24 research outputs found

    TOI-836 : a super-Earth and mini-Neptune transiting a nearby K-dwarf

    Get PDF
    Funding: TGW, ACC, and KH acknowledge support from STFC consolidated grant numbers ST/R000824/1 and ST/V000861/1, and UKSA grant ST/R003203/1.We present the discovery of two exoplanets transiting TOI-836 (TIC 440887364) using data from TESS Sector 11 and Sector 38. TOI-836 is a bright (T = 8.5 mag), high proper motion (∌200 mas yr−1), low metallicity ([Fe/H]≈−0.28) K-dwarf with a mass of 0.68 ± 0.05 M⊙ and a radius of 0.67 ± 0.01 R⊙. We obtain photometric follow-up observations with a variety of facilities, and we use these data-sets to determine that the inner planet, TOI-836 b, is a 1.70 ± 0.07 R⊕ super-Earth in a 3.82 day orbit, placing it directly within the so-called ‘radius valley’. The outer planet, TOI-836 c, is a 2.59 ± 0.09 R⊕ mini-Neptune in an 8.60 day orbit. Radial velocity measurements reveal that TOI-836 b has a mass of 4.5 ± 0.9 M⊕, while TOI-836 c has a mass of 9.6 ± 2.6 M⊕. Photometric observations show Transit Timing Variations (TTVs) on the order of 20 minutes for TOI-836 c, although there are no detectable TTVs for TOI-836 b. The TTVs of planet TOI-836 c may be caused by an undetected exterior planet.Publisher PDFPeer reviewe

    TOI-836: A super-Earth and mini-Neptune transiting a nearby K-dwarf

    Full text link
    We present the discovery of two exoplanets transiting TOI-836 (TIC 440887364) using data from TESS Sector 11 and Sector 38. TOI-836 is a bright (T=8.5T = 8.5 mag), high proper motion (∌ 200\sim\,200 mas yr−1^{-1}), low metallicity ([Fe/H]≈ −0.28\approx\,-0.28) K-dwarf with a mass of 0.68±0.050.68\pm0.05 M⊙_{\odot} and a radius of 0.67±0.010.67\pm0.01 R⊙_{\odot}. We obtain photometric follow-up observations with a variety of facilities, and we use these data-sets to determine that the inner planet, TOI-836 b, is a 1.70±0.071.70\pm0.07 R⊕_{\oplus} super-Earth in a 3.82 day orbit, placing it directly within the so-called 'radius valley'. The outer planet, TOI-836 c, is a 2.59±0.092.59\pm0.09 R⊕_{\oplus} mini-Neptune in an 8.60 day orbit. Radial velocity measurements reveal that TOI-836 b has a mass of 4.5±0.94.5\pm0.9 M⊕_{\oplus} , while TOI-836 c has a mass of 9.6±2.69.6\pm2.6 M⊕_{\oplus}. Photometric observations show Transit Timing Variations (TTVs) on the order of 20 minutes for TOI-836 c, although there are no detectable TTVs for TOI-836 b. The TTVs of planet TOI-836 c may be caused by an undetected exterior planet

    TOI-836: A super-Earth and mini-Neptune transiting a nearby K-dwarf

    Get PDF
    peer reviewe

    Two warm Neptunes transiting HIP 9618 revealed by TESS and Cheops

    Full text link
    peer reviewedHIP 9618 (HD 12572, TOI-1471, TIC 306263608) is a bright (G = 9.0 mag) solar analogue. TESS photometry revealed the star to have two candidate planets with radii of 3.9 ± 0.044 R (HIP 9618 b) and 3.343 ± 0.039 R (HIP 9618 c). While the 20.77291 d period of HIP 9618 b was measured unambiguously, HIP 9618 c showed only two transits separated by a 680-d gap in the time series, leaving many possibilities for the period. To solve this issue, CHEOPS performed targeted photometry of period aliases to attempt to recover the true period of planet c, and successfully determined the true period to be 52.56349 d. High-resolution spectroscopy with HARPS-N, SOPHIE, and CAFE revealed a mass of 10.0 ± 3.1M for HIP 9618 b, which, according to our interior structure models, corresponds to a 6.8 ± 1.4 per cent gas fraction. HIP 9618 c appears to have a lower mass than HIP 9618 b, with a 3-sigma upper limit of 50 d, opening the door for the atmospheric characterization of warm (Teq < 750 K) sub-Neptunes

    The index 'Treatment Duration Control' for enabling randomized controlled trials with variation in duration of treatment of chronic pain patients

    Get PDF
    BACKGROUND: Treatment duration varies with the type of therapy and a patient’s recovery speed. Including such a variation in randomized controlled trials (RCTs) enables comparison of the actual therapeutic potential of different therapies in clinical care. An index, Treatment Duration Control (TDC) of outcome scores was developed to help decide when to end treatment and also to determine treatment outcome by a blinded assessor. In contrast to traditional Routine Outcome Monitoring which considers raw score changes, TDC uses relative change. METHODS: Our theory shows that if a patient with the largest baseline scores in a sample requires a relative decrease by treatment factor T to reach a zone of low score values (functional status), any patient with smaller baselines will attain functional status with T. Furthermore, the end score values are proportional to the baseline. These characteristics concur with findings from the literature that a patient’s assessment of ‘much improved’ following treatment (related to attaining functional status) is associated with a particular relative decrease in pain intensity yielding a final pain intensity that is proportional to the baseline. Regarding the TDC-procedure: those patient’s scores that were related to pronounced signs and symptoms, were selected for adaptive testing (reference scores). A Contrast-value was determined for each reference score between its reference level and a subsequent level, and averaging all Contrast-values yielded TDC. A cut-off point related to factor T for attaining functional status, was the TDC-criterion to end a patient’s treatment as being successful. The use of TDC has been illustrated in RCT data from 118 chronic pain patients with myogenous Temporomandibular Disorders, and the TDC-criterion was validated. RESULTS: The TDC-criterion of successful/unsuccessful treatment approximated the cut-off separating two patient subgroups in a bimodal post-treatment distribution of TDC-values. Pain intensity decreased to residual levels and Health-Related Quality of Life (HRQoL) increased to normal levels, following successful treatment according to TDC. The post-treatment TDC-values were independent from the baseline values of pain intensity or HRQoL, and thus independent from the patient’s baseline severity of myogenous Temporomandibular Disorders. CONCLUSIONS: TDC enables RCTs that have a variable therapy- and patient-specific duration

    Linear regression of eye-centered T2 location vs. second gaze displacement.

    No full text
    <p>Solid line (monkey M) and dashed line (monkey O) are linear fits through the data points (open squares: monkey M, solid circles: monkey O). Thin dotted line represents the unity (x = y) line. Fit values are displayed in the lower-right corner (monkey M) and upper left corner (monkey O) of each panel. A) Regression results for single-step trials. B) static double-step responses. C) dynamic double-steps.</p

    Gaze-localization accuracy and precision in static and dynamic double steps.

    No full text
    <p>Data are shown for the three different trial types (single, static, dynamic) for T1 (top row) and T2 (bottom). Localization errors are converted into under- and overshoots with respect to the spatial target location. The center of the panels (x = y = 0, circle and intersection of dotted lines) coincides with the target location. Errors of monkey O: filled dots, monkey M: open squares. Error distributions are presented as histograms (bin size one deg, with frequency axis) at the baseline of each axis. Solid distributions: M. Dashed histograms: monkey O. The solid (M) and dashed (O) lines indicate the mean errors.</p
    corecore