828 research outputs found

    Enhanced thermal stability and spin-lattice relaxation rate of N@C60 inside carbon nanotubes

    Full text link
    We studied the temperature stability of the endohedral fullerene molecule, N@C60, inside single-wall carbon nanotubes using electron spin resonance spectroscopy. We found that the nitrogen escapes at higher temperatures in the encapsulated material as compared to its pristine, crystalline form. The temperature dependent spin-lattice relaxation time, T_1, of the encapsulated molecule is significantly shorter than that of the crystalline material, which is explained by the interaction of the nitrogen spin with the conduction electrons of the nanotubes.Comment: 5 pages, 4 figures, 1 tabl

    Conductance of Distorted Carbon Nanotubes

    Full text link
    We have calculated the effects of structural distortions of armchair carbon nanotubes on their electrical transport properties. We found that the bending of the nanotubes decreases their transmission function in certain energy ranges and leads to an increased electrical resistance. Electronic structure calculations show that these energy ranges contain localized states with significant σ\sigma-π\pi hybridization resulting from the increased curvature produced by bending. Our calculations of the contact resistance show that the large contact resistances observed for SWNTs are likely due to the weak coupling of the NT to the metal in side bonded NT-metal configurations.Comment: 5 pages RevTeX including 4 figures, submitted to PR

    On the diffraction pattern of C60 peapods

    Full text link
    We present detailed calculations of the diffraction pattern of a powder of bundles of C60_{60} peapods. The influence of all pertinent structural parameters of the bundles on the diffraction diagram is discussed, which should lead to a better interpretation of X-ray and neutron diffraction diagrams. We illustrate our formalism for X-ray scattering experiments performed on peapod samples synthesized from 2 different technics, which present different structural parameters. We propose and test different criteria to solve the difficult problem of the filling rate determination.Comment: Sumitted 19 May 200

    Constructive Empiricism and the Closure Problem

    Full text link

    Reversible Band Gap Engineering in Carbon Nanotubes by Radial Deformation

    Full text link
    We present a systematic analysis of the effect of radial deformation on the atomic and electronic structure of zigzag and armchair single wall carbon nanotubes using the first principle plane wave method. The nanotubes were deformed by applying a radial strain, which distorts the circular cross section to an elliptical one. The atomic structure of the nanotubes under this strain are fully optimized, and the electronic structure is calculated self-consistently to determine the response of individual bands to the radial deformation. The band gap of the insulating tube is closed and eventually an insulator-metal transition sets in by the radial strain which is in the elastic range. Using this property a multiple quantum well structure with tunable and reversible electronic structure is formed on an individual nanotube and its band-lineup is determined from first-principles. The elastic energy due to the radial deformation and elastic constants are calculated and compared with classical theories.Comment: To be appear in Phys. Rev. B, Apr 15, 200

    The Impact of Visual Cues, Reward, and Motor Feedback on the Representation of Behaviorally Relevant Spatial Locations in Primary Visual Cortex

    Get PDF
    Summary: The integration of visual stimuli and motor feedback is critical for successful visually guided navigation. These signals have been shown to shape neuronal activity in the primary visual cortex (V1), in an experience-dependent manner. Here, we examined whether visual, reward, and self-motion-related inputs are integrated in order to encode behaviorally relevant locations in V1 neurons. Using a behavioral task in a virtual environment, we monitored layer 2/3 neuronal activity as mice learned to locate a reward along a linear corridor. With learning, a subset of neurons became responsive to the expected reward location. Without a visual cue to the reward location, both behavioral and neuronal responses relied on self-motion-derived estimations. However, when visual cues were available, both neuronal and behavioral responses were driven by visual information. Therefore, a population of V1 neurons encode behaviorally relevant spatial locations, based on either visual cues or on self-motion feedback when visual cues are absent. : Pakan et al. show that spatial locations that are relevant for a behavioral task are represented in the primary visual cortex. Both neuronal and behavioral responses to an expected reward location primarily rely on visual information. Without visual landmarks, both neuronal and behavioral responses are driven by self-motion derived information. Keywords: visual cortex, awake behaving mice, two-photon calcium imaging, virtual reality, reward, navigation, motor feedback, visual landmark, V1, path integratio

    Tunable adsorption on carbon nanotubes

    Full text link
    We investigated the adsorption of a single atom, hydrogen and aluminum, on single wall carbon nanotubes from first-principles. The adsorption is exothermic, and the associated binding energy varies inversely as the radius of the zigzag tube. We found that the adsorption of a single atom and related properties can be modified continuously and reversibly by the external radial deformation. The binding energy on the high curvature site of the deformed tube increases with increasing radial deformation. The effects of curvature and radial deformation depend on the chirality of the tube.Comment: To be appear in Physical Review Letter
    corecore