9 research outputs found

    Leaf-Level Gas Exchange and Foliar Chemistry of Common Old-Field Species Responding to Warming and Precipitation Treatments.

    Get PDF
    We investigated the shifts in plant carbon (C) and water dynamics by measuring rates of photosynthesis, transpiration, and instantaneous water use efficiency (WUE) in three common species of “old-field” plants—two C3 forb species (Plantago lanceolata and Taraxacum officinale) and one C3 grass species (Elymus repens)—under 12 experimentally altered temperature and precipitation regimes at the Boston Area Climate Experiment (BACE) in Waltham, Massachusetts. We also measured shifts in foliar C and nitrogen (N) content to determine possible changes in plant C/nutrient balance. We hypothesized that the warming treatment would cause an increase in photosynthesis rates, unless water was limiting; therefore, we expected an interactive effect of warming and precipitation treatments. We found that warming and drought reduced leaf-level photosynthesis most dramatically when environmental or seasonal conditions produced soils that were already dry. In general, the plants transpired fastest when soils were wet and slowest when soils were dry. Drought treatments increased WUE relative to plants in the ambient and wet treatments but only during the driest and warmest background conditions. Leaf N concentration increased with warming, thereby indicating that future warming may cause some plants to take up more soil N and/or allocate more N to their leaves, possibly as consequences of increased nutrient availability. There were no significant interactive effects of the warming and precipitation treatments together across all seasons, indicating that responses were not synergistic or ameliorative

    Interleukin 21 Is a T Helper (Th) Cell 2 Cytokine that Specifically Inhibits the Differentiation of Naive Th Cells into Interferon γ–producing Th1 Cells

    Get PDF
    The cytokine potential of developing T helper (Th) cells is directly shaped both positively and negatively by the cytokines expressed by the effector Th cell subsets. Here we find that the recently identified cytokine, interleukin (IL)-21, is preferentially expressed by Th2 cells when compared with Th1 cells generated in vitro and in vivo. Exposure of naive Th precursors to IL-21 inhibits interferon (IFN)-γ production from developing Th1 cells. The repression of IFN-γ production is specific in that the expression of other Th1 and Th2 cytokines is unaffected. IL-21 decreases the IL-12 responsiveness of developing Th cells by specifically reducing both signal transducer and activator of transcription 4 protein and mRNA expression. These results suggest that Th2 cell-derived IL-21 regulates the development of IFN-γ–producing Th1 cells which could serve to amplify a Th2 response

    Bottom-up rather than top-down processes regulate the abundance and activity of nitrogen fixing plants in two Connecticut old-field ecosystems

    No full text
    Abstract The maintenance of nitrogen limitation in terrestrial ecosystems remains a central paradox in biogeochemistry. Although plants that form a symbiotic association with nitrogen fixing bacteria should be at a competitive advantage over non-fixing plant species in N limited environments, N 2 fixing plants are uncommon in most mid-to high-latitude ecosystems. Theory and observation suggest that preferential grazing on N-rich tissues by herbivores, resource limitations to growth, reproduction and N 2 fixation, and temperature limitations to the activity of the N 2 fixing enzyme nitrogenase, explain the rarity of N 2 fixing plants. These ideas, however, have never been confronted by multifactor experiments in the field. In a 3 year field experiment, we found that the abundance, growth, reproductive output and fraction of plant-N derived from N 2 fixation in temperate, old-field ecosystems was constrained by the availability of phosphorus (P). Although the availability of light was crucial to the performance of old-field N 2 fixing plants, the largest gains in biomass and the rate of N 2 fixation were observed in the plots fertilized with P. By contrast, herbivory had no effect on the abundance, biomass and activity of N 2 fixing plants and inconsistent effects on foliar nitrogen concentrations (opposing directions, depending upon year), suggesting that herbivores do not affect the ecology of N 2 fixing plants in old field ecosystems, at least not over the course of 3 years. Together with a recent study demonstrating that C limitation explains the absence of N 2 fixing trees in temperate forests our analysis suggests that stand replacing disturbances shift the limitation on the abundance and activity of N 2 fixing plants from P early in secondary succession to light later in succession, as the forest canopy closes and incident light levels decline precipitously

    Where Is Garlic Mustard? Understanding the Ecological Context for Invasions of \u3ci\u3eAlliaria petiolata\u3c/i\u3e

    No full text
    The invasive plant Alliaria petiolata (garlic mustard) has spread throughout forest understory and edge communities in much of North America, but its persistence, density, and impacts have varied across sites and time. Surveying the literature since 2008, we evaluated both previously proposed and new mechanisms for garlic mustard\u27s invasion success and note how they interact and vary across ecological contexts. We analyzed how and where garlic mustard has been studied and found a lack of multisite and longitudinal studies, as well as regions that may be under- or overstudied, leading to poor representation for understanding and predicting future invasion dynamics. Inconsistencies in how sampling units are scaled and defined can also hamper our understanding of invasive species. We present new conceptual models for garlic mustard invasion from a macrosystems perspective, emphasizing the importance of synergies and feedbacks among mechanisms across spatial and temporal scales to produce variable ecological contexts
    corecore