8 research outputs found

    Neuroanatomical and gene expression features of the rabbit accessory olfactory system. Implications of pheromone communication in reproductive behaviour and animal physiology

    Get PDF
    Mainly driven by the vomeronasal system (VNS), pheromone communication is involved in many species-specific fundamental innate socio-sexual behaviors such as mating and fighting, which are essential for animal reproduction and survival. Rabbits are a unique model for studying chemocommunication due to the discovery of the rabbit mammary pheromone, but paradoxically there has been a lack of knowledge regarding its VNS pathway. In this work, we aim at filling this gap by approaching the system from an integrative point of view, providing extensive anatomical and genomic data of the rabbit VNS, as well as pheromone-mediated reproductive and behavioural studies. Our results build strong foundation for further translational studies which aim at implementing the use of pheromones to improve animal production and welfare

    Can domestication shape Canidae brain morphology? the accessory olfactory bulb of the red fox as a case in point

    Get PDF
    Background: The accessory olfactory bulb (AOB) is the first integrative center of the vomeronasal system (VNS), and the general macroscopic, microscopic, and neurochemical organizational patterns of the AOB differ fundamentally among species. Therefore, the low degree of differentiation observed for the dog AOB is surprising. As the artificial selection pressure exerted on domestic dogs has been suggested to play a key role in the involution of the dog VNS, a wild canid, such as the fox, represents a useful model for studying the hypothetical effects of domestication on the AOB morphology. Methods: A comprehensive histological, lectin-histochemical, and immunohistochemical study of the fox AOB was performed. Anti-Gαo and anti-Gαi2 antibodies were particularly useful, as they label the transduction cascade of the vomeronasal receptor types 1 (V1R) and 2 (V2R), respectively. Other employed antibodies included those against proteins such as microtubule-associated protein 2 (MAP-2), tubulin, glial fibrillary acidic protein, growth-associated protein 43 (GAP-43), olfactory marker protein (OMP), calbindin, and calretinin. Results: The cytoarchitecture of the fox AOB showed a clear lamination, with neatly differentiated layers; a highly developed glomerular layer, rich in periglomerular cells; and large inner cell and granular layers. The immunolabeling of Gαi2, OMP, and GAP-43 delineated the outer layers, whereas Gαo and MAP-2 immunolabeling defined the inner layers. MAP-2 characterized the somas of AOB principal cells and their dendritic trees. Anti-calbindin and anti-calretinin antibodies discriminated neural subpopulations in both the mitral-plexiform layer and the granular cell layer, and the lectin Ulex europeus agglutinin I (UEA-I) showed selectivity for the AOB and the vomeronasal nervesS

    Three Decades of progress in Artificial Insemination in Rabbit Farming: a Review

    Full text link
    [EN] The commercial use of artificial insemination (AI) in rabbit farming is relatively recent, especially when compared to other species such as cattle or swine, in which AI has been used for more than 60 years. The large-scale use of AI in rabbit farming dates back to the late 80s. However, despite its short journey, it has not stopped evolving. Although there have been numerous changes, in this review article we aim to highlight two important milestones in optimisation of this technique: the introduction of biostimulation and the addition of Gonadotropin-releasing hormone (GnRH) analogues to the seminal dose to induce ovulation. In the former case, by means of different methods of biostimulation, such as feed and light flushing and/or separation of the litter in the days prior to AI, the use of hormones to synchronise heat with the moment of AI was practically eliminated. Nowadays, the possibility of using pheromones with the same objective is under research, even to increase ovulation rate or improve semen production. Although there are pheromones on the market labelled for use in other species, in the case of rabbit the knowledge of them is limited. Nevertheless, given the verified effects that pheromones produce in other animals, expectations are high. In the latter case, after several attempts by using other methods, the technique commonly used to induce ovulation was the intramuscular administration of GnRH or its synthetic analogues. However, in recent years, it has been proven that administration of GnRH through the vagina is possible, added to the seminal dose, which offers numerous advantages regarding health, animal welfare and the workforce needed. Recently, the European Medicines Agency (EMA) approved this practice, so in the near future it will probably become the most widely used method. Even so, there is still room for improvement, as the dosage of GnRH needed is higher than the one administered intramuscularly. Research on this topic allows us to predict that this problem should be solved in the coming years. Other alternatives such as the ?-Nerve Growth Factor need further research to become a feasible option.The study was supported by the Xunta de Galicia (Plan Gallego de Investigación y Desarrollo Tecnológico, Proyectos Ref. 1999/CG321; Ref. 2000/CG3452) and the Ministerio de Ciencia e Innovación (Plan Estatal de Investigación Científica, Técnica y de Innovación, Proyecto Ref. PID2021-127814OB-I00). The co-authors Yáñez U. and Villamayor P. were funded by Xunta de Galicia (Predoctoral Contract Ref. 2020/122 and ED481A-2020/491430 respectively). We also thank COGAL SL (Pontevedra, Spain) for providing the facilities and animals used in this study, as well as technical support.Quintela Arias, LÁ.; Becerra González, JJ.; Peña Martínez, AI.; Yáñez Ramíl, U.; Rodríguez Villamayor, PR.; Sánchez-Quinteiro, P.; Martínez Portela, P.... (2023). Three Decades of progress in Artificial Insemination in Rabbit Farming: a Review. World Rabbit Science. 31(2):93-107. https://doi.org/10.4995/wrs.2023.186619310731

    A chromosome-level genome assembly enables the identification of the follicule stimulating hormone receptor as the master sex-determining gene in the flatfish Solea senegalensis

    Get PDF
    Sex determination (SD) shows huge variation among fish and a high evolutionary rate, as illustrated by the Pleuronectiformes (flatfishes). This order is characterized by its adaptation to demersal life, compact genomes and diversity of SD mechanisms. Here, we assembled the Solea senegalensis genome, a flatfish of great commercial value, into 82 contigs (614 Mb) combining long- and short-read sequencing, which were next scaffolded using a highly dense genetic map (28,838 markers, 21 linkage groups), representing 98.9% of the assembly. Further, we established the correspondence between the assembly and the 21 chromosomes by using BAC-FISH. Whole genome resequencing of six males and six females enabled the identification of 41 single nucleotide polymorphism variants in the follicle stimulating hormone receptor (fshr) consistent with an XX/XY SD system. The observed sex association was validated in a broader independent sample, providing a novel molecular sexing tool. The fshr gene displayed differential expression between male and female gonads from 86 days post-fertilization, when the gonad is still an undifferentiated primordium, concomitant with the activation of amh and cyp19a1a, testis and ovary marker genes, respectively, in males and females. The Y-linked fshr allele, which included 24 nonsynonymous variants and showed a highly divergent 3D protein structure, was overexpressed in males compared to the X-linked allele at all stages of gonadal differentiation. We hypothesize a mechanism hampering the action of the follicle stimulating hormone driving the undifferentiated gonad toward testisEuropean Union's Horizon 2020 research and innovation programme under grant agreement (AQUA-FAANG). Grant Number: 81792. Junta de Andalucía-FEDER Grant. Grant Number: P20-00938. Spanish Ministry of Economy and Competitiveness, FEDER Grants. Grant Numbers: RTI2018-096847-B-C21, RTI2018-096847-B-C22S

    Severe neurometabolic phenotype in npc1−/− zebrafish with a C-terminal mutation

    Get PDF
    Niemann Pick disease type C (NPC) is an autosomal recessive neurodegenerative lysosomal disorder characterized by an accumulation of lipids in different organs. Clinical manifestations can start at any age and include hepatosplenomegaly, intellectual impairment, and cerebellar ataxia. NPC1 is the most common causal gene, with over 460 different mutations with heterogeneous pathological consequences. We generated a zebrafish NPC1 model by CRISPR/Cas9 carrying a homozygous mutation in exon 22, which encodes the end of the cysteine-rich luminal loop of the protein. This is the first zebrafish model with a mutation in this gene region, which is frequently involved in the human disease. We observed a high lethality in npc1 mutants, with all larvae dying before reaching the adult stage. Npc1 mutant larvae were smaller than wild type (wt) and their motor function was impaired. We observed vacuolar aggregations positive to cholesterol and sphingomyelin staining in the liver, intestine, renal tubules and cerebral gray matter of mutant larvae. RNAseq comparison between npc1 mutants and controls showed 284 differentially expressed genes, including genes with functions in neurodevelopment, lipid exchange and metabolism, muscle contraction, cytoskeleton, angiogenesis, and hematopoiesis. Lipidomic analysis revealed significant reduction of cholesteryl esters and increase of sphingomyelin in the mutants. Compared to previously available zebrafish models, our model seems to recapitulate better the early onset forms of the NPC disease. Thus, this new model of NPC will allow future research in the cellular and molecular causes/consequences of the disease and on the search for new treatments

    Does a third intermediate model for the vomeronasal processing of information exist? Insights from the macropodid neuroanatomy

    No full text
    The study of the α-subunit of Gi2 and Go proteins in the accessory olfactory bulb (AOB) was crucial for the identification of the two main families of vomeronasal receptors, V1R and V2R. Both families are expressed in the rodent and lagomorph AOBs, according to a segregated model characterized by topographical anteroposterior zonation. Many mammal species have suffered from the deterioration of the Gαo pathway and are categorized as belonging to the uniform model. This scenario has been complicated by characterization of the AOB in the tammar wallaby, Notamacropus eugenii, which appears to follow a third model of vomeronasal organization featuring exclusive Gαo protein expression, referred to as the intermediate model, which has not yet been replicated in any other species. Our morphofunctional study of the vomeronasal system (VNS) in Bennett’s wallaby, Notamacropus rufogriseus, provides further information regarding this third model of vomeronasal transduction. A comprehensive histological, lectin, and immunohistochemical study of the Bennett’s wallaby VNS was performed. Anti-Gαo and anti-Gαi2 antibodies were particularly useful because they labeled the transduction cascade of V2R and V1R receptors, respectively. Both G proteins showed canonical immunohistochemical labeling in the vomeronasal organ and the AOB, consistent with the anterior–posterior zonation of the segregated model. The lectin Ulex europaeus agglutinin selectively labeled the anterior AOB, providing additional evidence for the segregation of vomeronasal information in the wallaby. Overall, the VNS of the Bennett’s wallaby shows a degree of differentiation and histochemical and neurochemical diversity comparable to species with greater VNS development. The existence of the third intermediate type in vomeronasal information processing reported in Notamacropus eugenii is not supported by our lectin-histochemical and immunohistochemical findings in Notamacropus rufogriseusOpen Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This work was partially supported by a University of Santiago de Compostela Grant [1551-8179] to P.S.Q.S

    A chromosome-level genome assembly enables the identification of the follicule stimulating hormone receptor as the master sex determining gene in the flatfish Solea senegalensis

    Get PDF
    Sex determination (SD) shows huge variation among fish and a high evolutionary rate, as illustrated by the Pleuronectiformes (flatfishes). This order is characterized by its adaptation to demersal life, compact genomes and diversity of SD mechanisms. Here, we assembled the Solea senegalensis genome, a flatfish of great commercial value, into 82 contigs (614 Mb) combining long- and short-read sequencing, which were next scaffolded using a highly dense genetic map (28,838 markers, 21 linkage groups), representing 98.9% of the assembly. Further, we established the correspondence between the assembly and the 21 chromosomes by using BAC-FISH. Whole genome resequencing of six males and six females enabled the identification of 41 SNP variants in the follicle stimulating hormone receptor (fshr) consistent with an XX / XY SD system. The observed sex association was validated in a broader independent sample, providing a novel molecular sexing tool. Fshr displayed differential gene expression between male and female gonads from 86 days post-fertilization, when the gonad is still an undifferentiated primordium, concomitant with the activation of amh and cyp19a1a, testis and ovary marker genes, respectively, in males and females. The Y-linked fshr allele, which included 24 non-synonymous variants and showed a highly divergent 3D protein structure, was overexpressed in males compared to the X-linked allele at all stages of gonadal differentiation. We hypothesize a mechanism hampering the action of the follicle stimulating hormone driving the undifferentiated gonad toward testis.info:eu-repo/semantics/acceptedVersio

    Entre artistas y restauradorӕs. Nuevos formatos de interacción e intercambio de conocimiento II

    No full text
    Este proyecto ha tenido como objetivo la consolidación de una red de cooperación horizontal e intercambio interdisciplinar, internivelar, interdepartamental e interfacultativa entre artistas y conservadoræs-restauradoræs, así como la exploración de nuevas formas de interacción para generar conocimiento. Esta red conecta entre sí a los departamentos de la Facultad de Bellas Artes de la UCM (Dibujo y Grabado; Diseño e Imagen; y Pintura y Conservación-Restauración), al tiempo que fomenta interacciones con estudiantes y docentes de departamentos de arte y conservación-restauración de otras universidades públicas y privadas como son la Universidad de la Laguna, la Universidad Politécnica de Madrid, la Universidad Politécnica de Valencia, la Universidad Francisco de Vitoria y la Universidad Antonio Nebrija. Así mismo, incorpora a la red un organismo externo al ámbito de la universidad y vinculado al ámbito profesional de la práctica artística, como es la Asociación Cultural Atelier Solar. El proyecto ha abarcado la realización de tres encuentros, un curso, la dirección de varios trabajos académicos, la interacción entre asignaturas y el desarrollo de una investigación en torno a nuevos formatos de interacción entre conservadoræs-restauradoræs y artistas. Así mismo, ha dado lugar a la participación en varios congresos y reuniones científicas. y la realización de un curso del VoCA (Voices of Contemporary Art). Esta memoria recoge los objetivos propuestos y evalúa los alcanzados en base a una serie de indicadores, describe la metodología utilizada en el proyecto, analiza las características del equipo de trabajo y expone las actividades desarrolladas durante el curso 2022-2023. Los Anexos incluyen documentación sobre las actividades desarrolladas e imágenes sobre los procesos de investigación.Depto. de Pintura y Conservación-RestauraciónFac. de Bellas ArtesFALSEsubmitte
    corecore