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High-fidelity multimode fibre-based
endoscopy for deep brain in vivo imaging
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Tomáš Čižmár 1,3,7

Abstract
Progress in neuroscience relies on new techniques for investigating the complex dynamics of neuronal networks. An
ongoing challenge is to achieve minimally invasive and high-resolution observations of neuronal activity in vivo inside
deep brain areas. Recently introduced methods for holographic control of light propagation in complex media enable
the use of a hair-thin multimode optical fibre as an ultranarrow imaging tool. Compared to endoscopes based on
graded-index lenses or fibre bundles, this new approach offers a footprint reduction exceeding an order of magnitude,
combined with a significant enhancement in resolution. We designed a compact and high-speed system for
fluorescent imaging at the tip of a fibre, achieving a resolution of 1.18 ± 0.04 µm across a 50-µm field of view, yielding
7-kilopixel images at a rate of 3.5 frames/s. Furthermore, we demonstrate in vivo observations of cell bodies and
processes of inhibitory neurons within deep layers of the visual cortex and hippocampus of anaesthetised mice. This
study paves the way for modern microscopy to be applied deep inside tissues of living animal models while exerting a
minimal impact on their structural and functional properties.

Optical systems have traditionally been understood as
assemblies of components acting in a predefined and
determinate manner. This notion is currently undergoing
a transformation due to rapid advances in the technology
and methods for spatial light modulation. Computer-
controlled holographic modulators now facilitate the
deployment of unusual and complex optical media with
properties that bring unique advantages to biomedical
applications1.
The use of multimode fibres (MMFs) as ultranarrow

endoscopes is a promising example of this concept2–10,
since it allows one to overcome the trade-off between the
size of the optical element and the attainable resolution11.
The nature of light transport through MMFs leads to the

transformation (or scrambling) of incident wavefronts
into seemingly random speckle patterns. Adaptive optics
provides a means for overcoming this signal degrada-
tion12–15. A number of recently developed techniques in
this domain have enabled the randomised output fields to
be tailored into any desired distribution across the distal
fibre facet or an arbitrarily remote plane2–5. Laser scan-
ning microscopy utilised in this study relies on the for-
mation of diffraction-limited foci behind the fibre,
combined with image reconstruction from fluorescence
signals that are collected and guided backwards4,7.
Digital micromirror devices (DMDs) have recently

opened up a range of opportunities in this domain by
increasing the achievable light modulation refresh rates by
several orders of magnitude compared to well-established
nematic liquid crystal-based devices16–19. As a result, the
foci behind a MMF can now be scanned at several tens of
kHz, thus acquiring images at speeds approaching video
rates. Furthermore, it has also been shown that DMDs
generate foci of higher quality compared to other mod-
ulators20. Building on these advances, the focus of
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researchers is currently shifting towards implementations
in biomedically relevant settings, including in vivo
applications21.
Here we devise a compact and high-speed imaging

system capable of resolving micron-sized subcellular
neural structures in an anaesthetised animal model
through, to our knowledge, the most minimally invasive
endoscopic probe reported thus far. Relying on high-
performance holographic methods and a carefully opti-
mised design, this represents the first instrument capable
of time-lapse artefact-free imaging of both neuronal
somata and dendritic processes with diffraction-limited
resolution. As exemplified by optogenetics22, the extre-
mely reduced footprint allows observations unprecedently
deep within brain tissues, thus enabling a new level of
in vivo investigation of neuronal connectivity in pre-
viously inaccessible brain structures.
The system consists of laser, calibration, beam-shaping

and sample modules, as illustrated in Fig. 1a. A DMD in
the core of the beam-shaping module is employed in the
off-axis regime, and thus, despite its inherent binary-
amplitude light modulation, can control the phase of the
optical fields coupled into the fibre. As shown pre-
viously3,4,20, employment of the DMD and the calibration
module allows characterising the light propagation
throughout the entire optical path, from the DMD chip to
a desired focal plane behind the distal fibre facet, which
can be expressed as a transmission matrix (TM) of the
system14,15. The TM allows the calculation of phase
modulations, which, when applied to the DMD, result in
the formation of diffraction-limited foci at any desired

location in the focal plane. The sequential exposure of a
fluorescent sample to such a series of foci, performed as
the fluorescent signals propagating backwards through
the fibre towards a bucket detector are collected, is
equivalent to raster-scanning laser microscopy.
A standard commercially available MMF with a core of

50 µm in diameter and a NA of 0.22 was chosen as the
endoscopic probe. To minimise the tissue damage caused
by compression during the penetration process23,24, the
fibre (2 cm in length) was postprocessed into a flat-cone
termination by polishing the excess cladding from an
external diameter of 125 µm to 60 µm, as depicted in
Fig. 1b. In all experiments, we offset the focal plane 5–15
µm from the distal fibre facet to guarantee that the full
NA of the fibre was reached uniformly across the field of
view and to minimise sample-induced aberrations. Once
the probe is placed and aligned with the system, it takes
approximately 2 min to obtain the TM, compute ~7000
phase modulation patterns for all desired foci across a 50-
µm-wide circular region of the focal plane, and upload the
patterns to the memory of the DMD.
The fidelity of the generated foci determines the ima-

ging quality. When controlling light propagation through
a randomising medium, not all of the optical power
leaving the medium can be directed to a diffraction-
limited focus. The remaining power forms a background
signal in the form of speckle, as shown in Fig. 2b. The
ratio between the power in the focal spot and the total
output power emitted from the fibre is commonly used as
a figure of merit when assessing the performance of a
given optimisation approach. Working in the off-axis
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Fig. 1 Multimode fibre-based imaging system. a Scheme of the imaging setup. The corresponding list of components is provided in Methods. A
calibration (step 1) precedes imaging (step 2). During in vivo imaging, the mouse is head-fixed and placed under the fibre. The fibre is then lowered
into the brain region of interest using a motorised stage. b Flat-top cone termination of the MMF probe with a core diameter of 50 µm and an
external diameter of 60 µm
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regime and utilising circularly polarised light, this power
ratio has been shown to reach 75%, which is very close to
the fundamental limit for approaches based on phase-only
modulation25. The enhancement factor, defined as the
ratio of the peak intensity at the focal point to the average
level of speckled background, is also commonly used to
assess the quality of focussing; this factor exceeds 3100 in
our experiments (see Methods for more details).
Once the calibration procedure is finished, the calibration

module is removed and exchanged with the sample module.
A fast bucket intensity detector triggered by DMD reference
TTL pulses (synchronised with switching between indivi-
dual DMD modulations) allows the system to operate at a
refresh rate of 23 kHz, which results in an imaging rate of
~3.5 frames/s. The calibration remains valid provided that
the optical system does not suffer from mechanical or
environmental factors, which may lead to perturbations in
the light transport through the MMF and degradation of
the imaging quality. As recently demonstrated, temperature
changes in short fibre segments lead to an axial shift of the
focus away from the fibre facet. At the scale of fibre lengths
used in this study, the temperature change from room
temperature to that of the animal body leads to a negligible

axial shift not exceeding the Rayleigh range of the focused
beam. Bending of the fibre may be another source of ima-
ging performance degradation; however, at the curvature
levels expected in our study, these effects are also negligible.
The most severe calibration degradation is therefore to be
expected from drifts in the optical pathway, particularly the
mutual alignment of the DMD and MMF input. The system
has therefore been devised with a robust cage-based con-
struction, resulting in stable operation over several hours
without the need for recalibration. The optical path was
designed to achieve the maximum resolving power of the
MMF.
The resolution of the system was assessed via a negative

USAF 1951 test target. As shown in Fig. 2d–h, line
separations of 3.9 µm, 1.9 µm, and 1.6 µm were imaged
with contrasts of 65%, 28%, and 15%, respectively, which
is in good agreement with the resolution limit (Abbe
criterion) dictated by the wavelength and NA of the fibre.
To validate the operation in the fluorescent regime
(Fig. 2c), we used 4.0-µm red fluorescent beads on a
microscope coverslip.
To demonstrate in vivo imaging capability, we used

transgenic mice with a subpopulation of inhibitory
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Fig. 2 Evaluation of the imaging performance. a Combined foci (sum projection) at the distal MMF facet demonstrating the power uniformity of
focusing at different locations. b Intensity distribution and azimuthally averaged profile of a chosen focal point (indicated by a blue square in panel a)
in logarithmic scale. c Validation of fluorescent imaging using 4-µm fluorescent particles. d–h Assessment of spatial resolution using a negative USAF-
1951 test target. Image of the test target (d) and contrast measurements of selected target elements with 265 line pairs per millimetre (lp/mm)
(e), 512 lp/mm (f), and 645.1 lp/mm (g). h Imaging contrast as a function of the normalised spatial frequency for the target elements in (d), and the fit
of the modulation transfer function (MTF) corresponding to an aberration-free imaging system with a circular aperture. The fit allows an estimation of
the effective numerical aperture (NA) as 0.225 ± 0.008 and the corresponding resolution limit (Abbe criterion) as 1.18 ± 0.04 µm
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interneurons labelled with a red fluorescent marker (see
Methods). The fibre probe was inserted into the primary
visual cortex (V1) and deeper into the hippocampus of the
mouse brain through a small craniotomy. The images
presented in Fig. 3a, b were recorded at different depths
within V1 (0.5–0.8 mm) and in the CA1 region and
dentate gyrus (DG) of the hippocampus (approximately
1.5 and 2mm). The fibre probe causes minimal damage
in vivo, as demonstrated by a postmortem section of a
perfused brain after fibre imaging (Fig. 4b), showing the
impact of the insertion procedure with a fibre tract width
not exceeding 50 µm. The resolution and contrast
achieved in vivo allow for visual identification of both
relatively large objects, such as cell somata (diameter of
approximately 10–20 µm, Fig. 3a), and thin processes
(usually 1–2 µm wide) with fine structures corresponding
to synaptic boutons (Fig. 3b). In addition to imaging
anatomical structures in deep brain regions, the system
can also be used to image dynamic processes over time, as
exemplified by the observation of a minuscule local hae-
morrhage from a burst blood vessel, showing individual
red blood cells (see Fig. 3c). The high frame rate of the
system allows live recording of the labelled structures
during fibre penetration (see Supplementary Movie).
In this work, we have designed a highly optimised

optical pathway for fluorescence-based imaging of deep
brain structures with micrometric spatial resolution while
causing minimal damage to the tissue surrounding the
fibre penetration area. The robust design allows

continuous imaging for periods of several hours.
Deploying the most efficient wavefront-shaping algo-
rithms and, currently, the fastest possible hardware for
light modulation, our system is capable of acquiring 7-
kilopixel images with micron-level spatial resolution at
imaging speeds of 3.5 frames/s. This provides adequate
spatial and temporal resolution for fluorescent imaging of
subcellular structures in living tissues.
We were able to perform fluorescence imaging in vivo

deep within a mouse brain using a single MMF-based
probe. In anaesthetised transgenic mice with tdTomato
fluorescent protein expression in a sparse subpopulation
of inhibitory interneurons, we obtained visually identifi-
able images of neuronal somata and processes in both the
visual cortex and the hippocampus, >2 mm below the
surface of the brain. While the imaging was restricted to
the cortex and hippocampus in our experiments, with this
technique, the entire dorsal-ventral extent of the mouse
brain (4–6mm) can be covered, allowing imaging of even
the most ventrally located nuclei in the brain. The
achieved resolution is limited only by the numerical
aperture of the fibre, being comparable to a standard ×10
microscope objective. Imaging immediately after insertion
of the endoscopic probe, which is only possible due to its
minuscule footprint, eliminates the need for a long post-
operative recovery period, as well as the necessity of
surgical removal of overlying tissue and implantation of
imaging elements, such as a graded-index lens26,27. The
demonstrated capability to record dynamic processes with

Neuronal somata

10 µm

a

b

c

Neuronal processes

Blood cells/haemorrhage (time lapse images)

Fig. 3 In vivo implementation of the MMF-based imaging system. Images of neuronal somata (a) and processes (b) of inhibitory neurons
observed during a direct insertion of the MMF probe 2–3 mm into the mouse brain. The arrows indicate branching points and synaptic boutons.
c Time-lapse images of a haemorrhage in the primary visual cortex: nonlabelled blood cells (dark) exiting a burst blood vessel are visible. The images
were acquired at 3.5 frames/s. The frames displayed from left to right were acquired at 0 s, 0.57 s, 1.14 s, 1.71 s, 2.5 s and 4.6 s, respectively
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high resolution can be further extended to visualisation of
structural changes (e.g., spine turnover) over extended
periods of time.
Although the structures of interest in this report are

clearly recognisable, the images exhibit a visible level of
background. This background signal originates from
sample excitation by out-of-focus light, and in the case of
MMF-based imaging, the resulting glare features con-
centric wavelets due to the discrete structure of allowed
propagating modes. Eliminating out-of-focus light by
means of confocal rejection of incoherent fluorescent
signals returning from the MMF is currently not possible
without prohibitive power losses. Therefore, future work
will focus on the development of computational post-
processing algorithms to further enhance the imaging
quality.
This demonstration paves the way for in vivo imple-

mentation of numerous techniques of modern micro-
scopy, including multiphoton9, super-resolution and

light-sheet approaches10. Future advancements will
strongly rely on the development of new fibre types
directly optimised for the purposes of holographic
endoscopy11.

Methods
Setup
As illustrated in Fig. 1a, the system is designed in a

modular manner, consisting of laser, calibration, beam-
shaping and sample modules. In the laser module, the
beam is divided into a signal and a reference beam, which
are coupled to single-mode polarisation-maintaining
fibres. The calibration module is used to measure the
transmission matrix of the multimode fibre, and is sub-
sequently replaced by a sample module for the anaes-
thetised animal model.

Laser module
A single-frequency, diode-pumped solid-state laser

source emitting at the wavelength of 532 nm provides a
continuous-wave and linearly polarised beam. Achromatic
doublets L7 and L8 form a telescope to demagnify the
beam, and aspheric lenses L9 and L10 couple the signal
and reference beams into the polarisation-maintaining
fibres. Half-wave plate HW3, in combination with the
input linear polariser of the Faraday optical isolator ISO,
controls the combined power coupled to the signal and
reference beams, whereas half-wave plate HW4, in com-
bination with polarising beam splitter PBS, controls the
power ratio between the signal and reference beams. Half-
wave plates HW5 and HW6 are used to finely align the
polarisation of the coupled beams with one of the bire-
fringent axes of the polarisation-maintaining fibres
(Fig. 1a).

Beam-shaping module
Achromatic doublet L1 collimates and expands the

signal beam to overfill the DMD at an incidence angle of
24° with respect to the DMD chip. In this way, each
micro-mirror in the ‘on’ state (+12°) reflects light in the
direction of the optical system, whereas micro-mirrors in
the ‘off’ state (−12°) redirect light towards a beam dump.
Lenses L2, L3 and L4 relay the far-field of the first dif-
fraction order of the holograms generated at the DMD to
the proximal facet of the multimode fibre. An iris dia-
phragm is used in the Fourier plane of L2 to isolate the
first diffraction order of the holograms, while blocking the
remaining orders. The combination of lenses L2 and L3 is
chosen to underfill the aperture of aspheric lens L4 in
order to reduce its effective numerical aperture to 0.23,
matching that of the multimode fibre. The multimode
fibre used has a core diameter of 50 µm and a NA of 0.22
and sustains approximately 2100 propagation-invariant
modes (i.e., 1050 for each orthogonal polarisation state) at

MMF
Ø0.125 mm

a

b

Rod lens
Ø0.6 mm

Micro-
objective
Ø1.8 mm

200 µm

V1

CA1

DG

Fig. 4 Assessment of invasiveness. a Scale-preserved comparison of
common endoscopic probes and a MMF. b Postmortem coronal brain
section showing two fibre tracts of the MMF probe in the visual cortex
and hippocampus. The arrows indicate the insertion tract of the MMF
probe. The width of each tract is less than 50 µm. Scale bar, 200 µm
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the wavelength of 532 nm. Circular polarisation is well
preserved after propagation through a straight fibre seg-
ment. The transmission matrix is measured between 3000
input modes and 7000 output modes (corresponding to
the desired foci). Oversampling is essential to reach the
highest fraction of optical power contained in a focused
spot. Dichroic mirror DM, combined with excitation filter
Fil1 and emission filter Fil2, separates and spectrally
purifies the fluorescence signal. Photomultiplier tube
PMT measures the overall intensity of the fluorescence
signal. Half-wave plate HW1 and quarter-wave plate
QW1 provide the two degrees of freedom necessary to
reach the purest circular polarisation state of the spatially
modulated signal at the input facet of the fibre.

Calibration module
A movable, compact calibration module is used to

acquire the TM of the fibre prior to image acquisition.
The TM is measured interferometrically using an external
phase reference. Being uniformly distributed, the external
reference prevents the formation of ‘blind spots’ origi-
nating from the speckled nature of internal references3.
Microscope objective OBJ and tube lens L5 image the
selected focal plane (spatially offset from the fibre facet)
onto the CCD camera with a demagnification of 27.7 fold.
The reference beam is collimated by aspheric lens L6 and
combined with the signal beam using nonpolarising
beamsplitter cube BS. Quarter-wave plate QW2 converts
the polarisation state of the output speckle patterns to
linear, and half-wave plate HW2 aligns the polarisation
axis of the reference signal in order to maximise the
signal-to-noise ratio of the interference patterns at the
camera. The microscope objective is mounted on a single-
axis translation stage for precise focusing and displace-
ment of the calibration plane with respect to the output
fibre endface.
The system was built using the following components,

as indicated in Fig. 1: DMD: ViALUX V7001 (Germany);
Laser: CrystaLaser CL532-075-S (USA); ISO: Thorlabs
IO-3-532-LP (USA); PMT: Thorlabs PMT2101/M; Cam:
Basler piA640-210gm (Germany); BS: Thorlabs BS004;
PBS: Thorlabs FPB529-23; Fibre: Thorlabs FG050LGA;
Fibre patch cords: P5-488PM-FC-2; L1: AC254-060-A-
ML; L2: AC254-200-A-ML; L3: AC254-075-A-ML; L5:
AC254-150-A-ML; L4, L6, L9, L10: Thorlabs A240TM-A;
L7: AC127-025-A-ML; L8: AC254-100-A-ML; M1-M3:
Thorlabs BB1-E01; Iris: Thorlabs SM1D12D; OBJ:
Olympus Plan Achromat 20X NA 0.4 (Japan); DM, Fil1,
Fil2: Thorlabs filter set MDF-TOM; HW1-HW6:
WPMH10M-532; QW1, QW2: WPMQ10M-532.

Calibration methods
Binary-amplitude gratings based on the Lee hologram

approach allow the DMD to be employed as a spatial light

modulator in the off-axis regime28. The basis of input
modes consists of truncated plane waves of varying k
vectors. At the Fourier plane (focal plane of lens L2, Iris)
and at the input fibre facet, this basis corresponds to a
square grid of 65 × 65 focused spots. An alignment step
prior to the TM acquisition measures the transmitted
intensity by integrating the output speckle imaged by the
CCD detector for each input mode. This step reduces the
number of input modes to ~3000, since only those that
are incident on the fibre core are effectively coupled. The
basis of output modes consists of a square grid of 100 ×
100 points spaced by ~0.5 µm across the focal plane (i.e.,
at a certain working distance from the output fibre facet),
which are conjugate to pixels of the CCD detector during
the calibration procedure. Only ~7000 output modes
falling within a circular area of Ø50 µm are scanned
during the image acquisition, at the maximum refresh rate
of the DMD.

Focus quality
Here, we estimate the maximum reachable power ratio

PR – the ratio of power stored in the optimised focus and
the total power leaving the output facet of the MMF. We
assume that the optical system contains a set of N random
orthogonal modes, conserves the polarisation of light and
does not absorb optical power. Furthermore, we assume
that we can provide a perfect phase-only modulation of
the required field. The optimal field leading to the gen-
eration of a perfect focus can be expressed as an N-
dimensional vector f of the complex magnitudes of the
input modes in any convenient representation (e.g., focal
points at the input facet or plane waves of different k
vectors truncated at the DMD) having the real and ima-
ginary parts fj ¼ f rj þ if ij obeying Gaussian statistics:

pðf rÞ ¼
ffiffiffi
N
π

q
e�Nf r2 and pðf iÞ ¼

ffiffiffi
N
π

q
e�Nf i2 . These prob-

ability distributions are normalised and scaled such that

fj j2¼ PN
j¼1

fjf �j ¼ 1. The field can also be expressed in terms

of a real-positive amplitude and phase as fj ¼ aje
iφj , where

aj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f r2j þ f i2j

q
. The phase-only field is then given as

fj ¼
ffiffiffi
1
N

q
eiφj , where the factor

ffiffiffi
1
N

q
is used so f

�� ��2¼ 1, and

therefore, both f and f carry the same optical power. The
power ratio PR is then given as the squared projection of
the f vector onto f:

PR ¼
XN
j¼1

fjf
�
j

�����
�����
2

¼ 1
N

XN
j¼1

eiφj aje
�iφj

�����
�����
2

¼ 1
N

XN
j¼1

aj

�����
�����
2

¼ N ah i2

ð1Þ

where a denotes the average value of the components of
vector a. Given that a represents the radial coordinates of
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a 2-dimensional Gaussian distribution of complex values
of vector f across the Gaussian plane, its averaged value is
given by the following integral:

ah i ¼
Z1

�1

Z1

�1
a

ffiffiffiffi
N
π

r
e�Nf r2

ffiffiffiffi
N
π

r
e�Nf i2df rdf i

¼ 2π
N
π

Z1

0

a2e�Na2da ¼
ffiffiffiffiffiffiffi
π

4N

r ð2Þ

Hence, we obtain PR ¼ π
4, leading to an approximate value

of 79%. Clearly, this quantity is not dependent on the
number of modes supported by the optical system.

Unlike the PR, which indicates the power balance of the
focus, the enhancement factor, commonly used in highly
scattering random media, describes the ratio between the
intensity of the optimal focus and the randomly dis-
tributed background. By considering the convenient basis
of orthogonal focal points distributed across the input and
output facet of the fibre, we can assume that each mode
occupies the same area. Therefore, the intensity of each
mode is proportional to its power. Since the fraction of
total power stored in the optimised mode is given by PR,
the combined power of all remaining (nonoptimised)
modes is given as 1-PR, and their average intensity is
1�PR
N�1 ffi 1�PR

N . The enhancement factor ς is thus given by

ς ¼ N PR
1� PR

ð3Þ

Short segments of MMFs and the modulation provided
by the DMD fulfil the assumptions of this evaluation very
well. Although the DMD only allows for binary-amplitude
modulation, when used in the off-axis regime as a Lee
hologram to generate signals within an isolated zone of
the Fourier space, from the perspective of PR and ς, it is
fully analogous to phase-only modulation, as numerous
generated diffraction orders occur far from the isolated
zone and do not contaminate the required optical field.
Using only one circular polarisation that is well conserved
during propagation, the MMF used in this study supports
approximately 1050 modes, leading to a maximum
enhancement factor ς of approximately 3800.

Animals
Data were acquired from 5 adult mice (5-6 months old).

In 4 mice, a subpopulation of inhibitory neurons,
somatostatin-expressing (SST) neurons, was labelled with
a red fluorescent marker (tdTomato) using a Cre-driver
transgenic mouse line: Sst < tm2.1(cre)Zjh > (SST-Cre)
[RRID:IMSR_JAX:013044] (Jackson Laboratory, ME,
USA) crossbred with Rosa-CAG-LSL-tdTomato [RRID:
IMSR_JAX:007914] mice. In 1 mouse, another

subpopulation of inhibitory neurons, VIP neurons, was
labelled with the same red fluorescent marker (tdTomato)
using a Cre-driver transgenic mouse line: Vip < tm1(cre)
Zjh > (VIP-Cre) [RRID:IMSR_JAX:010908] (Jackson
Laboratory, ME, USA) cross-bred with Rosa-CAG-LSL-
tdTomato [RRID:IMSR_JAX:007914] mice. The animals
were housed in groups (typically 2–4 mice), and both
male and female mice were used for the experiments. All
procedures were approved by the University of Edinburgh
Animal Welfare Committee and were performed under a
UK Home Office project license.

Surgical procedures
For craniotomy, mice were anaesthetised with iso-

flurane (4% for induction and 1–2% maintenance during
surgery and imaging) and mounted on a stereotaxic frame
(David Kopf Instruments, CA, USA). Eye cream was
applied to protect the eyes (Bepanthen, Bayer, Germany),
analgesics and anti-inflammatory drugs were injected
subcutaneously (Vetergesic, buprenorphine, 0.1 mg/kg of
body weight; carprofen, 0.15 mg; dexamethasone, 2 µg). A
section of scalp was removed, and the underlying bone
was cleaned before a craniotomy (approximately 2 × 2
mm) was made over the left primary visual cortex (V1, 2.5
mm lateral and 0.5 mm anterior to lambda). Cyanoacry-
late glue (Locktite, UK) was applied to the surrounding
skull, muscle, and wound margins to prevent further
bleeding.

In vivo imaging
The in vivo imaging stage, placed below the fibre,

consisted of a custom-made frame with ear bars to hold
the animal’s head position fixed during the imaging pro-
cedure and a fitted face mask for the delivery of isoflurane
anaesthesia (1–2%). A suitable body temperature was
maintained via a thermal bandage. The stage was moun-
ted on a three-axis motorised translation stage with servo-
driven actuators (ThorLabs, USA), allowing precise posi-
tioning of the animal both laterally for targeting the cra-
niotomy and axially for controlling the fibre penetration
process. The endoscopic fibre probe was gradually low-
ered into the craniotomy, up to 3mm into the brain tis-
sue, targeting deep cortical layers in V1 and ventrally
through the hippocampus to the base of the brain. Images
were collected at ~3.5 frames/s from multiple regions
throughout the tissue.
At the end of the imaging session, the animals were

given an overdose of sodium pentobarbital (240 mg/kg)
prior to transcardial perfusion with phosphate-buffered
saline (PBS) followed by 4% paraformaldehyde. The fixed
brains were then extracted, and 50-µm-thick coronal
sections were cut with a vibratome (Leica, Germany) to
confirm the location of the fibre tract.

Turtaev et al. Light: Science & Applications            (2018) 7:92 Page 7 of 8



Acknowledgements
This work was funded by Marie Curie Actions of the European Union’s FP7
program (608144 to S.T. and I.T.L., IEF 624461 to J.P. and MC-CIG 631770 to N.R.);
the European Regional Development Fund (ERDF: Center for Behavioral Brain
Sciences to J.P. and CZ.02.1.01/0.0/0.0/15_003/0000476 to T.Č.); the European
Research Council (ERC: 724530) to T.Č.; Thüringer Ministerium für Wirtschaft,
Wissenschaft und Digitale Gesellschaft, Thüringer Aufbaubank and the Federal
Ministry of Education and Research, Germany (BMBF) to S.T., I.T.L. and T.Č.; the
Wellcome Trust, the Royal Society (Sir Henry Dale fellowship), the Shirley
Foundation, the Patrick Wild Centre, the RS MacDonald Charitable Trust Seedcorn
grant, and the Simons Initiative for the Developing Brain to N.R.; and the
University of Dundee and Scottish Universities Physics Alliance (PaLS initiative) to
T.Č. The brain slice image (part of Fig. 4a) was acquired at the Allen Institute. The
USAF-1951 target used in Fig. 2 was custom-made by the Electron Beam
Lithography group of the Institute of Scientific Instruments of the CAS, v.v.i.

Author details
1Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, Jena 07745,
Germany. 2School of Life Sciences, University of Dundee, Nethergate, Dundee
DD1 4HN, UK. 3School of Science and Engineering, University of Dundee,
Nethergate, Dundee DD1 4HN, UK. 4Centre for Discovery Brain Sciences,
University of Edinburgh, Hugh Robson Building 15, George Square, Edinburgh
EH8 9XD, UK. 5Center for Behavioral Brain Sciences, Institute of Cognitive
Neurology and Dementia Research, German Center for Neurodegenerative
Diseases, Leipziger Straße 44, Haus 64, Magdeburg 39120, Germany. 6Simons
Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8
9XD, UK. 7Institute of Scientific Instruments of CAS, Kralovopolska 147, Brno 612
64, Czech Republic

Author Contributions
S.T., I.T.L. and T.Č. designed the imaging system. S.T. developed the software to
run the system. T.A.B., J.P. and N.R. performed the in vivo experiments. N.R. and
T.Č. led the project. All authors contributed equally in analysing the results and
writing the manuscript.

Conflict of interest
The authors declare that they have no conflict of interest.

Supplementary Information is available for this paper at https://doi.org/
10.1038/s41377-018-0094-x.

Received: 29 May 2018 Revised: 1 November 2018 Accepted: 4 November
2018

References
1. Mosk, A. P., Lagendijk, A., Lerosey, G. & Fink, M. Controlling waves in space and

time for imaging and focusing in complex media. Nat. Photonics 6, 283–292
(2012).

2. Di Leonardo, R. & Bianchi, S. Hologram transmission through multi-mode
optical fibers. Opt. Express 19, 247–254 (2011).

3. Čižmár, T. & Dholakia, K. Shaping the light transmission through a multimode
optical fibre: complex transformation analysis and applications in biopho-
tonics. Opt. Express 19, 18871–18884 (2011).

4. Čižmár, T. & Dholakia, K. Exploiting multimode waveguides for pure fibre-
based imaging. Nat. Commun. 3, 1027 (2012).

5. Papadopoulos, I. N., Farahi, S., Moser, C. & Psaltis, D. Focusing and scanning
light through a multimode optical fiber using digital phase conjugation. Opt.
Express 20, 10583–10590 (2012).

6. Choi, Y. et al. Scanner-free and wide-field endoscopic imaging by using a
single multimode optical fiber. Phys. Rev. Lett. 109, 203901 (2012).

7. Papadopoulos, I. N., Farahi, S., Moser, C. & Psaltis, D. High-resolution, lensless
endoscope based on digital scanning through a multimode optical fiber.
Biomed. Opt. Express 4, 260–270 (2013).

8. Plöschner, M., Tyc, T. & Čižmár, T. Seeing through chaos in multimode fibres.
Nat. Photonics 9, 529–535 (2015).

9. Morales-Delgado, E. E., Psaltis, D. & Moser, C. Two-photon imaging through a
multimode fiber. Opt. Express 23, 32158–32170 (2015).

10. Plöschner, M. et al. Multimode fibre: Light-sheet microscopy at the tip of a
needle. Sci. Rep. 5, 18050 (2015).

11. Leite, I. T. et al. Three-dimensional holographic optical manipulation through a
high-numerical-aperture soft-glass multimode fibre. Nat. Photonics 12, 33–39
(2018).

12. Vellekoop, I. M. & Mosk, A. P. Focusing coherent light through opaque strongly
scattering media. Opt. Lett. 32, 2309–2311 (2007).

13. Vellekoop, I. M. & Mosk, A. P. Universal optimal transmission of light through
disordered materials. Phys. Rev. Lett. 101, 120601 (2008).

14. Popoff, S., Lerosey, G., Fink, M., Boccara, A. C. & Gigan, S. Image transmission
through an opaque material. Nat. Commun. 1, 81 (2010).

15. Popoff, S. M. et al. Measuring the transmission matrix in optics: an approach to
the study and control of light propagation in disordered media. Phys. Rev. Lett.
104, 100601 (2010).

16. Conkey, D. B., Caravaca-Aguirre, A. M. & Piestun, R. High-speed scattering
medium characterization with application to focusing light through turbid
media. Opt. Express 20, 1733–1740 (2012).

17. Goorden, S. A., Bertolotti, J. & Mosk, A. P. Superpixel-based spatial amplitude
and phase modulation using a digital micromirror device. Opt. Express 22,
17999–18009 (2014).

18. Akbulut, D., Huisman, T. J., Van Putten, E. G., Vos, W. L. & Mosk, A. P. Focusing
light through random photonic media by binary amplitude modulation. Opt.
Express 19, 4017–4029 (2011).

19. Caravaca-Aguirre, A. M., Niv, E., Conkey, D. B. & Piestun, R. Real-time resilient
focusing through a bending multimode fiber. Opt. Express 21, 12881–12887
(2013).

20. Turtaev, S. et al. Comparison of nematic liquid-crystal and DMD based
spatial light modulation in complex photonics. Opt. Express 25, 29874–29884
(2017).

21. Ohayon, S., Caravaca-Aguirre, A., Piestun, R. & DiCarlo, J. J. Minimally invasive
multimode optical fiber microendoscope for deep brain fluorescence ima-
ging. Biomed. Opt. Express 9, 1492–1509 (2018).

22. Kim, C. K., Adhikari, A. & Deisseroth, K. Integration of optogenetics with
complementary methodologies in systems neuroscience. Nat. Rev. Neurosci.
18, 222–235 (2017).

23. Sharp, A. A., Ortega, A. M., Restrepo, D., Curran-Everett, D. & Gall, K. In
vivo penetration mechanics and mechanical properties of mouse
brain tissue at micrometer scales. Ieee. Trans. Biomed. Eng. 56, 45–53
(2009).

24. Kozai, T. D. Y., Jaquins-Gerstl, A. S., Vazquez, A. L., Michael, A. C. & Cui, X. T. Brain
tissue responses to neural implants impact signal sensitivity and intervention
strategies. ACS Chem. Neurosci. 6, 48–67 (2015).

25. Chandrasekaran S. N., Ligtenberg H., Steenbergen W., Vellekoop I. M. Using
digital micromirror devices for focusing light through turbid media. In Proc.
Emerging Digital Micromirror Device Based Systems and Applications VI 897905
(SPIE: San Francisco, California, USA, 2014).

26. Attardo, A., Fitzgerald, J. E. & Schnitzer, M. J. Impermanence of dendritic spines
in live adult CA1 hippocampus. Nature 523, 592–596 (2015).

27. Sato, M., Kawano, M., Yanagawa, Y. & Hayashi, Y. In vivo two-photon imaging
of striatal neuronal circuits in mice. Neurobiol. Learn. Mem. 135, 146–151
(2016).

28. Lee, W. H. Binary computer-generated holograms. Appl. Opt. 18, 3661–3669
(1979).

Turtaev et al. Light: Science & Applications            (2018) 7:92 Page 8 of 8

https://doi.org/10.1038/s41377-018-0094-x
https://doi.org/10.1038/s41377-018-0094-x

	High-fidelity multimode fibre-based endoscopy for deep brain in�vivo imaging
	Methods
	Setup
	Laser module
	Beam-shaping module
	Calibration module

	Calibration methods
	Focus quality
	Animals
	Surgical procedures
	In vivo imaging

	ACKNOWLEDGMENTS




