246 research outputs found

    Identification of dfrA14 in two distinct plasmids conferring trimethoprim resistance in Actinobacillus pleuropneumoniae

    Get PDF
    OBJECTIVES: The objective of this study was to determine the distribution and genetic basis of trimethoprim resistance in Actinobacillus pleuropneumoniae isolates from pigs in England. METHODS: Clinical isolates collected between 1998 and 2011 were tested for resistance to trimethoprim and sulphonamide. The genetic basis of trimethoprim resistance was determined by shotgun WGS analysis and the subsequent isolation and sequencing of plasmids. RESULTS: A total of 16 (out of 106) A. pleuropneumoniae isolates were resistant to both trimethoprim (MIC >32 mg/L) and sulfisoxazole (MIC ≥256 mg/L), and a further 32 were resistant only to sulfisoxazole (MIC ≥256 mg/L). Genome sequence data for the trimethoprim-resistant isolates revealed the presence of the dfrA14 dihydrofolate reductase gene. The distribution of plasmid sequences in multiple contigs suggested the presence of two distinct dfrA14-containing plasmids in different isolates, which was confirmed by plasmid isolation and sequencing. Both plasmids encoded mobilization genes, the sulphonamide resistance gene sul2, as well as dfrA14 inserted into strA, a streptomycin-resistance-associated gene, although the gene order differed between the two plasmids. One of the plasmids further encoded the strB streptomycin-resistance-associated gene. CONCLUSIONS: This is the first description of mobilizable plasmids conferring trimethoprim resistance in A. pleuropneumoniae and, to our knowledge, the first report of dfrA14 in any member of the Pasteurellaceae. The identification of dfrA14 conferring trimethoprim resistance in A. pleuropneumoniae isolates will facilitate PCR screens for resistance to this important antimicrobial

    Abelson kinase acts as a robust, multifunctional scaffold in regulating embryonic morphogenesis

    Get PDF
    Abelson family kinases (Abl) are key regulators of cell behavior and the cytoskeleton during development and in leukemia. Abl's SH3, SH2, and tyrosine kinase domains are joined via a linker to an F-actin-binding domain (FABD). Research on Abl's roles in cell culture led to several hypotheses for its mechanism of action: 1) Abl phosphorylates other proteins, modulating their activity. 2) Abl directly regulates the cytoskeleton via its cytoskeletal interaction domains, and/or 3) Abl is a scaffold for a signaling complex. The importance of these roles during normal development remains untested. We tested these mechanistic hypotheses during Drosophila morphogenesis using a series of mutants to examine Abl's many cell biological roles. Strikingly, Abl lacking the FABD fully rescued morphogenesis, cell shape change, actin regulation, and viability, while kinase dead Abl, though reduced in function, retained substantial rescuing ability in some but not all Abl functions. We also tested the function of four conserved motifs in the linker region, revealing a key role for a conserved PXXP motif known to bind Crk and Abi. We propose Abl acts as a robust multi-domain scaffold with different protein motifs and activities contributing differentially to diverse cellular behaviors

    Physiologically relevant culture medium Plasmax improves human placental trophoblast stem cell function

    Get PDF
    Human trophoblast cultures provide powerful tools to model key processes of placental development. In vitro trophoblast studies to date have relied on commercial media which contains non-physiological levels of nutrients, and the impact of these conditions on trophoblast metabolism and function is unknown. Here we show that the physiological medium (Plasmaxä) with nutrient and metabolite concentrations recapitulating human plasma improves human trophoblast stem cell (hTSC) proliferation and differentiation compared to standard medium (DMEM-F12). hTSCs cultured in Plasmax-based medium also show altered glycolytic and mitochondrial metabolism, as well as reduced S-adenosylmethionine/S-adenosyl-homosysteine ratio compared to DMEM-F12-based medium. These findings demonstrate the importance of the nutritional environment for phenotyping cultured human trophoblasts

    Contrasting prefrontal cortex contributions to episodic memory dysfunction in behavioural variant frontotemporal dementia and alzheimer's disease

    Get PDF
    Recent evidence has questioned the integrity of episodic memory in behavioural variant frontotemporal dementia (bvFTD), where recall performance is impaired to the same extent as in Alzheimer's disease (AD). While these deficits appear to be mediated by divergent patterns of brain atrophy, there is evidence to suggest that certain prefrontal regions are implicated across both patient groups. In this study we sought to further elucidate the dorsolateral (DLPFC) and ventromedial (VMPFC) prefrontal contributions to episodic memory impairment in bvFTD and AD. Performance on episodic memory tasks and neuropsychological measures typically tapping into either DLPFC or VMPFC functions was assessed in 22 bvFTD, 32 AD patients and 35 age- and education-matched controls. Behaviourally, patient groups did not differ on measures of episodic memory recall or DLPFC-mediated executive functions. BvFTD patients were significantly more impaired on measures of VMPFC-mediated executive functions. Composite measures of the recall, DLPFC and VMPFC task scores were covaried against the T1 MRI scans of all participants to identify regions of atrophy correlating with performance on these tasks. Imaging analysis showed that impaired recall performance is associated with divergent patterns of PFC atrophy in bvFTD and AD. Whereas in bvFTD, PFC atrophy covariates for recall encompassed both DLPFC and VMPFC regions, only the DLPFC was implicated in AD. Our results suggest that episodic memory deficits in bvFTD and AD are underpinned by divergent prefrontal mechanisms. Moreover, we argue that these differences are not adequately captured by existing neuropsychological measures

    A Multicenter Evaluation of Pediatric Emergency Department Injury Visits during the COVID-19 Pandemic

    Get PDF
    BACKGROUND: Injuries, the leading cause of death in children 1-17 years old, are often preventable. Injury patterns are impacted by changes in the child\u27s environment, shifts in supervision, and caregiver stressors. The objective of this study was to evaluate the incidence and proportion of injuries, mechanisms, and severity seen in Pediatric Emergency Departments (PEDs) during the COVID-19 pandemic. METHODS: This multicenter, cross-sectional study from January 2019 through December 2020 examined visits to 40 PEDs for children \u3c 18 years old. Injury was defined by at least one International Classification of Disease-10th revision (ICD-10) code for bodily injury (S00-T78). The main study outcomes were total and proportion of PED injury-related visits compared to all visits in March through December 2020 and to the same months in 2019. Weekly injury visits as a percentage of total PED visits were calculated for all weeks between January 2019 and December 2020. RESULTS: The study included 741,418 PED visits for injuries pre-COVID-19 pandemic (2019) and during the COVID-19 pandemic (2020). Overall PED visits from all causes decreased 27.4% in March to December 2020 compared to the same time frame in 2019; however, the proportion of injury-related PED visits in 2020 increased by 37.7%. In 2020, injured children were younger (median age 6.31 years vs 7.31 in 2019), more commonly White (54% vs 50%, p \u3c 0.001), non-Hispanic (72% vs 69%, p \u3c 0.001) and had private insurance (35% vs 32%, p \u3c 0.001). Injury hospitalizations increased 2.2% (p \u3c 0.001) and deaths increased 0.03% (p \u3c 0.001) in 2020 compared to 2019. Mean injury severity score increased (2.2 to 2.4, p \u3c 0.001) between 2019 and 2020. Injuries declined for struck by/against (- 4.9%) and overexertion (- 1.2%) mechanisms. Injuries proportionally increased for pedal cycles (2.8%), cut/pierce (1.5%), motor vehicle occupant (0.9%), other transportation (0.6%), fire/burn (0.5%) and firearms (0.3%) compared to all injuries in 2020 versus 2019. CONCLUSIONS: The proportion of PED injury-related visits in March through December 2020 increased compared to the same months in 2019. Racial and payor differences were noted. Mechanisms of injury seen in the PED during 2020 changed compared to 2019, and this can inform injury prevention initiatives

    Monitoring of Biodistribution and Persistence of Conditionally Replicative Adenovirus in a Murine Model of Ovarian Cancer Using Capsid-Incorporated mCherry and Expression of Human Somatostatin Receptor Subtype 2 Gene

    Get PDF
    A significant limiting factor to the human clinical application of conditionally replicative adenovirus (CRAd)-based virotherapy is the inability to noninvasively monitor these agents and their potential persistence. To address this issue, we proposed a novel imaging approach that combines transient expression of the human somatostatin receptor (SSTR) subtype 2 reporter gene with genetic labeling of the viral capsid with mCherry fluorescent protein. To test this dual modality system, we constructed the Ad5/3Δ24pIXcherry/SSTR CRAd and validated its capacity to generate fluorescent and nuclear signals in vitro and following intratumoral injection. Analysis of 64 Cu-CB-TE2A-Y3-TATE biodistribution in mice revealed reduced uptake in tumors injected with the imaging CRAd relative to the replication-incompetent, Ad-expressing SSTR2 but significantly greater uptake compared to the negative CRAd control. Optical imaging demonstrated relative correlation of fluorescent signal with virus replication as determined by viral genome quantification in tumors. Positron emission tomography/computed tomography studies demonstrated that we can visualize radioactive uptake in tumors injected with imaging CRAd and the trend for greater uptake by standardized uptake value analysis compared to control CRAd. In the aggregate, the plasticity of our dual imaging approach should provide the technical basis for monitoring CRAd biodistribution and persistence in preclinical studies while offering potential utility for a range of clinical applications

    Evolutionary and biomedical insights from the rhesus macaque genome

    Get PDF
    The rhesus macaque (Macaca mulatta) is an abundant primate species that diverged from the ancestors of Homo sapiens about 25 million years ago. Because they are genetically and physiologically similar to humans, rhesus monkeys are the most widely used nonhuman primate in basic and applied biomedical research. We determined the genome sequence of an Indian-origin Macaca mulatta female and compared the data with chimpanzees and humans to reveal the structure of ancestral primate genomes and to identify evidence for positive selection and lineage-specific expansions and contractions of gene families. A comparison of sequences from individual animals was used to investigate their underlying genetic diversity. The complete description of the macaque genome blueprint enhances the utility of this animal model for biomedical research and improves our understanding of the basic biology of the species

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy
    • …
    corecore