82 research outputs found

    Pin1 Modulates the Synaptic Content of NMDA Receptors via Prolyl-Isomerization of PSD-95

    Get PDF
    Phosphorylation of serine/threonine residues preceding a proline regulates the fate of its targets through postphosphorylation conformational changes catalyzed by the peptidyl-prolyl cis-/trans isomerase Pin1. By flipping the substrate between two different functional conformations, this enzyme exerts a fine-tuning of phosphorylation signals. Pin1 has been detected in dendritic spines and shafts where it regulates protein synthesis required to sustain the late phase of long-term potentiation (LTP). Here, we demonstrate that Pin1 residing in postsynaptic structures can interact with postsynaptic density protein-95 (PSD-95), a key scaffold protein that anchors NMDA receptors (NMDARs) in PSD via GluN2-type receptor subunits. Pin1 recruitment by PSD-95 occurs at specific serine-threonine/proline consensus motifs localized in the linker region connecting PDZ2 to PDZ3 domains. Upon binding, Pin1 triggers structural changes in PSD-95, thus negatively affecting its ability to interact with NMDARs. In electrophysiological experiments, larger NMDA-mediated synaptic currents, evoked in CA1 principal cells by Schaffer collateral stimulation, were detected in hippocampal slices obtained from Pin1(-/-) mice compared with controls. Similar results were obtained in cultured hippocampal cells expressing a PSD-95 mutant unable to undergo prolyl-isomerization, thus indicating that the action of Pin1 on PSD-95 is critical for this effect. In addition, an enhancement in spine density and size was detected in CA1 principal cells of Pin1(-/-) or in Thy-1GFP mice treated with the pharmacological inhibitor of Pin1 catalytic activity PiB.Our data indicate that Pin1 controls synaptic content of NMDARs via PSD-95 prolyl-isomerization and the expression of dendritic spines, both required for LTP maintenance

    Routine laboratory parameters, including complete blood count, predict COVID-19 in-hospital mortality in geriatric patients

    Get PDF
    To reduce the mortality of COVID-19 older patients, clear criteria to predict in-hospital mortality are urgently needed. Here, we aimed to evaluate the performance of selected routine laboratory biomarkers in improving the prediction of in-hospital mortality in 641 consecutive COVID-19 geriatric patients (mean age 86.6±6.8) who were hospitalized at the INRCA hospital (Ancona, Italy). Thirty-four percent of the enrolled patients were deceased during the in-hospital stay. The percentage of severely frail patients, assessed with the Clinical Frailty Scale, was significantly increased in deceased patients compared to the survived ones. The age-adjusted Charlson comorbidity index (CCI) score was not significantly associated with increased risk of death. Among the routine parameters, neutrophilia, eosinopenia, lymphopenia, neutrophil-to-lymphocyte ratio (NLR), C-reactive protein, procalcitonin, IL-6, and NT-proBNP showed the highest predictive values. The fully adjusted Cox regressions models confirmed that high neutrophil %, NLR, derived NLR (dNLR), platelet-to-lymphocyte ratio (PLR), and low lymphocyte count, eosinophil %, and lymphocyte-to-monocyte ratio (LMR) were the best predictors of in-hospital mortality, independently from age, gender, and other potential confounders. Overall, our results strongly support the use of routine parameters, including complete blood count, in geriatric patients to predict COVID-19 in-hospital mortality, independent from baseline comorbidities and frailty

    Trojan Horse Investigation for AGB Stellar Nucleosynthesis

    Get PDF
    Asymptotic Giant Branch (AGB) stars are among the most important astrophysical sites influencing the nucleosynthesis and the chemical abundances in the Universe. From a pure nuclear point of view, several processes take part during this peculiar stage of stellar evolution thus requiring detailed experimental cross section measurements. Here, we report on the most recent results achieved via the application of the Trojan Horse Method (THM) and Asymptotic Normalization Coefficient (ANC) indirect techniques, discussing the details of the experimental procedure and the deduced reaction rates. In addition, we report also on the on going studies of interest for AGB nucleosynthesis

    An exploratory study on counterfactual thinking in amyotrophic lateral sclerosis

    Get PDF
    ObjectivesThis study aimed at exploring (1) the motor and non-motor correlates of counterfactual thinking (CFT) abilities in non-demented amyotrophic lateral sclerosis (ALS) patients and (2) the ability of CFT measures to discriminate these patients from healthy controls (HCs) and patients with and without cognitive impairment.MethodsN = 110 ALS patients and N = 51 HCs were administered two CFT tasks, whose sum, resulting in a CFT Index (CFTI), was addressed as the outcome. Patients further underwent an in-depth cognitive, behavioral, and motor-functional evaluation. Correlational analyses were run to explore the correlates of the CFTI in patients. Logistic regressions were performed to test whether the CFTI could discriminate patients from HCs.ResultsThe CFTI was selectively associated (p ≤ 0.005) with fluency and memory subscales of the Edinburgh Cognitive and Behavioral ALS Screen (ECAS), but not with other variables. CFTI scores discriminated patients from HCs (p < 0.001) with high accuracy (82%), but not patients with a normal vs. defective performance on the ECAS-Total.ConclusionCFT measures in non-demented ALS patients were associated with verbal fluency and memory functions, and they were also able to discriminate them from HCs

    Adolescent gender dysphoria management: position paper from the Italian Academy of Pediatrics, the Italian Society of Pediatrics, the Italian Society for Pediatric Endocrinology and Diabetes, the Italian Society of Adolescent Medicine and the Italian Society of Child and Adolescent Neuropsychiatry

    Get PDF
    Background: In response to the imperative need for standardized support for adolescent Gender Dysphoria (GD), the Italian Academy of Pediatrics, in collaboration with the Italian Society of Pediatrics, the Italian Society for Pediatric Endocrinology and Diabetes, Italian Society of Adolescent Medicine and Italian Society of Child and Adolescent Neuropsychiatry is drafting a position paper. The purpose of this paper is to convey the author's opinion on the topic, offering foundational information on potential aspects of gender-affirming care and emphasizing the care and protection of children and adolescents with GD. Main body: Recognizing that adolescents may choose interventions based on their unique needs and goals and understanding that every individual within this group has a distinct trajectory, it is crucial to ensure that each one is welcomed and supported. The approach to managing individuals with GD is a multi-stage process involving a multidisciplinary team throughout all phases. Decisions regarding treatment should be reached collaboratively by healthcare professionals and the family, while considering the unique needs and circumstances of the individual and be guided by scientific evidence rather than biases or ideologies. Politicians and high court judges should address discrimination based on gender identity in legislation and support service development that aligns with the needs of young people. It is essential to establish accredited multidisciplinary centers equipped with the requisite skills and experience to effectively manage adolescents with GD, thereby ensuring the delivery of high-quality care. Conclusion: Maintaining an evidence-based approach is essential to safeguard the well-being of transgender and gender diverse adolescents

    Trojan Horse Method experiments with radioactive ion beams

    Get PDF
    The Trojan Horse Method (THM) is an indirect method that allows to get information about a two body reaction cross-section even at very low energy, avoiding the suppression effects due to the presence of the Coulomb barrier. The method requires a very accurate measurement of a three body reaction in order to reconstruct the whole kinematics and discriminate among different reaction mechanisms that can populate the same final state. These requirements hardly match with the typical low intensity and large divergence of radioactive ion beams (RIBs), and experimental improvements are mandatory for the applicability of the method. The first reaction induced by a radio activeion beam studied by applying the THM was the 18F(p,α)15O. Two experiments were performed in two different laboratories and using different experimental set-ups. The two experiments will be discussed and some results will be presented

    Circulating miR-320b and miR-483-5p levels are associated with COVID-19 in-hospital mortality

    Get PDF
    none28noThe stratification of mortality risk in COVID-19 patients remains extremely challenging for physicians, especially in older patients. Innovative minimally invasive molecular biomarkers are needed to improve the prediction of mortality risk and better customize patient management. In this study, aimed at identifying circulating miRNAs associated with the risk of COVID-19 in-hospital mortality, we analyzed serum samples of 12 COVID-19 patients by small RNA-seq and validated the findings in an independent cohort of 116 COVID-19 patients by qRT-PCR. Thirty-four significantly deregulated miRNAs, 25 downregulated and 9 upregulated in deceased COVID-19 patients compared to survivors, were identified in the discovery cohort. Based on the highest fold-changes and on the highest expression levels, 5 of these 34 miRNAs were selected for the analysis in the validation cohort. MiR-320b and miR-483-5p were confirmed to be significantly hyper-expressed in deceased patients compared to survived ones. Kaplan-Meier and Cox regression models, adjusted for relevant confounders, confirmed that patients with the 20% highest miR-320b and miR-483-5p serum levels had three-fold increased risk to die during in-hospital stay for COVID-19. In conclusion, high levels of circulating miR-320b and miR-483-5p can be useful as minimally invasive biomarkers to stratify older COVID-19 patients with an increased risk of in-hospital mortality.restrictedGiuliani, Angelica; Matacchione, Giulia; Ramini, Deborah; Di Rosa, Mirko; Bonfigli, Anna Rita; Sabbatinelli, Jacopo; Monsurrò, Vladia; Recchioni, Rina; Marcheselli, Fiorella; Marchegiani, Francesca; Piacenza, Francesco; Cardelli, Maurizio; Galeazzi, Roberta; Pomponio, Giovanni; Ferrarini, Alessia; Gabrielli, Armando; Baroni, Silvia Svegliati; Moretti, Marco; Sarzani, Riccardo; Giordano, Piero; Cherubini, Antonio; Corsonello, Andrea; Antonicelli, Roberto; Procopio, Antonio Domenico; Ferracin, Manuela; Bonafè, Massimiliano; Lattanzio, Fabrizia; Olivieri, FabiolaGiuliani, Angelica; Matacchione, Giulia; Ramini, Deborah; Di Rosa, Mirko; Bonfigli, Anna Rita; Sabbatinelli, Jacopo; Monsurrò, Vladia; Recchioni, Rina; Marcheselli, Fiorella; Marchegiani, Francesca; Piacenza, Francesco; Cardelli, Maurizio; Galeazzi, Roberta; Pomponio, Giovanni; Ferrarini, Alessia; Gabrielli, Armando; Baroni, Silvia Svegliati; Moretti, Marco; Sarzani, Riccardo; Giordano, Piero; Cherubini, Antonio; Corsonello, Andrea; Antonicelli, Roberto; Procopio, Antonio Domenico; Ferracin, Manuela; Bonafè, Massimiliano; Lattanzio, Fabrizia; Olivieri, Fabiol

    The Changing Landscape of Neonatal Diabetes Mellitus in Italy Between 2003 and 2022

    Get PDF
    Context In the last decade the Sanger method of DNA sequencing has been replaced by next-generation sequencing (NGS). NGS is valuable in conditions characterized by high genetic heterogeneity such as neonatal diabetes mellitus (NDM).Objective To compare results of genetic analysis of patients with NDM and congenital severe insulin resistance (c.SIR) identified in Italy in 2003-2012 (Sanger) vs 2013-2022 (NGS).Methods We reviewed clinical and genetic records of 104 cases with diabetes onset before 6 months of age (NDM + c.SIR) of the Italian dataset.Results Fifty-five patients (50 NDM + 5 c.SIR) were identified during 2003-2012 and 49 (46 NDM + 3 c.SIR) in 2013-2022. Twenty-year incidence was 1:103 340 (NDM) and 1:1 240 082 (c.SIR) live births. Frequent NDM/c.SIR genetic defects (KCNJ11, INS, ABCC8, 6q24, INSR) were detected in 41 and 34 probands during 2003-2012 and 2013-2022, respectively. We identified a pathogenic variant in rare genes in a single proband (GATA4) (1/42 or 2.4%) during 2003-2012 and in 8 infants (RFX6, PDX1, GATA6, HNF1B, FOXP3, IL2RA, LRBA, BSCL2) during 2013-2022 (8/42 or 19%, P = .034 vs 2003-2012). Notably, among rare genes 5 were recessive. Swift and accurate genetic diagnosis led to appropriate treatment: patients with autoimmune NDM (FOXP3, IL2RA, LRBA) were subjected to bone marrow transplant; patients with pancreas agenesis/hypoplasia (RFX6, PDX1) were supplemented with pancreatic enzymes, and the individual with lipodystrophy caused by BSCL2 was started on metreleptin.Conclusion NGS substantially improved diagnosis and precision therapy of monogenic forms of neonatal diabetes and c.SIR in Italy

    Gephyrin phosphorylation in the functional organization and plasticity of GABAergic synapses

    Get PDF
    Gephyrin is a multifunctional scaffold protein essential for accumulation of inhibitory glycine and GABAA receptors at post-synaptic sites. The molecular events involved in gephyrin-dependent GABAA receptor clustering are still unclear. Evidence has been recently provided that gephyrin phosphorylation plays a key role in these processes. Gephyrin post-translational modifications have been shown to influence the structural remodeling of GABAergic synapses and synaptic plasticity by acting on post-synaptic scaffolding properties as well as stability. In addition, gephyrin phosphorylation and the subsequent phosphorylation-dependent recruitment of the chaperone molecule Pin1 provide a mechanism for the regulation of GABAergic signaling. Extensively characterized as pivotal enzyme controlling cell proliferation and differentiation, the prolyl-isomerase activity of Pin1 has been shown to regulate protein synthesis necessary to sustain the late phase of long-term potentiation at excitatory synapses, which suggests its involvement at synaptic sites. In this review we summarize the current state of knowledge of the signaling pathways responsible for gephyrin post-translational modifications. We will also outline future lines of research that might contribute to a better understanding of molecular mechanisms by which gephyrin regulates synaptic plasticity at GABAergic synapses. \ua9 2014 Zacchi, Antonelli and Cherubini
    corecore