224 research outputs found

    Review:New sensors and data-driven approaches—A path to next generation phenomics

    Get PDF
    At the 4th International Plant Phenotyping Symposium meeting of the International Plant Phenotyping Network (IPPN) in 2016 at CIMMYT in Mexico, a workshop was convened to consider ways forward with sensors for phenotyping. The increasing number of field applications provides new challenges and requires specialised solutions. There are many traits vital to plant growth and development that demand phenotyping approaches that are still at early stages of development or elude current capabilities. Further, there is growing interest in low-cost sensor solutions, and mobile platforms that can be transported to the experiments, rather than the experiment coming to the platform. Various types of sensors are required to address diverse needs with respect to targets, precision and ease of operation and readout. Converting data into knowledge, and ensuring that those data (and the appropriate metadata) are stored in such a way that they will be sensible and available to others now and for future analysis is also vital. Here we are proposing mechanisms for “next generation phenomics” based on our learning in the past decade, current practice and discussions at the IPPN Symposium, to encourage further thinking and collaboration by plant scientists, physicists and engineering experts

    Anomalous yielding in the complex metallic alloy Al13Co4

    Get PDF
    The single crystal deformation behaviour of orthorhombic Al13Co4 hasbeen studied below the brittle-ductile transition temperature observedin bulk material from room temperature to 600 degrees C, usingindentation, microcompression and transmission electron microscopy. Atroom temperature, slip occurred most easily by dislocation motion on the(0 0 1)[0 1 0] slip system, as observed in the ductile regime at hightemperatures. However, as the temperature was increased towards 600degrees C, the slip pattern changed to one consisting of linear defectsrunning perpendicular to the loading axis. Serrated flow was observed atall temperatures, although at 600 degrees C the magnitude of theserrations decreased. Anomalous yielding behaviour was also observedabove 226 degrees C, where both the yield and the 2\% flow stressincreased with temperature, almost doubling between 226 and 600 degreesC. It has been suggested that this might arise due to the increasingstability of orthorhombic Al13Co4 with respect to the monoclinic formwith increasing temperature. This is shown to be consistent with thetheoretical predictions that exist

    Microarray analysis and scale-free gene networks identify candidate regulators in drought-stressed roots of loblolly pine (P. taeda L.)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Global transcriptional analysis of loblolly pine (<it>Pinus taeda </it>L.) is challenging due to limited molecular tools. PtGen2, a 26,496 feature cDNA microarray, was fabricated and used to assess drought-induced gene expression in loblolly pine propagule roots. Statistical analysis of differential expression and weighted gene correlation network analysis were used to identify drought-responsive genes and further characterize the molecular basis of drought tolerance in loblolly pine.</p> <p>Results</p> <p>Microarrays were used to interrogate root cDNA populations obtained from 12 genotype × treatment combinations (four genotypes, three watering regimes). Comparison of drought-stressed roots with roots from the control treatment identified 2445 genes displaying at least a 1.5-fold expression difference (false discovery rate = 0.01). Genes commonly associated with drought response in pine and other plant species, as well as a number of abiotic and biotic stress-related genes, were up-regulated in drought-stressed roots. Only 76 genes were identified as differentially expressed in drought-recovered roots, indicating that the transcript population can return to the pre-drought state within 48 hours. Gene correlation analysis predicts a scale-free network topology and identifies eleven co-expression modules that ranged in size from 34 to 938 members. Network topological parameters identified a number of central nodes (hubs) including those with significant homology (E-values ≤ 2 × 10<sup>-30</sup>) to 9-cis-epoxycarotenoid dioxygenase, zeatin O-glucosyltransferase, and ABA-responsive protein. Identified hubs also include genes that have been associated previously with osmotic stress, phytohormones, enzymes that detoxify reactive oxygen species, and several genes of unknown function.</p> <p>Conclusion</p> <p>PtGen2 was used to evaluate transcriptome responses in loblolly pine and was leveraged to identify 2445 differentially expressed genes responding to severe drought stress in roots. Many of the genes identified are known to be up-regulated in response to osmotic stress in pine and other plant species and encode proteins involved in both signal transduction and stress tolerance. Gene expression levels returned to control values within a 48-hour recovery period in all but 76 transcripts. Correlation network analysis indicates a scale-free network topology for the pine root transcriptome and identifies central nodes that may serve as drivers of drought-responsive transcriptome dynamics in the roots of loblolly pine.</p

    Inter-Species Complementation of the Translocon Beta Subunit Requires Only Its Transmembrane Domain

    Get PDF
    In eukaryotes, proteins enter the secretory pathway through the translocon pore of the endoplasmic reticulum. This protein translocation channel is composed of three major subunits, called Sec61α, β and γ in mammals. Unlike the other subunits, the β subunit is dispensable for translocation and cell viability in all organisms studied. Intriguingly, the knockout of the Sec61β encoding genes results in different phenotypes in different species. Nevertheless, the β subunit shows a high level of sequence homology across species, suggesting the conservation of a biological function that remains ill-defined. To address its cellular roles, we characterized the homolog of Sec61β in the fission yeast Schizosaccharomyces pombe (Sbh1p). Here, we show that the knockout of sbh1+ results in severe cold sensitivity, increased sensitivity to cell-wall stress, and reduced protein secretion at 23°C. Sec61β homologs from Saccharomyces cerevisiae and human complement the knockout of sbh1+ in S. pombe. As in S. cerevisiae, the transmembrane domain (TMD) of S. pombe Sec61β is sufficient to complement the phenotypes resulting from the knockout of the entire encoding gene. Remarkably, the TMD of Sec61β from S. cerevisiae and human also complement the gene knockouts in both yeasts. Together, these observations indicate that the TMD of Sec61β exerts a cellular function that is conserved across species

    Transcriptome Profiling of Citrus Fruit Response to Huanglongbing Disease

    Get PDF
    Huanglongbing (HLB) or “citrus greening” is the most destructive citrus disease worldwide. In this work, we studied host responses of citrus to infection with Candidatus Liberibacter asiaticus (CaLas) using next-generation sequencing technologies. A deep mRNA profile was obtained from peel of healthy and HLB-affected fruit. It was followed by pathway and protein-protein network analysis and quantitative real time PCR analysis of highly regulated genes. We identified differentially regulated pathways and constructed networks that provide a deep insight into the metabolism of affected fruit. Data mining revealed that HLB enhanced transcription of genes involved in the light reactions of photosynthesis and in ATP synthesis. Activation of protein degradation and misfolding processes were observed at the transcriptomic level. Transcripts for heat shock proteins were down-regulated at all disease stages, resulting in further protein misfolding. HLB strongly affected pathways involved in source-sink communication, including sucrose and starch metabolism and hormone synthesis and signaling. Transcription of several genes involved in the synthesis and signal transduction of cytokinins and gibberellins was repressed while that of genes involved in ethylene pathways was induced. CaLas infection triggered a response via both the salicylic acid and jasmonic acid pathways and increased the transcript abundance of several members of the WRKY family of transcription factors. Findings focused on the fruit provide valuable insight to understanding the mechanisms of the HLB-induced fruit disorder and eventually developing methods based on small molecule applications to mitigate its devastating effects on fruit production

    Inter-Species Complementation of the Translocon Beta Subunit Requires Only Its Transmembrane Domain

    Get PDF
    In eukaryotes, proteins enter the secretory pathway through the translocon pore of the endoplasmic reticulum. This protein translocation channel is composed of three major subunits, called Sec61α, β and γ in mammals. Unlike the other subunits, the β subunit is dispensable for translocation and cell viability in all organisms studied. Intriguingly, the knockout of the Sec61β encoding genes results in different phenotypes in different species. Nevertheless, the β subunit shows a high level of sequence homology across species, suggesting the conservation of a biological function that remains ill-defined. To address its cellular roles, we characterized the homolog of Sec61β in the fission yeast Schizosaccharomyces pombe (Sbh1p). Here, we show that the knockout of sbh1+ results in severe cold sensitivity, increased sensitivity to cell-wall stress, and reduced protein secretion at 23°C. Sec61β homologs from Saccharomyces cerevisiae and human complement the knockout of sbh1+ in S. pombe. As in S. cerevisiae, the transmembrane domain (TMD) of S. pombe Sec61β is sufficient to complement the phenotypes resulting from the knockout of the entire encoding gene. Remarkably, the TMD of Sec61β from S. cerevisiae and human also complement the gene knockouts in both yeasts. Together, these observations indicate that the TMD of Sec61β exerts a cellular function that is conserved across species
    corecore