (3.16)

On the other hand, the DBA with respect to the goal ξ is unchanged and still given by
(2.25). The function Φ(|α̇|, |τ |) is changed into Φ̂(|̂̇α|, |τ̂ |), such that

Φ(|α̇(x, y, u, v)|, |τ(x, y, u, v)|) = Φ̂(|̂̇α(ζ, v − u)|, |τ̂(ζ, v − u)|), (3.17)

Φ̂(|̂̇α|, |τ̂ |) = Φ̂0 max{σ̂(|τ̂ |)− |̂̇α|, 0}, σ̂(|τ̂ |) = â +
b̂

(|τ̂ |+ τ̂0)c
, (3.18)

Now, with this change of variables, formula (3.4) for Φ+ and Φ− is written as follows:

Φ±(x, u, t) =

∫
(ζ,v,η)∈S̆±(u)

Φ(|̂̇α(ζ, v − u)|, |τ̂(ζ, v − u)|) f(x+ λζ, v, η, t) dζ dv dη
∫
(ζ,v,η)∈S̆±(u)

f(x+ λζ, v, η, t) dζ dv dη
,

(3.19)
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where

S̆±(u) = {(ζ, v, η) ∈ R
2 × S

1 × R
2 | ± ̂̇α(ζ, v − u) > 0, τ̂ (ζ, v − u) > 0,

D̂2(ζ, v − u) < R̂2(ζ, v − u), |̂̇α(ζ, v − u)| < σ(|τ̂ (ζ, v − u)|)}.

Now, in the formal limit λ → 0, the dependence of f upon ζ disappears and Φ̂ can be
integrated out with respect to ζ . Therefore, formula (3.19) leads to:

Φ±(x, u, t) =

∫
(v,η)∈S1×R2 Ψ±(|v − u|) f(x, v, η, t) dv dη

∫
(v,η)∈S1×R2 f(x, v, η, t) dv dη

, (3.20)

where

Ψ±(|v − u|) = 1

Area(Ŝ±(v − u))

∫

ζ∈Ŝ±(v−u)

Φ̂(|̂̇α(ζ, v − u)|, |τ̂(ζ, v − u)|) dζ. (3.21)

We denote by Ŝ±(v − u) the set

Ŝ±(v − u) = {ζ ∈ R
2
∣∣ ± ̂̇α(ζ, v − u) > 0, τ̂ (ζ, v − u) > 0,

D̂2(ζ, v − u) < R̂2, |̂̇α(ζ, v − u)| < σ(|τ̂(ζ, v − u)|)}, (3.22)

and Area(Ŝ±(v−u)) its two-dimensional area. It is a simple matter to check that Ŝ±(v−u)
is a bounded domain as soon as â > 0 or â = 0 and c < 2 (see (2.13)), which we will
suppose from now on. Therefore, Area(Ŝ±(v − u)) is finite. The graphical representation
of formula (3.21) can be found in Fig. 3. The function Ψ±(|v − u|) can be computed
numerically once for all. Once the functions Φ± have been computed thanks to (3.20),
the determination of ωf follows the same procedure as in section 3.1, by means of eqs.
(3.5) through (3.8).

In the case of the potential-driven dynamics (section 3.2), the local approximation
takes the following form. The formula (3.10) for the cost function Φc associated to colli-
sions with the other pedestrians is changed into:

Φc(x, u, t) = −
∫
(v,η)∈S1×R2 Ψ(|v − u|) f(x, v, η, t) dv dη

∫
(v,η)∈S1×R2 f(x, v, η, t) dv dη

, (3.23)

where

Ψ(|v − u|) = 1

Area(Ŝ(v − u))

∫

ζ∈Ŝ(v−u)

Φ̂(|̂̇α(ζ, v − u)|, |τ̂(ζ, v − u)|) dζ. (3.24)

and

Ŝ(v − u) = {ζ ∈ R
2
∣∣ τ̂(ζ, v − u) > 0, D̂(ζ, v − u)2 < R̂2,

|̂̇α(ζ, v − u)| < σ(|τ̂(ζ, v − u)|)}. (3.25)

Again, Ŝ(v − u) is a bounded domain as soon as â > 0 or â = 0 and c < 2. Formulas
(3.11) and (3.12) remain unchanged. This local approximation of the potential-driven
dynamics is the key of the hydrodynamic limit of section 4.4.
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Ŝ−(v − u)

Ŝ+(v − u)
ζ⊥

ζ‖v − u

̂̇α = Constant < 0

̂̇α = Constant > 0

|τ̂ | = Constant

Figure 3: Graphical representation of formula (3.21). The domains Ŝ+(v−u) and Ŝ−(v−u)
are represented by the blue and green shaded areas respectively (their left boundary is
supposed to be outside the figure). The function Φ̂ depends only on ̂̇α and τ̂ which are
constant along the dashed circles and dashed vertical lines respectively. The dashed circles
are all circles centered along the vertical axis and passing through the origin. Indeed, we
have ̂̇α = cζ⊥|v − u|/ζ2 and cτ = −ζ‖/|v − u|. When integrating such a function on the
shaded domains, the result obviously only depends on |v − u|.

The approximations developed in this section are called ’local’ because the evaluation
of the force ωf at a point x in space requires solely the knowledge of f at the same point.
Indeed, only the values of f at point x are needed to evaluate the integrals involved in
(3.20) or in (3.23). The local approximation combined with the potential-driven dynamics
as discussed in the previous paragraph are the two essential ingredients that allow for the
hydrodynamic limit of section 4.4.

4 Macroscopic models

4.1 Introduction to macroscopic models

In this section, we develop macroscopic models for the mean-field kinetic model presented
in the previous section. The development will closely follow [16] and we will only focus
on the new computations, referring to [16] for the other ones. Macroscopic models are
obtained by taking averages of functions of the particle velocity u over the distribution
function f(x, u, ξ, t). The resulting macroscopic quantities are e.g. the density ρ(x, ξ, t)
or the mean velocity U(x, ξ, t) of pedestrians at position x with target point ξ at time t:

ρ(x, ξ, t) =

∫

u∈S1
f(x, u, ξ, t) du, (4.1)

U(x, ξ, t) =
1

ρ(x, ξ, t)

∫

u∈S1
f(x, u, ξ, t) u du. (4.2)
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Here, we keep the dependence of the macroscopic quantities over the target point ξ, as this
information is very important in practical situations. It is also possible to introduce more
global macroscopic quantities such as the total density N(x, t) irrespective of their target
point. In this case, N would just be the integral of ρ given by (4.1) over ξ. However, we
will discard such models here.

To pass from the kinetic model (3.1) to a macroscopic model, one generally uses the
moment method. However, this method requires closure relations in order to terminate the
hierarchy of moment equations. These are provided through an Ansatz which expresses f
as a function of ρ and U . The justification of this Ansatz is sometimes possible through
the so-called hydrodynamic limit, such as in gas dynamics (see e.g. [15]) and also in the
case of the heuristic-based pedestrian model of [40] (see [16]).

In this section, we propose three different closure hypotheses. The first one relies on
a monokinetic distribution function and is valid in the strictly noiseless case. The second
one, which can handle noisy cases, postulates that the distribution of velocities is a von
Mises-Fisher (VMF) distribution in the velocity variable u. The VMF distribution is the
most natural extension of the Gaussian to random variables belonging to the sphere [56].
Finally, the third one, which applies only to the potential-driven dynamics in the local
approximation, relies on the hydrodynamic limit, in the same spirit as [16].

4.2 Monokinetic closure

4.2.1 Monokinetic closure: derivation

In this section, we consider the mean-field kinetic model (3.1) without noise. The equation
is written:

∂tf + cu · ∇xf +∇u · (Ff f) = 0, (4.3)

and is coupled to (3.2) with ωf given by (3.6) or (3.8). The monokinetic Ansatz is written:

f(x, u, ξ, t) = ρ(x, ξ, t)δU(x,ξ,t)(u), (4.4)

where δU(u) is the Dirac delta located at U . Note that, by definition, U(x, ξ, t) ∈ S1 i.e.
is a vector of norm 1. The monokinetic distribution function is graphically represented
in Fig. 4. Easy computations [15] show that (4.4) is an exact solution to (4.3) provided
ρ and U satisfy:

∂tρ+∇x · (cρU) = 0, (4.5)

∂tU + cU · ∇xU = F̃ (x, ξ, t), (4.6)

with

F̃ (x, ξ, t) = ω̃ρ,U(x, ξ, t)U
⊥(x, ξ, t), (4.7)

where

ω̃ρ,U(x, ξ, t) := ωρδU (x, U(x, ξ, t), ξ, t), (4.8)
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and where ωf with f = ρδU is given by the procedure detailed in section 3.1. Specifically,
letting u = U(x, ξ, t) and v = U(y, η, t) in all formulas (2.22) to (2.25) defines functions
˜̇α(x, ξ, y, η, t), τ̃ (x, ξ, y, η, t), D̃(x, ξ, y, η, t), ˜̇αg(x, ξ, t). Then, we define

S̃±(x, ξ, t) =
{
(y, η) ∈ R

2 × R
2
∣∣ ± ˜̇α(x, ξ, y, η, t) > 0, τ̃(x, ξ, y, η, t) > 0,

D̃(x, ξ, y, η, t)2 < R2, |˜̇α(x, ξ, y, η, t)| < σ(|τ̃(x, ξ, y, η, t)|)
}
, (4.9)

and

Φ̃±(x, ξ, t) =

∫
(y,η)∈S̃±(x,ξ,t)

Φ(|˜̇α(x, ξ, y, η, t)|, |τ̃(x, ξ, y, η, t)|) ρ(y, η, t) dydη
∫
(y,η)∈S̃±(x,ξ,t)

ρ(y, η, t) dy dη
. (4.10)

Then, ω̃ρ,U is given by formulas (3.5) to (3.8), putting tildes on all quantities.
The macroscopic model with monokinetic closure is obtained by collecting (4.5), (4.6),

(4.7). Eq. (4.5) is the continuity equation for the mass while (4.6) expresses how the fluid
velocity evolves as a consequence of the pedestrian interactions. The force term (4.7)
describes the rotation of the pedestrian in response to close encounters. By the defini-
tion (4.7), F̃ · U = 0. Then, it follows that the constraint |U | = 1 is satisfied at any
time provided it is satisfied at initial time [16]. The intensity of the force is non-local in
space. This non-locality is due to the fact that the pedestrian anticipates the behavior of
neighboring pedestrians to take a decision.

Direction of U

VMF distribution MU (u)

Dirac delta distribution δU (u)

uy

ux

Figure 4: The Dirac delta distribution (in red) and the VMF distribution (in blue) as
functions of u in polar coordinates. The direction of the mean velocity U is given by
the black semi-line. The width of the VMF distribution about the velocity u = U/|U |
at which it is maximal is a function of β(|U |). In both cases, the mean velocity U is a
function of (x, ξ, t) determined by the fluid model. We have |U | = 1 in the Dirac delta
distribution case and |U | < 1 in the VMF case.

4.2.2 Monokinetic closure for the potential-driven dynamics

If instead of the original dynamics, the mean-field model for the potential-driven dynamics
is used, the computation of F̃ follows the procedure described from eq. (3.9) through
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(3.12). Specifically, we define

S̃(x, u, t) =
{
(y, η) ∈ R

2 × R
2
∣∣ τ(x, u, y, U(y, η, t)) > 0,

D(x, u, y, U(y, η, t))2 < R2, |α̇(x, u, y, U(y, η, t))| < σ(|τ(x, u, y, U(y, η, t))|)
}
.(4.11)

Then, the cost function associated to the collisions with the other pedestrians is given by:

Φc(x, u, t) =

= −
∫
(y,η)∈S̃(x,u,t)

Φ(|α̇(x, u, y, U(y, η, t))|, |τ(x, u, y, U(y, η, t))|) ρ(y, η, t) dydη
∫
(y,η)∈S̃(x,u,t)

ρ(y, η, t) dy dη
. (4.12)

Finally, the force term is given by

Ff (x, ξ, t) = −∇uΦ(x, U(x, ξ, t), ξ, t). (4.13)

with the total cost Φ given by (3.11) as the sum of the cost associated to collisions (4.12)
and of the target cost given by (2.27).

4.2.3 Monokinetic closures: local approximations

Local approximations of the monokinetic closures of both the original and potential-driven
dynamics can be given, following section 3.3. We first consider the monokinetic closure of
the original model (section 4.2.1). Applying (3.20) with f given by (4.4) and evaluating
it for u = U(x, ξ, t), the spatially local approximation of Φ̃± can be derived and leads to:

Φ̃±(x, ξ, t) =

∫
η∈R2 Ψ±(|U(x, η, t)− U(x, ξ, t)|) ρ(x, η, t) dη

∫
η∈R2 ρ(x, η, t) dη

, (4.14)

with Ψ± given by (3.21). Once the functions Φ̃± have been computed thanks to (3.20),
the determination of ω̃ρ,U follows the same procedure as in section 3.1.

In the case where the potential-driven dynamics is combined with the local approx-
imation of section 4.2.3, the cost function associated to the collisions with the other
pedestrians takes the form

Φc(x, u, t) = −
∫
η∈R2 Ψ(|U(x, η, t)− u)|) ρ(x, η, t) dη

∫
η∈R2 ρ(x, η, t) dη

, (4.15)

with Ψ given by (3.24). Then, the force Ff is given by (4.13) with the total cost Φ given
by (3.11) and the target cost given by (2.27).

Like the monokinetic fluid model of [16], these models, be they nonlocal or local,
are of pressureless gas dynamics type [8]. Indeed, the left-hand side of (4.6) describes the
convection of a fluid with zero pressure. The force term at the right-hand side of (4.6) does
not contain any spatial gradients. Therefore, large density gradients due to the formation
of shock waves in (4.6) cannot be counterbalanced by the force term. In this case, mass
concentrations may be produced and the model breaks down once these concentrations
appear. The VMF closure developed in the next section attempts at providing a cure to
this deficiency. Indeed, pressure is associated to the kinetic velocities of the particles, i.e.
their deviation to the local mean velocity. In the monokinetic closure, this deviation is
zero and consequently there is no pressure. The VMF closure is associated to non-zero
kinetic velocities and is likely to restore the influence of the pressure.
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4.3 VMF closure

4.3.1 VMF closure: derivation

We first derive the moment equations of the noisy mean-field kinetic equation (3.1).
Integrating (3.1) with respect to u against the functions 1 and u leads to the mass and
momentum balance equations. The algebra is the same as in [16] and we refer the reader
to it for details. We get:

∂tρ+∇x · (cρU) = 0, (4.16)

∂t(ρU) +∇x · (cS) = ρF − dρU, (4.17)

with the 2× 2 tensor S defined by

S =

∫

u∈S1
f u⊗ u du,

and u⊗ u is a matrix of components (u⊗ u)ij = ui uj. The macroscopic force F is given
by:

F(x, ξ, t) = ρ−1(x, ξ, t)

∫

u∈S1
Ff (x, u, ξ, t) f(x, u, ξ, t) du

= ρ−1(x, ξ, t)

∫

u∈S1
ωf(x, u, ξ, t) u

⊥ f(x, u, ξ, t) du. (4.18)

To express S and F analytically, we need a closure assumption, i.e. a prescription
for f . Like in [16], we assume that f is a von Mises-Fisher (VMF) distribution about the
mean direction U . The VMF distribution is discussed in [56]. It is given by

MU(u) =
1

Z
exp{β (u · Ω)}, Ω =

U

|U | , (4.19)

where β plays the role of an inverse temperature (we will see that β is related to |U |).
The quantity Z is a normalizing constant such that MU is a probability density on S1. It
does not depend on Ω and is given by:

Z = Z(β) = 2πI0(β). (4.20)

We recall that Ik(x) denotes the modified Bessel function of the first kind:

Ik(x) =
1

π

∫ π

0

exp{x cos θ} cos(k θ) dθ, ∀x ∈ R, ∀k ∈ N.

The VMF distribution function is graphically represented in Fig. 4. We note that the
flux of MU is given by:

∫

u∈S1
MU(u) u du =

∫

u∈S1
MU(u) (u · Ω) du Ω =

I1(β)

I0(β)
Ω. (4.21)
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The VMF Ansatz is written:

f(x, u, ξ, t) = ρ(x, ξ, t)MU(x,ξ,t)(u), (4.22)

where ρ(x, ξ, t) and U(x, ξ, t) are the moments (4.1) and (4.2) of f . In view of (4.21), the
consistency with (4.2) requires that β and |U | be linked by the relation:

I1(β)

I0(β)
= |U |. (4.23)

This equation has a unique solution β(|U |) ∈ [0,∞) for all |U | such that |U | < 1 (see
[17]). The condition |U | < 1 is consistent with the kinetic model. Indeed, the microscopic
velocities u satisfy |u| = 1. Therefore, the parameter |U | acts as an order parameter.
When |U | is close to zero, the VMF distribution is almost isotropic while when |U | is
close to 1, the VMF distribution is like a Dirac delta at the velocity direction Ω (see e.g.
[17, 22, 55] for the role of the order parameter in self-propelled particle systems). We will
now write β = β(|U |), Z = Z(|U |), which leads to the following expression of the VMF
Ansatz (omitting the dependences of ρ and U upon (x, ξ, t) for clarity):

f(u) = ρMU (u) = ρ
1

Z(|U |) exp
{
β(|U |)
|U | (u · U)

}
. (4.24)

Now, with (4.24), the tensor S can be computed [16], and is given by:

S = ρ
(
γ‖(|U |)U ⊗ U + γ⊥(|U |)U⊥ ⊗ U⊥

)
, (4.25)

with

γ‖(|U |) = 1

2|U |2 (1 +
I2(β)

I0(β)
), γ⊥(|U |) = 1

2|U |2 (1−
I2(β)

I0(β)
), (4.26)

and β = β(|U |). Since I2/I0 < 1, the matrix S is positive definite. In the limit β → ∞,
S → ρU ⊗ U , and we recover the expression of the monokinetic closure (second term at
the left-hand side of (4.6)).

We now consider the force term (4.18). Using (4.22), we have:

F(x, ξ, t) =

∫

u∈S1
FρMU

(x, u, ξ, t)MU(x,ξ,t)(u) du

=

∫

u∈S1
ωρMU

(x, u, ξ, t) u⊥MU(x,ξ,t)(u) du, (4.27)

where ωf with f = ρMU is given by the procedure detailed in section 3.1. Taking advan-
tage of the VMF Ansatz (4.22), we can write:

Φ±(x, u, t) =

∫
(y,η)∈R2×R2 H±(x, u, y, U(y, η, t)) ρ(y, η, t) dydη

∫
(y,η)∈R2×R2 H0±(x, u, y, U(y, η, t)) ρ(y, η, t) dydη

, (4.28)
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with

H±(x, u, y, U) =

∫

v∈Σ±(x,u,y)

Φ(|α̇(x, u, y, v)|, |τ(x, u, y, v)|)MU(v) dv, (4.29)

H0±(x, u, y, U) =

∫

v∈Σ±(x,u,y)

MU (v) dv, (4.30)

where the set Σ±(x, u, y) is defined by:

Σ±(x, u, y) = {v ∈ S
1
∣∣ ± α̇(x, u, y, v) > 0, τ(x, u, y, v) > 0,

D(x, u, y, v)2 < R2, |α̇(x, u, y, v)| < σ(|τ(x, u, y, v)|)}. (4.31)

Then, ωρMU
(x, u, ξ, t) is given by formulas (3.5) to (3.8), exactly like in section 3.1. The

functions H± and H0± can be computed numerically a priori.
We now summarize the macroscopic model. It consists of the system:

∂tρ+∇x · (cρU) = 0. (4.32)

∂t(ρU) +∇x ·
(
cρ (γ‖ U ⊗ U + γ⊥ U⊥ ⊗ U⊥)

)
= ρF − dρU, (4.33)

coupled with (4.27). This a system for ρ(x, ξ, t) and U(x, ξ, t). Like the monokinetic
closure, it is composed of the continuity equation for the mass density (4.32) and a balance
equation for the fluid momentum (4.33). By contrast with the monokinetic closure, the
left-hand side of the momentum eq. (4.33) is expressed in divergence form. Compared
to standard fluid-dynamic models, the transport operator has an unusual form, with the
occurrence of the tensor U⊥ ⊗ U⊥, which is nothing but the adjugate of matrix U ⊗ U
(i.e. the transpose of its cofactor matrix). This term occurs as a consequence of the
non-classical closure using the VMF distribution.

The target point ξ appears implicitly through the force. The bulk force acting on a fluid
element, given through expression (4.27) consists of an average of the elementary force
ωMU

over the VMF distribution. The computation of the elementary force itself involves
the VMF distribution (hence the notation ωMU

) through the computation of the collision
indicators Φ± (see (4.28)). Due to the known dependence of MU (v) on v the quantities
H± and H0± can be precalculated through (4.29), (4.30). The resulting expression of the
force is non-local and translates the anticipation capacity of the pedestrians.

4.3.2 VMF closure for the potential-driven dynamics

In this section, we adapt the previous VMF closure to the potential-driven dynamics of
section 3.2. The only quantity that changes is the fluid force F given by (4.27). We
introduce the cost of collisions with the other pedestrians:

Φc(x, u, t) = −
∫
(y,η)∈R2×R2 H(x, u, y, U(y, η, t)) ρ(y, η, t) dy dη

∫
(y,η)∈R2×R2 H0(x, u, y, U(y, η, t)) ρ(y, η, t) dydη

, (4.34)

with

H(x, u, y, U) =

∫

v∈Σ(x,u,y)

Φ(|α̇(x, u, y, v)|, |τ(x, u, y, v)|)MU(v) dv, (4.35)

H0(x, u, y, U) =

∫

v∈Σ(x,u,y)

MU(v) dv, (4.36)
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where the set Σ(x, u, y) is defined by:

Σ(x, u, y) = {v ∈ S
1
∣∣ τ(x, u, y, v) > 0,

D(x, u, y, v)2 < R2, |α̇(x, u, y, v)| < σ(|τ(x, u, y, v)|)}. (4.37)

Then, we let

FρMU
(x, u, ξ, t) = −∇uΦ(x, u, ξ, t), (4.38)

where Φ is the total cost (3.11) given by the sum of the collision cost Φc (4.34) and the
target cost Φt (2.27). Using the stokes formula, we can take advantage of the gradient
form of (4.38) to simplify expression (4.27) and get:

F(x, ξ, t) = β
(
|U(x, ξ, t)|

) ∫

u∈S1
Φ(x, u, t)MU(x,ξ,t)(u) duΩ(x, ξ, t)

−
∫

u∈S1
Φ(x, u, t)MU(x,ξ,t)(u)

(
1 + β

(
|U(x, ξ, t)|

)(
u · Ω(x, ξ, t)

))
u du, (4.39)

with Ω(x, ξ, t) = U(x, ξ, t)/|U(x, ξ, t)|. The computation is detailed in [16].

4.3.3 VMF closures: local approximations

Like for the monokinetic closure case, local approximations can be given. For the original
mean-field model (section 4.3.1), applying (3.20) with f given by (4.22) leads to:

Φ±(x, u, t) =

∫
η∈R2 Ψ̃±(u, U(x, η, t)) ρ(x, η, t) dη

∫
η∈R2 ρ(x, η, t) dη

, (4.40)

with

Ψ̃±(u, U) =

∫

v∈S1
Ψ±(|v − u|)MU(v) dv, (4.41)

and with Ψ± given by (3.21). The determination of ωρMU
then follows the same procedure

as in section 3.1.
For the potential-driven dynamics (section 4.3.2), the cost of collisions with the other

pedestrians in the local approximation is given by:

Φ(x, u, t) =

∫
η∈R2 Ψ̃(u, U(x, η, t)) ρ(x, η, t) dη

∫
η∈R2 ρ(x, η, t) dη

, (4.42)

with

Ψ̃(u, U) =

∫

v∈S1
Ψ(|v − u|)MU(v) dv, (4.43)

and with Ψ given by (3.24). Then, the force F is given by (4.39).
The VMF closure of the potential-driven dynamics in the local approximation yields

the simplest fluid model. The force potential (4.42) is obtained through a local average of
the function Ψ̃ over the density of particles having given target points η. The function Ψ̃
itself is some kind of measure of the distance between the velocity u (at which the potential
is evaluated) and the local average fluid velocity U(x, η, t). Once the force potential is
known, it can be averaged over the VMF distribution in order to get an estimate of the
fluid force (formula (4.39)).
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4.4 Hydrodynamic limit of the potential-driven dynamics in the

local approximation

In this section, we focus on the potential-driven dynamics in its local approximation and
we discuss the hydrodynamic limit of the associated mean-field kinetic model (described
in the second part of section 3.3). In the hydrodynamic limit, the interaction force Ff

and the noise diffusion constant d are very large i.e. there exists a small parameter ε ≪ 1
such that both Ff and d can be rescaled as follows

Ff =
1

ε
F̂f , d =

1

ε
d̂ (4.44)

Under this scaling, the mean-field model (3.1) is written (omitting the ’hats’ for simplic-
ity):

∂tf
ε + cu · ∇xf

ε =
1

ε
QΦfε

(f ε). (4.45)

Here, the collision operator QΦf
(f) collects the negative of the last term of the left-hand

side of (3.1) (modeling the reaction of the pedestrians to the collisions with the other
pedestrians) and the diffusion term at the right-hand side of (3.1) (which models the
noise). We have parametrized the collision operator by the potential Φf and highlighted
the dependence of the potential on f (through (3.23)). In the local approximation, the
collision operator QΦf

(f) operates only on u and ξ, leaving (x, t) as mere parameters.
Therefore, we consider it as acting on functions of f(u, ξ) only. For a given function
(u, ξ) ∈ S1 × R2 → Φ(u, ξ) ∈ R, the expression of the collision operator is:

QΦ(f) = −∇u · (−∇uΦ f) + d∆uf. (4.46)

For a given function f(u, ξ), Φf (u, ξ) is defined by

Φf (u, ξ) = Φt(u, ξ)−
∫
(v,η)∈S1×R2 Ψ(|v − u|) f(v, η) dv dη

∫
(v,η)∈S1×R2 f(v, η) dv dη

, (4.47)

where Φt and Ψ(|v − u|) are the known functions given by (2.27) and (3.24). In this
formula, we have omitted the dependences of Φt on x and of f on (x, t), because they are
mere parameters.

If the limit ε → 0 is formally taken in (4.45) and if we assume that there exists a
smooth function f 0 such that

f ε −→ f 0 as ε −→ 0, (4.48)

smoothly, then, we find that f 0 is necessarily a solution of

QΦ
f0
(f 0) = 0, (4.49)

i.e., borrowing to the terminology of statistical mechanics, f 0 is a Local Thermodynamical
Equilibrium (LTE). Therefore, we need to determine the set of LTE’s of the collision
operator.
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Let us first assume that the function Φ: (u, ξ) ∈ S1 × R2 → Φ(u, ξ) ∈ R is a given
function. We introduce:

MΦ(u, ξ) =
1

ZΦ(ξ)
exp

(
− ΦΦ(u, ξ)

d

)
. (4.50)

The quantity ZΦ(ξ) is the normalizing constant, i.e. is such that

∫

u∈S1
MΦ(u, ξ) du = 1, ∀ξ ∈ R

2. (4.51)

We provide a graphical representation of the function u ∈ S1 → MΦ(u, ξ) for a given
ξ ∈ S1 in Fig. 5 (blue curve) in polar coordinates. We realize that MΦ and the potential
Φ (black dashed curve) have opposite monotonies, as they should, given (4.50). The noise
intensity d characterizes the width of the maxima of MΦ.

Direction of U

uy

ux

LTE distribution MΦ(u)

Potential Φ(u)

Direction of the global
minimum of Φ

Direction of a local
minimum of Φ

Figure 5: The LTE distribution u ∈ S1 → MΦ(u, ξ) for a given target point ξ ∈ R2 as a
function of u in polar coordinates (blue curve). The distribution MΦ and the potential
Φ (black dashed curve) have opposite monotonies. The maxima of MΦ are indicated by
black semi-lines. Their width are roughly proportional to

√
d. The direction of the mean

velocity U is indicated by the red semi-line. It is fully determined by MΦ and therefore,
by Φ and is a function of (x, ξ, t). We have |U | < 1.

With (4.46), the collision operator can be written:

QΦ(f) = −d∇u ·
(
MΦ∇u

( f

MΦ

))
. (4.52)

As a consequence of Green’s formula, for any function f(u, ξ) with appropriate regularity,
we have:

∫

(u,ξ)∈S1×R2

QΦ(f)
f

Mφ

du dξ = −
∫

(u,ξ)∈S1×R2

MΦ

∣∣∣∇u

( f

MΦ

)∣∣∣
2

du dξ. (4.53)
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Then, f is a solution of the equation

QΦ(f) = 0, (4.54)

if and only if there exists a function ρ: ξ ∈ R2 → ρ(ξ) ≥ 0 such that

f(u, ξ) = ρ(ξ)MΦ(u, ξ). (4.55)

The proof is analogous to that of formula (4.51) of [16] and is omitted.
Therefore, an LTE is necessarily of the form (4.55). However, for a given function ρ:

ξ ∈ R2 → ρ(ξ) ≥ 0, not all potentials Φ are allowed. Indeed, f = ρMΦ is a solution
of (4.49) if and only if we can ensure that Φ = Φf . In view of (4.55) and (4.47), this
constraint is written:

Φ(u, ξ) = Φt(u, ξ)−
∫
(v,η)∈S1×R2 Ψ(|v − u|) ρ(η)MΦ(v, η) dv dη∫

η∈R2 ρ(η) dη
. (4.56)

This is a functional equation for Φ. It allows to find Φ as a functional of ρ. For the
time being, we leave aside the question of the existence and uniqueness of solutions of
this functional equation and admit that there is at least one isolated branch of solutions
denoted by Φ[ρ]. Then, the LTE’s are of the form ρMΦ[ρ]

.
Now, we restore the dependence upon (x, t). The functions ξ → ρ(ξ) are parametrized

by (x, t) and denoted by ρ(x,t). The functional equation (4.56) is also parametrized by
x, through the dependence of the function Φt upon x (see (2.27)) and its solutions are
denoted by Φx,[ρ]. Then, the solutions of (4.49) are given by:

f 0(x, u, ξ, t) = ρ(x,t)(ξ)MΦx,[ρ(x,t)]
(u, ξ), (4.57)

where, for any (x, t), the function (u, ξ) → Φx,[ρ(x,t)](u, ξ) satisfies (4.56). Thanks to the
normalization condition (4.51), ρ(x,t)(ξ) is the density of pedestrians at point x and time
t with target point ξ.

Now, it remains to find the equations satisfied by the functions ρ(x,t)(ξ). First, we
remark that

∫

u∈S1
QΦf

(f) du = 0. (4.58)

Consequently, if we integrate (4.45) with respect to u and use (4.58), we find:

∂tρ
ε +∇x · (cρεUε) = 0. (4.59)

The functions ρε(x, ξ, t) and cUε(x, ξ, t) are respectively the density and mean velocity of
pedestrians at position x, time t and target point ξ. They are given by:

ρε(x, ξ, t) =

∫

u∈S1
f ε(x, u, ξ, t) du, (ρεUε)(x, ξ, t) =

∫

u∈S1
f ε(x, u, ξ, t) u du. (4.60)

Eq. (4.59) is the mass conservation equation for the pedestrians having the same target
point ξ. Now, taking the limit ε → 0 in (4.60) and using (4.48) and (4.57), we get

ρε(x, ξ, t) → ρ(x,t)(ξ), Uε(x, ξ, t) → Ux,[ρ(x,t)](ξ), (4.61)
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with

Ux,[ρ](ξ) =

∫

u∈S1
MΦx,[ρ]

(u, ξ) u du. (4.62)

Then, the limit ε → 0 in (4.59) leads to

∂tρ(x,t)(ξ) +∇x · (cρ(x,t)(ξ)Ux,[ρ(x,t)](ξ)) = 0. (4.63)

The hydrodynamic model consists of the continuity eq. (4.63) for the density ρ(x,t)(ξ)
of pedestrians with target point ξ, supplemented by eq. (4.62) giving the mean velocity
Ux,[ρ](ξ) in terms of ρ at any point (x, t) in space-time. This relation is a functional one as
it is expressed through the solution Φx,[ρ] of the functional equation (4.56). This functional
equation couples all the target points ξ altogether. It expresses that each pedestrian has
found the optimal reaction taking into account both his target point and the reactions of
the other pedestrians. This reaction is optimal in the sense that no pedestrian is able to
make a better choice by acting on his own control variable only, namely his velocity u. In
this sense, the solution of the functional equation corresponds to a Nash equilibrium, in a
similar fashion as the hydrodynamic limit of the heuristic-based model of [40] proposed in
[16]. This hydrodynamic model is a first-order model in the sense of the traffic literature,
since the velocity is entirely known from the density. We emphasize that this model is
spatially and temporally local, as the Nash equilibrium is realized at any point x and at
all times t. This model as well as that of [16] fits in the framework given in [20] which
aims to relate game theory and kinetic theory. This analogy will be detailed in future
work.

The comparison between the model of [16] and the present one is developed in the
next section.

5 Discussion

In this section, we mostly discuss the analogies and differences with [16]. Both [16] and
the present paper propose models with similar general features and the comparison of [16]
with the literature mostly applies unchanged to the present work. We refer the reader to
[16] for this discussion.

In the present paper like in [16], the same outline has been adopted. The major
difference is in the way the elementary interactions between the pedestrians are conceived
and incorporated in the models. They result from the fundamental differences between
the IBM’s of respectively [44] (for the present work) and of [40] (for [16]). As already
discussed at the end of section 2.3, the model of [44] views the interaction between two
pedestrians as a reaction to the threat of a collision and proposes a mechanistic view of this
reaction. By contrast, the model of [40] proposes the vision of active agents performing
rational choices in view of the satisfaction of a target. These differences lead to different
rules in the definition of the bulk forces acting either on the kinetic or fluid models. In
[16], it was possible to express the optimization performed by the agents in the choice of
their route as a potential-driven dynamics, with a suitable velocity potential. In [44], the
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action of the agents is dominated by a mechanistic view of their reaction which makes its
expression in terms of potential-driven dynamics impossible.

However, one of the merits of the present work is to propose a mild variant of the
model of [44] where the vision of rational agents performing optimal choices could be
restored, in an analogy with [24, 30]. This modification is motivated by the analysis of
certain configurations of the original model in which the reactions of the subjects seem
unrealistic (see section 2.4). With this modification, the IBM of [44] could be made closer
to [40]. There are still differences in the way the agents perceive the scene and make
decisions. In [40], the main sensor of the motion of the other pedestrians is the DTI. In
[44], both the TTI (which is proportional to the DTI) and the DBA are used. Therefore,
the model of [44] is more elaborate in the perception phase. In [40], the decision-making
is performed by minimizing the distance to the target, subject to the constraint of no-
collision. In the potential-driven modification of the model of [44], the decision-making is
based on a cost function which combines the satisfaction of the target and the collision
avoidance constraint in a more balanced way.

In spite of these differences, the two models bear strong analogies, which is reflected
in the analogies that can be noticed at the level of the fluid equations. Indeed, in the
case of the monokinetic and VMF closures, the general structures of the models issued
from [40] and [44] are the same and the differences appear only in the details of the
computation of the fluid force. In the case of the hydrodynamic limit, this analogy is
even stronger, since both models rely on the resolution of a fixed point equation which
translates the search for a Nash equilibrium. Again, the details of the computations of
these equilibria are different, since different sensors of the collision are used. In particular,
it seems that the hydrodynamic limit presented here is slightly simpler than that of [16]. It
also involves more details of the interaction dynamics and seems likely to provide better
results. However, the difference is tenuous and the basic principles of the two models
are similar. Numerical comparisons between the two models and the experimental data
should be able to decide which of the two models is the most efficient.

6 Conclusion

In this article, we have derived a hierarchy of continuum crowd dynamic models from
the Individual-Based Model of [44]. This IBM relies on a vision-based framework: the
pedestrians analyze the scene and react to the collision threatening partners by changing
their direction of motion, while trying to keep their target. We have first proposed a
kinetic version of this IBM. Then, three types of fluid models are derived from the kinetic
formulation. They are respectively associated to a monokinetic closure, a von Mises-
Fisher closure and a hydrodynamic limit. These models are, to the best of our knowledge,
the first macroscopic pedestrian models based on a microscopic vision-based models. In
future work, numerical simulations will be developed to assess the validity of the model
and compare it to other models (such as in [16]) and to experimental data.
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[7] F. Bolley, J. A. Cañizo and J. A. Carrillo, Mean-field limit for the stochastic Vicsek
model, Appl. Math. Lett., 25 (2012), 339–343.

[8] F. Bouchut, On zero pressure gas dynamics, in Advances in kinetic theory and com-
puting, B. Perthame (ed.), World Scientific, 1994, pp. 171–190.

[9] M. Burger, P. Markowich and J.-F. Pietschmann, Continuous limit of a crowd motion
and herding model: analysis and numerical simulations, Kinet. Relat. Models, 4
(2011), 1025–1047.

[10] A. Chertock, A. Kurganov, A. Polizzi and I. Timofeyev, Pedestrian flow models with
slowdown interactions, Math. Models Methods Appl. Sci., to appear.

[11] R. M. Colombo and M. D. Rosini, Pedestrian flows and nonclassical shocks, Math.
Methods Appl. Sci., 28 (2005), 1553–1567.

[12] V. Coscia and C. Canavesio, First-order macroscopic modelling of human crowd
dynamics, Math. Models Methods Appl. Sci., 18 Suppl. (2008), 1217–1247.

[13] E. Cristiani, B. Piccoli and A. Tosin, Multiscale modeling of granular flows with
application to crowd dynamics, Multiscale Model. Simul., 9 (2011), 155–182.

[14] J. E. Cutting, P. M. Vishton and P. A. Braren, How we avoid collisions with station-
ary and moving objects, Psychological Review, 102 (1995), 627–651.

32



[15] P. Degond, Macroscopic limits of the Boltzmann equation: a review, in ’Modeling and
computational methods for kinetic equations’ (P. Degond et al (eds.)), Birkhaüser,
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