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SUMMARY

The integration of visual stimuli and motor feedback
is critical for successful visually guided navigation.
These signals have been shown to shape neuronal
activity in the primary visual cortex (V1), in an
experience-dependent manner. Here, we examined
whether visual, reward, and self-motion-related in-
puts are integrated in order to encode behaviorally
relevant locations in V1 neurons. Using a behavioral
task in a virtual environment, we monitored layer
2/3 neuronal activity as mice learned to locate a
reward along a linear corridor.With learning, a subset
of neurons became responsive to the expected
reward location. Without a visual cue to the reward
location, both behavioral and neuronal responses
relied on self-motion-derived estimations. However,
when visual cues were available, both neuronal and
behavioral responses were driven by visual informa-
tion. Therefore, a population of V1 neurons encode
behaviorally relevant spatial locations, based on
either visual cues or on self-motion feedback when
visual cues are absent.

INTRODUCTION

The ability to identify behaviorally relevant locations is critical for

successful navigation through the environment and, ultimately,

survival. This ability requires an estimation of location that can

rely on positional cues, such as visual features of the environment,

or on internal representations based on speed and direction of

movement (Chen et al., 2013; Etienne and Jeffery, 2004; Tcheang

et al., 2011; Tennant et al., 2018; Campbell et al., 2018). While it is

well known that physical features of the visual world are repre-

sented by neuronal activity in the primary visual cortex (V1), recent

studies have shown that self-motion-related information is also

represented in V1 and can directly modulate visual responses
Cell Repo
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(Erisken et al., 2014; Keller et al., 2012; Niell and Stryker, 2010;

Pakan et al., 2016; Saleem et al., 2013). These results suggest

that the visual cortexmay combinemotor-related and visual infor-

mation to encode signals related to the spatial position of visual

stimuli. Consistentwith this hypothesis, itwasshown that a subset

of V1 neurons responds specifically to a given visual stimulus

placed in one location along a virtual corridor and less to the

same stimulus at another location (Fiser et al., 2016).

A representation of the spatial location of a visual cue in V1

(i.e., at an early stage of sensory information processing) may

facilitate the perception of stimuli associated with danger or a

reward at specific locations. However, it remains unknown

whether V1 neurons represent spatial locations that are relevant

for a behavioral task, such as the location associated with a

reward, and whether spatial expectations would exclusively

rely on visual cues or may also be triggered by self-motion sig-

nals alone. Previous studies have used visual discrimination

tasks, in whichmice learn to discriminate a rewarded visual stim-

ulus from a non-rewarded one, to show that the representation of

behaviorally relevant visual stimuli in V1 are enhanced with expe-

rience (Jurjut et al., 2017; Keller et al., 2017; Pakan et al., 2018;

Poort et al., 2015). These results suggest that feedforward visual

inputs are integrated with reward-related signals that have been

shown to be present in V1 (Chubykin et al., 2013; Shuler and

Bear, 2006). However, it is unclear whether visual, reward, and

self-motion-related signals combine to activate V1 neurons in

response to relevant spatial locations, such as a location associ-

ated with a reward.

In this study, we used two-photon calcium imaging in head-

fixed mice placed in a virtual environment, to monitor the activity

of V1 neurons before, during, and after mice learned to locate a

reward on a virtual linear corridor. Mice had to lick at a given

spatial location, demarcated by a visual cue, in order to receive

a reward. We found that V1 neuronal activity correlated with

behavioral responses: with training, most neurons became spe-

cifically responsive to the reward zone region of the virtual

corridor. When the visual cue was removed but the reward re-

mained at the same spatial location, we found that the expected

reward location was represented by a subset of V1 neurons. We
rts 24, 2521–2528, September 4, 2018 ª 2018 The Author(s). 2521
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Figure 1. Mice Learn to Lick at a Specific

Reward Location in a Visually Guided Task

in a Virtual Environment

(A) Experimental timeline for chronic imaging of

primary visual cortex (V1). The virtual corridor had

a grating pattern on the walls and a reward zone

demarcated by the transition to black walls. Early

rewards were triggered by appropriate licking

behavior within the first half of the reward zone,

while a default reward was given on missed trials

after the halfway point of the reward zone to facil-

itate learning.

(B) Schematic of the virtual reality system for two-

photon imaging of V1 neurons during execution of

the task. Mice were head-fixed above a cylindrical

treadmill driving the virtual environment via a rotary

encoder. The environment was displayed on two

screens placed at 90� to one another and directly

in front of the animal, covering the majority of the

mouse visual field.

(C) Example images of the sameGCaMP6f-labeled

neurons in V1 during chronic imaging over days.

The resulting changes in fluorescence (DF/F0) are

shown for three example neurons.

(D) Raster plots of licking behavior during the task

for a single mouse on novice (left) and expert (right)

days. Each lick in the virtual corridor is represented

by a black circle. Within the reward zone, three

different lick types are illustrated: early reward

(blue), default reward (red), and post-reward

(drinking; gray).

(E) Task performance for novice, expert, and end-

point imaging days is expressed either as the

proportion of early rewards (top panel; novice to

expert, p = 0.002; novice to end, p = 0.006, n = 7;

Kruskal-Wallis test) or as a spatial modulation in-

dex (SMI) (success rate/proportion of trials that

would be successful with a shuffled distribution of licking). A large SMI indicates that the animal was licking in a spatially discrete area surrounding the reward

zone (SMI novice to expert, p = 0.003; SMI novice to end, p = 0.002, n = 7 mice; Kruskal-Wallis test; **p < 0.01).
thenmanipulated the gain between treadmill rotation and the vir-

tual environment to decouple visual information from self-motion

feedback. Our results show that, in the absence of a visual cue,

animal behavior and neural responses both rely on self-motion

cues; however, in the presence of a visual cue indicating the

reward location, visual input dominates self-motion cues.

RESULTS

We trained head-fixedmice to perform a visually guided task and

used two-photon calcium imaging to assess changes in neuronal

activity in V1 during learning (Figure 1). Seven mice were trained

daily to perform a rewarded task in a virtual environment (Figures

1A and 1B) while we imaged the same population of layer

2/3 neurons, which expressed the genetically encoded calcium

indicator GCaMP6f (Chen et al., 2013) (e.g., Figure 1C). The

task required water-deprived mice to lick a spout for a water

reward at a specific location along a virtual corridor (80 cm

from the beginning of the corridor), which was indicated by a

change in visual stimulus from an oriented grating pattern to

black walls, referred to as the reward zone (Figure 1A). Once

the animal entered the reward zone, within the first 20 cm
2522 Cell Reports 24, 2521–2528, September 4, 2018
(80–100 cm) it could lick for a water droplet (early reward, Fig-

ure 1A); this was considered a successful trial. To facilitate

learning on missed trials, where a reward was not triggered by

the mouse, animals were given a water droplet at a default loca-

tion 20 cm beyond the reward zone onset (default reward,

100 cm, Figure 1A).

In the first training sessions, mice licked randomly along the

length of the corridor but quickly learned to target their licking

behavior to the reward zone region: they were considered

‘‘expert’’ at the task when they achieved a success rate of

>75% early rewarded trials (e.g., Figure 1D). This criterion was

achieved after an average of five sessions (range, 4–6 days)

and was maintained through the remaining training days (Fig-

ure 1E). In this paradigm, it would be possible for the animals

to adopt a strategy of licking constantly along the length of the

corridor and still maintain a high success rate based on the

percentage of early rewarded trials. To account for this, we

calculated a spatial modulation index (SMI) (see Experimental

Procedures) that significantly increased from 0.68 ± 0.16 on

the novice day to 1.76 ± 0.14 by the end of the training sessions

(Figure 1E, lower panel; p = 0.002, n = 7; Kruskal-Wallis test),

indicating that mice learned to associate a water reward with



Figure 2. V1 Layer 2/3 Population Activity during Learning of the Visually Guided Task

(A) NormalizedDF/F0 along the virtual corridor, plotted for all neurons on novice (top) and expert (bottom) days. Neurons are ordered by their maximalDF/F0 on the

recording day. Themean of the normalized activity of all neurons is shown in the lower panels (n = 697 neurons from 7mice). The early reward (blue; small dashed

lines) and default reward (red; large dashed lines) onsets are demarcated.

(B) An example neuron that became task-responsive (significant change in response before and after the reward zone) between novice (top) and expert (bottom)

days. DF/F0 for individual trials (gray traces) and average across all trials (black trace) are shown (see also Figure S2B).

(C) Bar chart showing the evolution of the V1 population response during learning. At each stage (novice, expert, and end-point days), neurons were classified as

either task-responsive (+) or not (�) (i.e., neurons that remain task-responsive at each stage of learning were denoted +++; novice to expert, p = 0.025; novice to

end, p = 0.010, n = 7; Kruskal-Wallis test; *p < 0.05, **p < 0.01).

(D) Accuracy of a template matching decoder using V1 population activity to predict behavioral outcome of either successful (early rewarded) or missed (default

rewarded) trials. The decoder accuracy increased with training (novice to expert, p = 0.015; novice to end, p = 0.015, n = 7; Wilcoxon signed rank; *p < 0.05).

Dashed line indicates chance level.

(E) Correlation between the proportion of task-related neurons and the success rate (SMI) of the task (Pearson’s correlation coefficient). Each data point rep-

resents one animal on one day of training. Data points from the same animal have the same shade of gray and are fit by least-squares regression lines.

See also Figures S1 and S2.
the visually cued location and consequently produce spatially

confined licking behavior.

Most V1 Layer 2/3 Neurons Display Task-Related
Responses after Learning
On the first day of training (novice), themaximal response of neu-

rons ranged across all locations along the corridor; however, by

the expert day (success rate, >75%), a large proportion of peak

responses were centered around the reward zone transition (Fig-

ures 2A, 2B, and S2B). We identified task-related neurons as

those having a significant change in response before (Rpre)

compared to after (Rpost) the reward zone onset (Rpre versus

Rpost: p < 0.001, Wilcoxon signed rank test; Figure S1A). We

found that, with training, most neurons became specifically

responsive to the reward zone transition (percentage of task-

related cells, 40% ± 12% novice, 88% ± 3% end of training;
p = 0.010, n = 7; Kruskal-Wallis test; Figures 2A–2C; see also Fig-

ure S2B). Consequently, when we utilized a template matching

decoder (Montijn et al., 2014; see Supplemental Experimental

Procedures), using neuronal population activity to predict behav-

ioral outcome by differentiating between successful trials (early

rewarded) and missed trials (default rewarded), the decoder ac-

curacy significantly increased from novice to expert days

(decoder accuracy, 55%± 5%novice, 77% ± 6%end of training;

p = 0.015, n = 7; Wilcoxon signed rank; Figure 2D). Accordingly,

the proportion of task-related neurons correlatedwith the behav-

ioral success rate (quantified by the SMI; Figure 2E).

As themice learned the task, they became faster at performing

it and more consistent in their execution (Figure S2A). We thus

tested whether the task-related responses observed on expert

days were due to an entrainment effect of a stereotypic trial

time. We found consistent responses at the reward zone onset
Cell Reports 24, 2521–2528, September 4, 2018 2523



even for the slowest and fastest trial times, which could differ

from each other by more than an order of magnitude (Fig-

ure S2B). The task-related responses were thus more consistent

across distance than time and did not reflect stimulus entrain-

ment (Figures S2D–S2F).

The large proportion of V1 task-related neurons on expert day

included a variety of responseswith neurons either decreasing or

increasing their activity at the reward zone (Figures S1A and

S1B). Neurons decreasing their activity included neurons that

were responsive to the oriented grating along the corridor and

decreased their activity at the reward zone onset (transition to

black walls; corridor responsive; 39%), as well as neurons that

decreased their activity with lower running speed (locomotion

responsive; 12%; Figures S1B and S1C). Neurons increasing

their activity at the reward zone onset included a small propor-

tion of neurons responding to licking independently of the reward

(lick responsive; 5%) and reward zone-related neurons (21%;

Figures S1B and S1C). We then tested the relative contribution

of the visual cue (black walls) and self-motion-related cues to

the reward zone-related responses.

Neuronal and Behavioral Responses at a Reward
Location in the Absence of a Visual Cue
After reaching the expert day, all seven mice were tested on an

additional corridor configuration (phase 2) in which the reward

zone remained at the same distance along the virtual corridor

but was no longer ‘‘cued’’ by a visual landmark (i.e., the black

corridor walls demarcating the reward zone were removed; see

Figure 3A). In these uncued trials, animals still had to lick at the

same physical location along the corridor to receive the reward

and be considered a successful trial. However, as before, if

they did not lick successfully they also received a later reward

at the default location (see Figure 1A). On the first day without

a visual cue, the success rate was 44% ± 4% on uncued trials,

and after an average of six sessions (range, four to seven),

mice reached the 75% ± 4% success rate criteria to be consid-

ered expert (Figure 3B).

From the population responses in V1 layer 2/3, we identified

neurons responding at the reward location in both visually cued

as well as uncued trials (Rpost > Rpre: p < 0.001, Wilcoxon signed

rank test, in both conditions). An example neuron is shown in Fig-

ure 3A (see alsoFigureS2C).We thusexcludedneurons thatwere

specifically responding to the grating offset (off response). On the

novice day without a visual cue, 7% of neurons specifically re-

sponded to the reward zone in both cued and uncued trials.

However, by the expert day this proportion had doubled (15%).

On the first uncued day, neurons showed distinct responses to

successful cuedanduncued trials,whereasby theexpert day, re-

sponses to the visually cued and uncued trials were similar (Fig-

ure 3C, upper panel). When we utilized a template matching

decoder to predict whether a given successful trial was either

visually cued or uncued from all neuronal responses, the accu-

racy of the decoder significantly decreased from the novice to

expert day (Figure 3D; decoder accuracy: novice, 90% ± 4%;

expert, 73% ± 5%, p = 0.015, n = 7; Wilcoxon signed rank).

This result was consistent with the increased proportion of

neurons showing corresponding responses to cued and uncued

trials, making these conditions less distinguishable.
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Reward zone responses in the absence of the visual landmark

may result from multiple variables: the licking behavior, the time

from trial onset (through an entrainment effect), reward con-

sumption, the spatial location of the reward, or a combination

of these signals. We tested the response of this neuronal popu-

lation to licking behavior by analyzing licks that occurred along

the virtual corridor (outside the reward zone): the activity of the

neurons during licking was not significantly different from non-

licking periods (mean DF/F0: licking, 0.32 ± 0.08; non-licking,

0.31 ± 0.07; p = 0.535; Wilcoxon signed rank). We then assessed

the contribution of time (Figure S2C) and found that neuronal

responses in uncued trials weremore consistent across distance

than time and did not reflect stimulus entrainment (Figures S2D

and S2F). Next, we tested the response to reward consumption.

The population of neurons that developed the reward zone-

specific responses by the expert day showed a peak response

at the reward event for both successful (early reward) and

missed (default reward) trials, in which reward occurred at

different spatial locations (Figure 3C), indicating that this

neuronal population was responsive to the reward. This sug-

gests that individual neuronal responses could reflect either

the reward event itself or the reward associated to a specific

spatial location.

Neuronal and Behavioral Responses to a Reward
Location Based on Self-Motion-Related Information
To further investigate whether responses in V1 could specifically

represent an expected location of a reward, we altered the gain

relating the rotation of the cylindrical treadmill to the progression

of the virtual corridor. In this last phase of the experiment, we

used three expert trained mice and reduced the gain from 1 to

0.75 in a subset of trials. In this condition, the expected (i.e.,

trained) reward location was at 80 cm of distance traveled by

the mice on the treadmill; however, this physical distance now

correlated to only 60 cm in virtual space, along the virtual

corridor (Figure 3E). If the mice were relying on motor-derived

self-motion cues alone, they would lick at 80 cm of physical

distance traveled on the treadmill (corresponding to 60 cm on

the virtual corridor). If themice were relying on the virtual corridor

cues (such as the number of stripes), they would lick at 80 cm in

virtual space (corresponding to 107-cm physical distance

traveled). In these trials, the reward was given at 80 cm in virtual

space along the virtual corridor, therefore after the expected

reward location based on physical distance along the treadmill

(see also Supplemental Experimental Procedures). We found a

subset of neurons that showed significant gain-modulated

responses on the uncued trials (Figure 3E; gain-modulated cells,

10% of the population). On average, these neurons had a peak

response approximately midway between the expected reward

onset and the actual reward onset (Figure 3F). We assessed

the contribution of time to these neuronal responses and found

that neuronal responses in gain-modulated trials were less

variable across distance than time (Figures S2D and S2E). In

most of these uncued gain-modulated trials, the mice also licked

at the expected reward location (Figure 3G). When the mice did

not lick at the expected reward location, the response amplitude

of these neurons (between the expected reward onset and the

actual reward onset) was decreased by two-thirds, without



Figure 3. After Learning, V1 Neurons

Respond to a Rewarded Spatial Location,

Even in the Absence of Visual Cues

(A) After mice reached expert criteria on the visually

cued task (left), they were subsequently (phase 2)

exposed to a subset of trials (one in five) where the

visual landmark (black walls) for the reward zone

were removed (right; uncued trials; dashed line

indicates reward zone onset). DF/F0 is shown for

an example neuron after reaching expert criteria on

the uncued task (expert phase 2) for individual

trials (gray traces) and average across all trials

(black trace), highlighting reward zone-specific

activity, even in the absence of a visual cue.

(B) Task success rate (% of early rewards) for

uncued trials for the novice, expert, and end-point

days of phase 2 (novice to expert, p = 0.004; novice

to end, p = 0.006, n = 7; Kruskal-Wallis test;

**p < 0.01).

(C) Mean DF/F0 traces and SEM of all neurons

classified as responding to the reward location

on both the cued and the uncued trials on the

expert day (Rpost > Rpre, p < 0.001, Wilcoxon

signed rank test). Activity of these neurons is

shown for both novice (left) and expert (right)

days of phase 2 (n = 104/697 neurons from

7 mice). Within each day, trials are sub-divided

into successful (early rewarded; upper panels)

and missed (default rewarded; lower panels) tri-

als. The early reward (blue; small dashed lines)

and default reward (red; large dashed lines) on-

sets are demarcated.

(D) Accuracy of a template matching decoder

using V1 population activity to predict trial type

(cued versus uncued) on either novice or expert

days of phase 2 (p = 0.015, n = 7; Wilcoxon

signed rank; *p < 0.05). Dashed line indicates

chance level.

(E) In phase 3, the gain of the virtual reality

system was manipulated from 1 to 0.75 in a

subset of trials (one in five). Both the physical

distance traveled on the cylindrical treadmill

(upper x axis) and the distance in virtual space

along the virtual corridor (lower x axis) are indi-

cated. The expected reward onset based on

physical distance traveled on the treadmill is

indicated by the blue dashed line, while the

actual reward onset based on the distance along

the virtual corridor is indicated by the black

dashed line. Normalized DF/F0 is shown for all

gain-modulated neurons, ordered by their maximal DF/F0 response on the recording day (n = 38/362 neurons from 3 mice).

(F) Mean DF/F0 traces and SEM of all neurons classified as gain modulated. Responses on uncued (upper) and visually cued (lower) trials are shown for both

normal (gain = 1; black lines) and gain-modulated (gain = 0.75; blue lines) trials. The expected spatial location of the reward (blue dashed line) and actual reward

onset (black dashed line) are marked for reference.

(G) The normalized pre-reward licking behavior along the virtual corridor (all licks recorded before receiving the reward were summed across all mice then

normalized to % of max licking) are shown for both uncued (upper) and visually cued (lower) trials. The trials are further separated into normal (gain = 1; black

lines) and gain modulated (gain = 0.75; blue lines). The expected (dark blue; small dashed arrow), early (light blue; medium dashed line), and default (red; large

dashed line) reward onsets are marked for reference. Same x axes as in (E).

See also Figure S2.
any clear peak. These results indicate that the gain-modulated

neuronal responses correlate with the behavioral expectation

of a reward at this specific location (see also Figure S2F).

Therefore, in the absence of a visual cue (black walls), mice

determined reward location based on self-motion-related

information.
When Available, Visual Information Drives Neuronal and
Behavioral Responses to Reward Location
In the gain-modulated visually cued trials, the visual cue was

visible ahead of the mouse when it reached the expected reward

location based on physical distance traveled. Interestingly, in

these trials, the gain-modulated neurons showed no significant
Cell Reports 24, 2521–2528, September 4, 2018 2525



responsenear theexpected rewardonset. Instead, theseneurons

responded at the actual reward location, which was demarcated

by the visual cue (Figures 3E and 3F), indicating that in these trials

visual inputs dominated the responses of these neurons. Corre-

spondingly, mice also licked at the actual reward location indi-

cated by the landmark (Figure 3G). These results indicate that,

in the presence of the visual cue,mice primarily relied on visual in-

formation to identify the reward location. Similarly, visual inputs

related to the landmark dominated the responses of V1 neurons.

DISCUSSION

Our results demonstrate a recruitment of the majority of V1 layer

2/3 neurons to task-relevant activity while animals learned to

locate a reward in a virtual environment. We show that a subset

of neurons responded to the specific spatial location associated

with an expected reward. In the absence of a visual cue, this

neuronal representation of reward location relied on self-motion-

related inputs and correlatedwith behavioral outcome. However,

when visual cues were available, both neuronal and behavioral

responses were driven by visual information. Importantly, these

responses were specific to a rewarded spatial location (i.e., a

behaviorally relevant location) and appeared after learning:

thus, they correspond to an expectation of a reward at a given

location. This differs from a cognitive map, or a comprehensive

spatial mapping of the environment, as described in CA1 place

cells: in our experimental conditions, we did not observe place

cell-like mapping of spatial locations all along the virtual corridor.

In the absence of visual landmarks, mice can use different stra-

tegies to determine the reward location. One such strategy would

be to estimate the distance traveled based on optic flow informa-

tion provided by the pattern of the virtual corridor. However, when

we changed the gain between physical and virtual space, mice

licked at the expected location based on the physical distance

they had run on the treadmill, as opposed to using optic flow infor-

mation. The evaluation of the distance to the reward location was

thus based on locomotor-related feedback information. Our re-

sults are consistent with the hypothesis that, in the absence of vi-

sual cues, mice are able to estimate the distance toward a reward

based on self-motion feedback information. This result is in line

with previous studies showing that mice can use path integration

mechanisms to estimate location (VanCauter et al., 2013; Etienne

and Jeffery, 2004; Tennant et al., 2018; Campbell et al., 2018).

While the encoding of spatial information has been extensively

characterized in the hippocampal formation (Dombeck et al.,

2010; Hartley et al., 2013), our results show that a subset of V1

neurons receive inputs related to spatial location. This signal

could originate from a number of sources. It could be conveyed

by top-down cortico-cortical inputs. For example, neurons in the

retrosplenial cortex have been shown to encode spatial and

navigational signals (Mao et al., 2017). Since retrosplenial cortex

is one of themajor sources of input to V1 (Leinweber et al., 2017),

it is possible that spatial representations present in retrosplenial

cortex are transmitted to a subset of V1 neurons. Another poten-

tial source of self-motion-related inputs is the anterior cingulate

cortex and premotor areas (A24b/M2). These areas were shown

to convey motor-related excitatory inputs to V1 neurons and are

thought to carry a prediction of visual flow based on self-motion
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information (Leinweber et al., 2017). Spatial signals could also be

conveyed to V1 through subcortical inputs. For example, the

lateral posterior nucleus of the thalamus has been shown to

convey locomotion-related and contextual signals to V1 neurons

(Roth et al., 2016). The encoding of behaviorally important spatial

locations could either occur in the aforementioned cortical and

subcortical areas and be transmitted to V1, or encoding could

occur in V1 itself since previous studies have shown neuronal re-

sponses to running speed (Erisken et al., 2014; Keller et al., 2012;

Pakan et al., 2016; Saleem et al., 2013) as well as to reward-

timing in mouse V1 (Chubykin et al., 2013). Together, these

recent studies, and our current results, indicate that information

about reward anticipation and motor feedback cues are avail-

able directly to V1 and may be used by this primary sensory

area to facilitate visual identification of behaviorally relevant envi-

ronmental cues, which has direct implications for navigation and

more generally for visual perception.

Our results further show that visual input overrides self-

motion-derived estimates of location in V1 neurons. Potential un-

derlying mechanisms may include visual excitatory inputs that

dominate self-motion ones or visual inputs that inhibit spatially

related information. This process may occur either within V1 or

in other brain areas. For instance, it has been shown that thema-

jority of place cells in the hippocampus require visual input to

display spatially localized firing within a visual virtual environ-

ment (Chen et al., 2013). It was suggested that visual inputs

may be conveyed to place cells through neurons found in the

subiculum and entorhinal cortex (Hartley et al., 2000; Lever

et al., 2009). Spatial representations arising in the hippocampal

formation may then be transmitted to V1 through cortical or

subcortical pathways. Additionally, V1-projecting anterior cingu-

late cortex axons convey spatially modulated signals and show

visual stimuli predictive activity, suggesting that anterior cingu-

late cortex serves as a source of predictions of visual input to

V1 (Fiser et al., 2016). Further studies are needed to determine

the circuit mechanisms underlying the relative contribution of

visual and self-motion-related inputs to the representation of

relevant spatial locations in V1.

Altogether, our results show that neuronal activity in adult

V1 is highly dynamic and is shaped by the behavioral signifi-

cance of task-related information, including relevant spatial

locations. Both neuronal and behavioral responses primarily

rely on visual information, when a visual cue is available. How-

ever, in the absence of visual cues, the animal behavior as well

as neuronal responses can be driven by self-motion-derived

information.
EXPERIMENTAL PROCEDURES

Animals

All animal experiments were approved by the Animal Welfare and Ethical

Review Board (AWERB) of the University of Edinburgh and were performed

under a project license granted by the UK Home Office, and conformed

with the UK Animals (Scientific Procedures) Act 1986 and the European

Directive 86/609/EEC on the protection of animals used for experimental

purposes.

Seven male and female mice with a C57BL/6 background

(Ssttm2.1(cre)Zjh/J [RRID:IMSR_JAX:013044] cross-bred with B6.Cg-

Gt(ROSA)26Sortm14(CAG-tdTomato)Hze/J [RRID:IMSR_JAX:007914]; Jackson



Laboratory, ME, USA), aged 6–7 weeks, were used for the experiments. Ani-

mals were group housed in a reverse day/night cycle.

Surgical Procedures

For cranial window implantation and virus injection, mice were anaesthetized

with isoflurane (4% for induction and 1%–2% maintenance during surgery)

and mounted on a stereotaxic frame (David Kopf Instruments, CA, USA).

Eye cream was applied to protect the eyes (Bepanthen; Bayer, Germany),

and analgesics and anti-inflammatory drugs were injected subcutaneously

(Vetergesic, buprenorphine, 0.1 mg/kg of body weight; carprofen, 0.15 mg;

and dexamethasone, 2 mg). A section of scalp was removed and the underlying

bone cleaned before a craniotomy (around 2 3 2 mm) was made over the left

V1 (centered 2.5 mm lateral and 0.5 mm anterior to lambda). Then adeno-

associated virus (AAV) (AAV1.Syn.GCaMP6f.WPRE.SV40; University of Penn-

sylvania Vector Core, PA, USA) was injected, to drive the expression of the

fluorescent calcium indicator GCaMP6f in all neurons, using a pipette with

20-mm tip diameter (Nanoject; Drummond Scientific, PA, USA) at a speed of

10 nL min�1 at three different depths (around 250, 400, and 600 mm deep;

50 nL per site). The craniotomy was then sealed with a glass coverslip and

fixed with cyanoacrylate glue. A custom-built head post was implanted on

the exposed skull with glue and cemented with dental acrylic (Paladur; Her-

aeus Kulzer, Germany). Animals were returned to their home cage for

2–3 weeks to allow for virus expression and clearing of the imaging window

(Holtmaat et al., 2009) before habituation and imaging.

Virtual Reality System

Animals were trained on a virtual reality system consisting of two angled com-

puter screens (Figure 1B), a cylindrical treadmill, head fixation system, and a

reward spout. The computer screens (51 3 29 cm; Dell, UK) were placed at

a 90� angle in front of the animal covering the majority of its field of view. A

cylindrical polystyrene treadmill (20 cm diameter, 7.5 cm wide) was mounted

on a central axle with an incremental rotary encoder (E6-2500-472-IE; Pewa-

tron, Switzerland). A microcontroller (Arduino Uno) received rotational

displacement information from the encoder and forwarded it the virtual reality

software. The reward spout (59-8636; Harvard Apparatus, UK) was fittedwith a

capacitive touch sensor (SEN-12041; Sparkfun, CO, USA) to detect animal

licking behavior and put into place at the beginning of each session, such

that the animal was always able to reach it. Reward release was controlled

by a pinch-valve (225PNC1-21; NResearch, NJ, USA) that dispensed 4- to

8-mL boluses per instance. The MATLAB-based package ViRMEn (Aronov

and Tank, 2014) combined with custom-written code was used to design

and run the presentation of the virtual environment and collect related data

(see Supplemental Experimental Procedures).

Visually Guided Rewarded Task

Mice were water deprived (see Supplemental Experimental Procedures) and

water rewards could either be self-initiated by licking in the first half of the

reward zone (early, successful trial), or were dispensed at a default location

at the halfway point of the reward zone (late, missed trial). Behavioral

training was divided into three phases. For each phase, the first day was

taken as the ‘‘novice’’ day. The animals were considered ‘‘expert’’ and pro-

moted to the next phase of training, when successful trials made up >75%

of the total trials. For phase 1, the mice were exposed to a single virtual

corridor condition with the reward zone visually cued by black corridor walls.

Phase 2 introduced uncued trials on every fifth trial, where the rules for

reward remained the same but the black corridor walls were removed. For

three mice, an additional phase 3 was performed where in a single session

the gain relating the rotation of the cylindrical treadmill to the progression in

the virtual corridor was reduced from 1 to 0.75 (see Supplemental Experi-

mental Procedures).

Two-Photon Calcium Imaging

Two-photon calcium imaging was performed in head-fixedmice that ran freely

on the cylindrical treadmill (Figure 1B) (Dombeck et al., 2007) using a custom-

built resonant scanning two-photon microscope with a Ti:sapphire pulsing

laser (Chameleon Vision-S; Coherent, CA, USA; <70-fs pulse width, 80-MHz

repetition rate) tuned to 920 nm. Images were acquired at 40 Hz (using
403, 0.8 numerical aperture [NA], or 253, 1.05 NA; Nikon) with custom-

programmed LabVIEW-based software (version 8.2; National Instruments,

UK). Imaging was done at a single L2/3 focal plane per mouse across multiple

days, at cortical depths between 150 and 275 mm. Laser power at the

brain surface was kept below 50 mW. Chronic imaging of the same field of

view across days was carried out for the duration of the visually guided reward

task.

Data Analysis

Images were analyzed as previously described (Pakan et al., 2016). Briefly,

we used discrete Fourier two-dimensional (2D)-based image alignment

for motion correction of image frames (SIMA 1.3.2) (Kaifosh et al., 2014).

Regions of interest (ROIs) corresponding to neuronal cell bodies were

selected manually and aligned across days. Pixel intensity within

each ROI was averaged to create a raw fluorescence time series F(t).

Baseline fluorescence F0 was computed for each neuron by taking the fifth

percentile of the smoothed F(t) (1-Hz low-pass, zero-phase, 60th-order

FIR filter) and the change in fluorescence relative to baseline (DF/F0)

was calculated. In order to remove neuropil contamination, we used

nonnegative matrix factorization (NMF), as implemented in FISSA (Keemink

et al., 2018). All further analyses were performed using custom-written

scripts in MATLAB (MathWorks, MA, USA), which are freely available via

the Rochefort Lab GitHub repository (https://github.com/rochefort-lab/

Pakanetal_CellReport2018).

To calculate the SMI of licking, the licks of each trial were randomly

permuted, and the proportion of trials in which at least one lick was inside

the reward zone was determined. This was repeated 1,000 times, and the

mean success rate of the shuffled distribution was calculated. The SMI value

was calculated by dividing the original success rate (early rewarded trials/total

number of trials) by the mean of the shuffled distribution. If the animal licks few

times but in the right spot, this number will be high (>1). In contrast, if the animal

licks in a spatially indiscriminate pattern, the number will approach 1. If the an-

imal licks often but keeps missing the reward zone, the SMI will be <1.

Gain-modulated neurons were defined by meeting two criteria: a maximal

response that fell within a 25-cm bin surrounding the reward zone onset

(�5 to 20 cm from onset) when responses were averaged across all normal tri-

als (gain = 1) as well as a maximal response that fell within a 25-cm bin sur-

rounding the expected reward zone onset (�5 to 20 cm from expected onset)

when responses were averaged across all gain-modulated trials (gain = 0.75).

SUPPLEMENTAL INFORMATION
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