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A B S T R A C T

At the 4th International Plant Phenotyping Symposium meeting of the International Plant Phenotyping Network
(IPPN) in 2016 at CIMMYT in Mexico, a workshop was convened to consider ways forward with sensors for
phenotyping. The increasing number of field applications provides new challenges and requires specialised
solutions. There are many traits vital to plant growth and development that demand phenotyping approaches
that are still at early stages of development or elude current capabilities. Further, there is growing interest in
low-cost sensor solutions, and mobile platforms that can be transported to the experiments, rather than the
experiment coming to the platform. Various types of sensors are required to address diverse needs with respect to
targets, precision and ease of operation and readout. Converting data into knowledge, and ensuring that those
data (and the appropriate metadata) are stored in such a way that they will be sensible and available to others
now and for future analysis is also vital. Here we are proposing mechanisms for “next generation phenomics”
based on our learning in the past decade, current practice and discussions at the IPPN Symposium, to encourage
further thinking and collaboration by plant scientists, physicists and engineering experts.

1. Introduction

Advances in the ability to quantify the expression of traits on large
numbers of plants has exceeded expectations in the past decade or two.
However, the greater decrease in the cost of genotyping has maintained
phenotyping as the major bottleneck for gene discovery and molecular
marker development. Recent progress in phenotyping has been thor-
oughly reviewed [1–6] and the number of papers published describing
innovations in sensor technologies and phenotyping methods has in-
creased steadily (see citations here and in recent reviews, above). At the

4th International Plant Phenotyping Symposium meeting of the Inter-
national Plant Phenotyping Network in 2016 at CIMMYT in Mexico [7],
a workshop was convened to consider challenges and opportunities,
and to explore the way forward with sensors for phenotyping. This
paper discusses some of the points arising from that workshop, but is
not a comprehensive treatment of all the current issues in this area. The
objective here is to highlight a few important matters in the pheno-
typing community, to initiate new thinking and research activity and
issue a call for joint community effort across disciplines towards next
generation phenomics. In addition, a brief review of the phenotyping
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horizon and new-generation sensors provides a glimpse of new tools
that may be available in the near future.

Sensor-based plant phenotyping is an essential and integral part of a
holistic phenomics approach to address the complex genotype x en-
vironment x management (GxExM) interactions in fundamental and
applied plant science research, germplasm screening in breeding pro-
grams, precision agriculture and digital farming. Phenomics can be
integrated into a systems biology multi-omics approach [8]. Whereas
most non-invasive methods have been originally developed for high-
throughput phenotyping (HTP) applications under controlled condi-
tions, the increasing number of field applications provides new chal-
lenges and often requires specialised solutions.

There are extensive lists of key phenotypes that must be measured
to understand specific questions of plant function, or target traits that
contribute to improvements in crop yield, yield stability, resource
capture and use efficiency (e.g. water and nitrogen), quality (or che-
mical composition) of the harvested product, or resistance to abiotic or
biotic stresses. Furthermore, various mechanisms contribute to multi-
genic traits, so the individual underlying trait components must be
phenotyped. Many plants also exhibit important characters that are
unique to their species; in brief, there is no shortage of phenotyping
challenges. Some well-established stories have been around for more
than half a century, such as assessing vegetation vs. non-vegetation via
remote-sensing and using multispectral sensors to quantify the dy-
namics of canopy growth and senescence [9]. The emphasis has been
rightly placed, as the extent of light capture and utilization by the ca-
nopy drives productivity. However, there are many other traits that are
vital to plant growth and development, often requiring measurement at
the appropriate temporal and spatial scales. These demand HTP phe-
notyping approaches that are still at early stages of development, or
elude current capabilities. Examples, discussed further below, include
fertility of reproductive structures; photosynthetic rate; biomass;
growth, water and nutrient uptake activity of roots in the field, etc.
Thus, complex or mega-traits need to be broken down into component
traits that can be monitored and quantitatively assessed using the ap-
propriate choice of sensor. Table 1 contains a compilation of various
agronomically relevant traits related to growth and development,
morphology, physiology, biotic interactions, and the relevant tissue
that need to be phenotyped. The currently used methods and their
limitations are complemented by the technologies under development,
which are elaborated in Section 2. The feasibility and impact of these
traits on plant biology and crop improvement varies considerably
(Fig.1). The constraints and demands of current and prospective phe-
notyping solutions, such as development costs and time, need to be
taken into account to prioritise the focus for improvements, which is
addressed in Section 3.

Sophisticated instrumentation and platforms are being developed to
increase throughput (the numbers of plants/genotypes that can be phe-
notyped per experiment or per year). However, in many cases costs also
increase, putting many of these achievements out of reach for researchers
or companies with limited budgets. Static or plant-to-sensor facilities
(indoor or field-based) also have limited capacity, and only a fixed
number of projects can be taken into the pipeline. Therefore, there is
growing interest in low-cost sensor solutions, and mobile platforms that
can be transported to the plants, rather than the plant to the platform.
Also, user needs in throughput, cost-efficiency, precision, spatial and
temporal resolution, accuracy and precision, user friendliness, degree of
automatization and complexity of data output are very diverse. Thus,
various types of sensors are required to address the very diverse and
objective-bound needs. The number of commercially available sensors
provided by the industry are currently limited and not able to cover all
the diverse and specialised needs of scientists and end users. Areas of
challenge in coming years are to: scale-up low throughput methods;
scale-down large or heavy equipment; reduce the cost of expensive in-
struments without extensively compromising precision or reliability;
accelerate methods by narrowing down to the essentials. Examples of

recent developments in low-cost and ‘do-it-yourself’ (DIY) sensors, and
the requisite cautions, are discussed further, below.

One of the hurdles for next generation phenomics is to collect the
right data on the right target at the right time and under the right
conditions to address the right questions. Other components are the
essential step of converting these data into knowledge, and ensuring
that these data (and the appropriate metadata) are stored in such a way
that they will be intuitive and available to others now and for future
analysis.

2. Next-generation sensors

Instrumentation capabilities are in constant evolution toward
greater scales and throughput, aiming to describe more and more
complex phenomena. Initially, adapting off-the-shelf technologies for
phenotyping applications has been the main trend. More recently,
greater sophistication in adapting acquisition solutions have appeared.
Nowadays, the increased visibility of the HTP domain, coupled with
strong technological investment from scientific teams, is driving sensor
manufacturers to adapt their products to specific uses for measurements
of plant traits. For example, industrial Light Detection and Ranging
(LiDAR) systems working in the red band can be used for spatial dis-
tribution of green tissues within a canopy [10]. LiDAR provides a de-
tailed 3D reconstruction of the canopy but lacks information about the
canopy bulk density, which is necessary for estimating actual biomass
[11]. The estimation of actual biomass could be enhance by several
approaches: combining the 3D plant reconstruction from LiDAR, aerial
imagery, and spectral [12–14] or microwave sensing [15]; RGB imaging
followed by a void filling process, or adjusting the contrasts between
dark and light colours [16]. Such fusion of LiDAR and multi-spectral
imaging in one sensor, which would allow simultaneous retrieval of
structural and biochemical traits without the limitations of passive re-
mote sensing, has been proposed at different conceptual levels [17–21].
This is now available for aerial vegetation mapping and land cover
classification [22,23]. However, similar modalities for mobile, ground-
based imaging are still limited. Such a system would accelerate and
improve the precision and accuracy of field phenotyping enabling ap-
plications where the vertical distribution of photosynthetic pigments or
nitrogen across the canopy could be estimated. Phenospex (The Neth-
erlands) has recently released a gantry-type [24] multispectral LiDAR
for phenotyping applications (model PlantEye F500). With simulta-
neous 4 spectral channels in 400–900 nm and 3D point clouds, this will
enable new trait discovery in that direction.

Also, methods based on chlorophyll fluorescence are advancing,
such as relatively inexpensive hand-held instruments designed for col-
laborative field research (https://photosynQ.org/, Michigan State
University, USA); or Multiplex – Force-A, France) [25], or Laser-In-
duced Fluorescence Transient (LIFT) [26,27] and sun-induced fluores-
cence (SIF) methods [28] that target canopies in the field.

Hyperspectral imaging is rapidly advancing with new high-resolu-
tion cameras and scanners that cover visible and near infrared (VNIR
400-1.000 nm), short wave infrared (SWIR: 1.000–2.500 nm) and be-
yond (e.g. long wave infrared LWIR: 8–15 μm). VNIR hyperspectral
cameras, in particular, are becoming miniaturized and therefore sui-
table to be mounted on UAVs for phenotyping applications. LWIR
cameras for infrared thermometry are becoming quite common in
phenotyping both for manned [29] and unmanned operations [30].
However, given the cost and complexity of hyperspectral LWIR cam-
eras, most commercial systems are currently based on a single-broad-
band camera based on uncooled detectors (microbolometers). SWIR on
the other hand, are becoming an option but still are bulkier and more
expensive than their VNIR counterpart; therefore, their operation is
restricted to manned vehicles [31]. These sensors have to be calibrated
by screening genotypes at the same growth stages and in different en-
vironments to detect the slightest variabilities, and there are particular
challenges for obtaining good data from measurements using aerial
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[32] or ground vehicles [33]. Furthermore, the time of day and other
factors affecting light intensity and quality should be considered during
calibration because spectro-radiometric cameras and scanners use nat-
ural light conditions or external light sources [34]. These powerful
cameras and scanners can be useful tools for multi-trait screening,
specifically monitoring traits under abiotic stress, such as early signs of
chlorosis before it is detectable by RGB cameras, or plant water status
[29,35].

Despite the potential of hyperspectral cameras for estimating bio-
chemical composition of plants, its applicability to sensing elements
and micro-elements is very limited given that they do not have specific
spectral absorption features. UV fluorescence emission from a material
could lead to the development of next generation sensitive and in-
expensive fluorescence scanners [36] for phenotyping concentration of
elements in plants. Through correct design, integrated sensors with
capacity of strong fluorescence capture are on their way, which may be
very useful for high-throughput field screening of nutritional compo-
nents and micro-elements. Graphene-based plasmonic nano-antenna
arrays have been proposed, designed and tested for fluorescence sen-
sing [37]. It is clear that among all these emerging technologies, there is
no universal solution in the horizon, and it is likely to be the synergistic
combination of different sensor technologies what could overcome
some of the limitations of specific technologies used in isolation.

Imaging and sensor technologies for future field phenotyping must
be designed to incorporate metadata from the experiment and at least
include plant ID, plot identification, plant water status, soil surface
correction, soil surface temperature, soil surface water content (see
Section 5). We should also aim to deliver inexpensive, user-friendly,
robust and fast solutions where that metadata is linked to the sensor
data and turned into traits in an automatic or semi-automatic way. To
develop these tools, the user must be able to also manually change the
settings for any real-world scenario, which may cause errors in the
automation. Some examples exist in the literature where pipelines have
been described for processing field phenomic data for RGB imagery
[38–40] thermal [29], LiDAR [11,41,42], and UAV data [43,44].

In-field plot segmentation and real time data processing, quantifi-
cation and analysis is critical for end-users and is now partially practical
[41] and operational with combination of modalities such as LiDAR and
visible (RGB) imaging. Although use of LiDAR is a well-established
method for estimation of plant biophysical traits [41,45–47], and de-
tailed characterization of plants in the field [11,12,48–51], the real
time data processing and analysis with automated and error free plot

detection is not universally available yet. Initial efforts are very pro-
mising [52] but needs support from the farming, seed and breeding
industries as well as technology development companies to streamline
this approach in any future field-based phenotyping. During the
workshop and throughout the symposium a strong demand for below-
ground phenotyping of root traits became evident. Underground traits
are notoriously more difficult to measure than shoot traits, but x-ray
microcomputed tomography of roots in soil-filled pipes has opened up
new possibilities for non-invasive imaging [53,54]. In the field, non-
invasive estimation of root activity is possible via soil drying profiles
computed using electromagnetic induction or electrical resistance to-
mography methods [55], although computational complexities require
further software development before EMI is realized as an HTP method.
There is potential for further breakthroughs in root phenotyping in-
strumentation to have huge impact on breeding and crop improvement.

Imaging plant components within tissues or soils (‘see-through
technologies’) is a field that currently needs further development and
focus. Ground penetrating radar provides vision for sub-surface parts of
the plants (roots and tubers) by capturing reflection, refraction, and
scattering of high-frequency radio waves [56,57] with its antennae
within a certain distance from the soil. Further, terahertz (THz) imaging
is a progressing technology that detects water content of plant tissues
with some promising early results in lab experiments [58–61]. How-
ever, its penetration power is extremely low and its estimates are not
consistent with field screening data. To improve these methods, lasers
and nano-plasmonic light concentrators [58] are being combined with
this technology, which may result in more penetrating power, and
hence more resolution when imaging shoots or roots, at least initially in
the lab. Recent advances have made non-destructive evaluation of
ceramic objects possible using this technology [62]. This may lead to
the use of THz technology for scanning roots through dry soil. Another
emerging see-through technology is Wi-Fi holography, where stray Wi-
Fi radiation can be used to construct 3D holographic images of meter-
sized objects within buildings [63]. Plant scientists can be early adop-
ters of these technologies by communicating problems in phenotyping
to developers working the fields of physics and engineering.

Engineers and manufacturers often encounter difficulties in asses-
sing the global market for new phenotyping technology and finding fit
for purpose data analytics used experimentally by researchers. Spin-off
ventures from academic research can sometimes help spread market
opportunity into other, larger sectors, such as precision agriculture.
UAVs equipped with multispectral cameras are now operated routinely
for generating vegetation index maps that, at least in principle, could
assist agronomists and farm managers to optimize decisions such as
how much fertilizer should be applied and where. Other technologies
such as sensor networks or thermal and hyperspectral imaging for
monitoring crop water stress have also been demonstrated [64–66].
However, the reality is that these technologies seem to be far from
practical application, and the potential economic success of any one
technology is difficult to predict. In that regard, phenomics can help to
close the gap between ‘pretty pictures’ and plant physiology, providing
robust yet user-friendly applications of sensor technologies. in precision
farming. The same algorithms that are currently used to screen phy-
siological traits in breeding trials could be translated to the farm scale
to provide maps of actual crop status, which could be a useful man-
agement tool for agronomists. Development of new technologies that
would benefit the phenotyping and whole plant science communities
can be facilitated by increasing communication of needs and solutions
between sensor designers, programmers, and researchers across dis-
ciplines: plant biology, photonics, physics, engineering, computer sci-
ence, mathematics, etc. A key challenge is that the information desired
by the academic sector can be complex, which may not be needed by
breeding programs, and becomes an obstacle in precision agriculture.
Typically, a simple yes or no answer is required by farmers for many
farm operations (e.g. is the crop at the correct growth stage for fungi-
cide application?). For more detailed questions of where and how

Fig. 1. Impact vs feasibility analysis for the estimation of agronomic traits by
sensor and imaging technologies. See List of Abbreviations.
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much, automatized variable rate technologies for application of ferti-
lizers, growth regulators or pesticides, simple and robust solutions de-
rived from some level of crop intelligence are required to implement it
them. Making such connections between phenotypic data and practical
applications will enrich the technological offer for academia and in-
dustry.

3. Low-cost or DIY phenotyping solutions

Cutting-edge, disruptive technologies have great potential to re-
volutionize phenotyping capabilities. However, they often come at a
cost: technology that has not yet been widely commercialised is usually
expensive, as production is limited to a small number of units, or it is
limited to bespoke construction for individual users. Depending on the
requirements of the experiment, there can be low-cost alternatives to
high-end, high resolution instruments, such as using laser scanners built
for the gaming industry to measure crop architecture features [67], and
ultrasonic distance sensors for crop height [68], when LiDAR is not
affordable or its precision is not required.

With the advent of open source software and hardware initiatives,
some disruptive projects emerged that have enabled a democratization
of sensor development, reducing the entry barrier in terms of cost and
expertise. Platforms such as Arduino (https://www.arduino.cc) or
Raspberry Pi (https://www.raspberrypi.org), together with strong as-
sociated communities provide the building blocks for very rapid pro-
totyping of sensor technologies that have been fostered by the scientific
and academic communities [38,69]. This is the ethos behind organi-
zations such as Public Lab (https://publiclab.org/), which host methods
describing DIY spectrometers, thermal cameras and multispectral sen-
sors using readily available materials.

The spectrometer (v 3.0) claims 3 nm wavebands from 400 to
700 nm, built using a webcam (e.g. Gumstix, Inc., USA) and a DVD for a
diffraction grating and signals processed using open source software
(https://spectralworkbench.org/). The DIY Plant Analysis Kit ($10,
Public Lab; Infragram.org) helps users convert a digital camera into a
multispectral camera by replacing the IR filter and adding a theatre gel
blue filter so that the camera’s red channel registers mostly near in-
frared. A similar attempt has been the construction of multi-spectral
cameras using Raspberry Pi components and 3D printers for the housing
(http://www.khufkens.com/projects/tetrapi/).

However, the fast adoption of these DIY approaches and novel
technologies also poses some risks in terms of data quality, the ro-
bustness of the data produced and data interpretation [70]. For ex-
ample, the Plant Analysis kit (Infragram.org) claims that the user can
‘measure photosynthesis’; most plant scientists will appreciate that es-
timating ‘greenness’ does not necessarily equate to photosynthetic rate.
NDVI was formulated as the normalized ratio of red and NIR re-
flectance. In most cases of converted cameras, the red channel is
blocked so it can be used as the source of NIR, replacing the red band in
the calculation of the NDVI by the blue or green bands. The quantum
efficiency of CMOS sensors in consumer cameras in the IR bands is
generally low, though solutions may be on the horizon [71]. Therefore,
as the use of DIY multispectral cameras is becoming increasingly pop-
ular and NDVI maps and figures from these cameras installed in UAVs
are published online, the information about the specifications of the
cameras are often missed or vaguely described. Similarly, the minia-
turisation and cost reduction of thermal cameras are providing popular
solutions for mounting these onboard UAVs. Again, the need for sensor
calibration to provide actual temperature values becomes critical when
the application goes beyond pretty pictures and the aim is to produce
robust quantitative data on the physiological traits of interest.

Another generic problem with low-cost or DIY sensors is that the
provenance and quality of components differs with each unit, making it
difficult to share and compare data, unless sensors are calibrated ac-
cording to an internationally accepted standard. Most commercial
manufacturers would adhere to such standards, so as more DIY sensors

come into use for research, there should be a recognition that evidence
of calibration is required before publication. The solution to most of the
limitations of these low-cost approaches is to develop a stronger com-
munity for sharing protocols, for sensor development, calibration and
data processing. Initiatives such as PublicLab, targeting environmental
research, is a good example for the phenotyping community looking at
developing new technologies in-house. As discussed in Section 6, know-
how sharing initiatives and online platforms should provide an online
library of protocols and DIY instrumentation to help others to avoid
‘reinventing the wheel’. This co-operation should provide the right
mechanisms for producing high-quality phenotyping information that is
comparable across multiple experiments and environments.

4. Data processing and handling

Phenotyping complex traits demands the integration of data on
different morphological, physiological and environmental variables
[7,72]. Further, there is a need for data with higher temporal and
spatial resolution for the characterization of the dynamic responses of
plant function to the fluctuations of the environment. Consequently, the
plant phenotyping platforms are requesting an increasing number of
sensors to generate more complex datasets in an automated mode. This
has generated an unprecedented, massive amount of data that normally
exceeds our capacity to analyse it. Research groups often underestimate
the resource required to store and manipulate terabytes of data. Efforts
to optimize the automation of the data management and processing are
usually overlooked, thus it has become a bottleneck within the HTP
pipeline.

Measurement data can be classified into non-imaging and imaging,
according to the kind of sensor used. Non-imaging data correspond to
an integrated measurement over the area covered by the sensor. Thus,
they usually correspond to a single value per variable (except in multi-
or hyperspectral sensors where there is one value per each waveband),
which makes the size of the data manageable. This is an advantage
when trying to integrate time-series measurements from different sen-
sors to support fast decision making in platforms for plant breeding.
Nevertheless, such a system relies on fast data transfer and sensor
synchronization (usually through a wireless network), technologies that
are actively under development [73–75].

Imaging data are a spatial representation of a variable measured by
each pixel in the detector array. Imaging sensors provide the opportu-
nity to obtain spatial and temporal information of plant traits while
reducing the acquisition time and errors associated with the data col-
lection. However, the size and complexity of the data generated by such
sensors greatly undermine the possibility to use them in HTP platforms.
While in greenhouses images are usually transferred in real time to a
server, the possibility of doing so becomes more limited in the field,
especially using aerial platforms where the amount of data collected
can be in the order of gigabytes, and therefore is limited by the on-
board storage capacity. In some rural settings, sufficient network signal
strength can be problematic. The retrieval of meaningful data from
imaging sensors usually involves some degree of pre-processing. Among
them we can find: calibrations, geo-referencing, orthorectification,
pattern recognition, 3D reconstruction and machine learning [36–39].
Images collected from aerial platforms require geometric and radio-
metric correction. The automation and speed of these steps depends on
the image quality, the complexity of the algorithms used and the
available computing power. Advances in this matter have been
achieved for screening in batch mode structural traits such plant height,
leaf area, biovolume and leaf angles of thousands of plants per day
under greenhouse conditions [76–78]. Under field conditions, the
challenge is the automation of the aerial data processing. Few software
are available that automate image calibration and correction, obtaining
good field maps of the studied variable. Furthermore, new develop-
ments aim to do real-time processing on-board in aerial platforms, de-
livering almost instantaneous maps of spectral indices such as NDVI.
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Despite these advances, there are intermediate steps that require some
level of manual interaction, which slow the process, such as the iden-
tification of geodetic ground control points for geo-referencing, de-
fining individual plot boundaries and retrieving plot-level data. Com-
puting power can be a limiting factor in processing image data. For
small to medium datasets, working with local desktop PCs are suffi-
ciently fast to access and analyse the data. However, as the size and
amount of data grow, this option can become expensive; thus, for big
data cloud processing becomes an excellent option, which can increase
computing power and storage capacity. There are an increasing number
of cloud service providers, ensuring accessible prices and flexibility to
process data.

5. Harmonising data

Phenotyping techniques developed during recent years have per-
mitted the massive acquisition of datasets containing information ori-
ginating from different sensors (e.g. RGB and hyperspectral cameras,
see Table 1) at different scales (e.g. field and controlled conditions) and
levels of organisation (e.g. canopy and leaf level). These datasets are
unique resources, containing insightful information on a number of
traits describing plant function and form (see Table 1). If made avail-
able to scientific community, these datasets can be further mined or
combined in meta-analyses to generate new insight; for example on
crop adaptation to multiple stresses and to accelerate breeding [2,79].
However, making them available is a major challenge for the plant
phenomics community.

The first problem arises from the necessity to handle the huge
amount of data generated by phenotyping facilities and devices.
Whereas most informatics solutions accompanying high-throughput
techniques have focused on the development of specific image analysis
tools [80,81], little attention has focused on the development of in-
formation systems to handle, integrate and analyse the massive amount
of sensor-derived data, with the added complexity of its heterogeneous
nature originating from multiple sources [82]. This complexity is the
challenge of big data [83,84], which can be described by: (i) the Vo-
lume, given the exponential increase of data acquired by phenotyping
techniques at high spatial and temporal resolution; (ii) the Variety of
data due to the multiplicity of data sources, the growing availability of
sensors, and the need for the integration of metadata and knowledge
(e.g. annotated data in lab books, protocols, manual measurements);
(iii) the Velocity, given by the necessity to provide scientists with fast
and powerful visualisation and analysis tools to inspect and handle the
large amounts of experimental data acquired and analysed in real time;
(iv) the Value, as phenomic experiments are expensive and nearly im-
possible to reproduce exactly (especially under field conditions) be-
cause of differences in environmental conditions; and (v) the Veracity,
related to the necessity to track provenance data such as the successive
steps, calibration of sensors, parameter settings, and methods that have
been used to produce a given result.

The second problem is related to the necessity to enable inter-
operability between datasets and infrastructures, and issues sur-
rounding Open Data are being actively discussed internationally.
Initiatives such as the IAA (International Agroinformatics Alliance), a
coalition of public and private institutions hosted at the super-
computing facility at the University of Minnesota, USA [85], and the
farmer-oriented Open Ag Data Alliance (openag.io) are steps in this
direction, enabling interoperability of data, while also respecting se-
curity and privacy. Similarly, a number of initiatives in the context of
European plant phenotyping (EPPN2020 (http://eppn2020.plant-
phenotyping.eu/), Trans-PLANT (http://transplantdb.eu/),
ELIXIR-EXCELERATE (https://www.elixir-europe.org/excelerate/
plants), EMPHASIS (http://emphasis.plant-phenotyping.eu/), among
others) have tackled these issues by developing standardized protocols
[83,86,87] and software frameworks for phenotyping experiments
[82,88] following the FAIR data principles (Findable, Accessible,

Interoperable and Reusable) [89]. These initiatives, such as MIAPPE
(http://www.miappe.org/) and the ISA-Tab framework [81] (isa-tool-
s.org) have established a list of attributes to fully describe phenotyping
experiments and comprehensive metadata descriptions using standards
and ontologies. More recently, the ontology-driven PHIS Information
System (www.phis.inra.fr) has been proposed as an open-source solu-
tion for integrating, managing and sharing multi-source and multi-scale
data in plant phenomics experiments for both controlled and field
conditions [82]. Ontologies are powerful tools for formalising the dif-
ferent relationships established between the different objects involved
in phenotyping experiments (e.g. plants, plots, sensors), and to enable
the interconnection with other available biological databases and re-
sources [90,91]. The Planteome project (http://www.planteome.org)
gathers a suite of reference and species-specific ontologies [92], in-
cluding the Crop Ontology (http://cropontology.org/) [93] and Plant
Ontology (http://plantontology.org/) [94]), which provide relevant
terms and concept hierarchies related to the anatomy, structure and
phenotype of crops. However, because plant phenotyping is by essence
multi-source and multi-scale, new ontologies are needed to fulfil the
necessary concepts in phenotyping experiments, and thus to enable full
interoperability between datasets. It is recognized that many alternative
terminologies for traits exist in local usage, and while these may never
be replaced by official Ontological terms for everyday use, they can
easily translate to and map onto accepted ontologies when data are
uploaded into a database. Taken together, these new opportunities in
data management may help the assembly of datasets originating from
multiple sources, resulting in unprecedented amount of information
that can be re-used, combined and re-analysed to generate new
knowledge.

6. Sharing know-how

Websites and online consultable databases with methods and pro-
tocols have been established to share phenotyping know-how. A major
objective of the EU-funded DROPS project was to train scientists and
disseminate know-how in the use of up-to-date methods of plant mea-
surement and principles of breeding for tolerance to water deficit via
training courses and a website (https://www6.inra.fr/dropsproject/).
The CGIAR Centres regularly host training phenotyping workshops for
researchers around the world. Another helpful resource is a crowd-
sourced database to access and share protocols in plant eco-physiology
(http://prometheuswiki.org). The Index Database collates information
on remote sensing indices, sensors and applications (http://www.
indexdatabase.de/). Online courses and webinars such as the ‘Plant
Phenomics Phridays’ series (https://bigdata.unl.edu/fall-seminar-
series-plant-phenomics-phridays) help share the latest developments.
To foster development of computer vision for phenotyping, an ex-
panding image database is available (plant-phenotyping.org) and the
plant-image-analysis.org database (http://www.plant-image-analysis.
org) provides and extensive and curated list of existing plant image
analysis software tools for users and developers [95]. There is a need for
greater international co-ordination and centralized collation of
methods, and perhaps a publishing house may wish to host a website
for phenotyping protocols. Transferring methodological and technolo-
gical progress from research to operative breeding is one goal of the
community. However, its adoptability will rely on making methods and
instruments simple, fast, inexpensive, and demonstrating that pheno-
typing can increase genetic gain in breeding programmes.

7. Conclusion

While substantial advances have been made in molecular breeding
techniques, phenotyping throughput and costs remain the bottleneck to
breeding progress. Further advancement in high-throughput screening
is essential to take full advantage of genomic resources to dissect the
genetic control of quantitative traits, particularly those related to yield
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components and stress tolerance.
High-throughput phenotyping technologies have been originally

developed for the greenhouse and the development of technologies for
field applications lacking behind. While environmentally controlled
conditions allow high precision measurements, field phenotyping is
posing various different challenges and limitations due to the de-
termination of traits in a multifactorial environment. This classical di-
chotomy is currently further expanded by establishing phenotyping
facilities with field like growth conditions in combination with ex-
tensive environmental control.

Many of the issues we discuss in the plant phenotyping community
have been, and are continuing to be discussed in other sectors, and
there can be benefit in learning how others approach these challenges,
for instance in murine phenotyping [96]. Genotypic data are now
handled and shared in ways that set a precedent for phenotypic data,
although connecting genomic and phenomic datasets remains challen-
ging [97]. Integration of these data into simulation models to predict
trait value is of increasing importance [2,98]. We can envision that
eventually genotypic, phenotypic, environmental and agronomic/plant
management data will be harmonised on an international scale, but
significant hurdles remain before that is achieved. Along the way, it is
vital that the accessibility, integrity and veracity of the data that are
being collected are maintained so that they retain value over time.
Calibration of sensors, particularly low-cost or DIY sensors is of parti-
cular importance. Universal standardisation of experimental protocols
may not be achieved quickly, but transparent quality control, doc-
umentation according to minimum reporting standards and ways to
store annotation and metadata are required.

The availability of appropriate and novel sensors is key to realize
urgent technological development needs. Likewise, innovations in
specialized solutions for image pre-processing, analyses and data
management are needed. Development of sophisticated or low cost,
user-friendly sensor solutions for specialized uses will require close
interactions across disciplines and active engagement of engineers and
manufacturers. Sensor and image data need to be integrated with other
multi-omics data to create a holistic, second generation phenomics
approach.
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