20 research outputs found

    Measuring the effect of Mankai® (Wolffia globosa) on the gut microbiota and its metabolic output using an in vitro colon model

    Get PDF
    10openInternationalInternational coauthor/editorMankai® is a cultivated strain of Wolffia globosa an aquatic plant of the family Lemnaceae commonly known as Duckweeds. Recent studies suggest that consumption of a Mankai® enriched diet may provide positive health effects by decreasing body weight and improving glucose homeostasis and plasma lipid profiles. However, the effects of Mankai® alone on the composition and metabolic output of the human gut microbiota has not been fully investigated. Here, Mankai® was digested and fermented in vitro using a batch culture model of the proximal colon. Inulin and cellulose were used as readily and poorly fermentable control fibers respectively. Mankai® significantly stimulated the production of phenolic metabolites and short chain fatty acids by the gut microbiota (p<0.05). Three major microbial metabolites, 3-4-hydroxyphenyl propionic acid, 3-3-hydroxyphenyl propanoic acid and protocatechuic acid were significantly increased after 24 h fermentation. Moreover, Mankai® treatment lowered the overall microbial diversity (p<0.05), in line with a selective microbiome modulation.openDiotallevi, Camilla; Gaudioso, Giulia; Fava, Francesca; Angeli, Andrea; Lotti, Cesare; Vrhovsek, Urska; Rinott, Ehud; Shai, Iris; Gobbetti, Marco; Tuohy, KieranDiotallevi, C.; Gaudioso, G.; Fava, F.; Angeli, A.; Lotti, C.; Vrhovsek, U.; Rinott, E.; Shai, I.; Gobbetti, M.; Tuohy, K

    The Metabolomic-Gut-Clinical Axis of Mankai Plant-Derived Dietary Polyphenols

    Get PDF
    Background: Polyphenols are secondary metabolites produced by plants to defend themselves from environmental stressors. We explored the effect of Wolffia globosa ‘Mankai’, a novel cultivated strain of a polyphenol-rich aquatic plant, on the metabolomic-gut clinical axis in vitro, in-vivo and in a clinical trial. Methods: We used mass-spectrometry-based metabolomics methods from three laboratories to detect Mankai phenolic metabolites and examined predicted functional pathways in a Mankai artificial-gut bioreactor. Plasma and urine polyphenols were assessed among the 294 DIRECT-PLUS 18-month trial participants, comparing the effect of a polyphenol-rich green-Mediterranean diet (+1240 mg/polyphenols/day, provided by Mankai, green tea and walnuts) to a walnuts-enriched (+440 mg/polyphenols/day) Mediterranean diet and a healthy controlled diet. Results: Approximately 200 different phenolic compounds were specifically detected in the Mankai plant. The Mankai-supplemented bioreactor artificial gut displayed a significantly higher relative-abundance of 16S-rRNA bacterial gene sequences encoding for enzymes involved in phenolic compound degradation. In humans, several Mankai-related plasma and urine polyphenols were differentially elevated in the green Mediterranean group compared with the other groups (p < 0.05) after six and 18 months of intervention (e.g., urine hydroxy-phenyl-acetic-acid and urolithin-A; plasma Naringenin and 2,5-diOH-benzoic-acid). Specific polyphenols, such as urolithin-A and 4-ethylphenol, were directly involved with clinical weight-related changes. Conclusions: The Mankai new plant is rich in various unique potent polyphenols, potentially affecting the metabolomic-gut-clinical axis

    Gut microbiome-metabolome interactions predict host condition

    No full text
    Abstract Background The effect of microbes on their human host is often mediated through changes in metabolite concentrations. As such, multiple tools have been proposed to predict metabolite concentrations from microbial taxa frequencies. Such tools typically fail to capture the dependence of the microbiome-metabolite relation on the environment. Results We propose to treat the microbiome-metabolome relation as the equilibrium of a complex interaction and to relate the host condition to a latent representation of the interaction between the log concentration of the metabolome and the log frequencies of the microbiome. We develop LOCATE (Latent variables Of miCrobiome And meTabolites rElations), a machine learning tool to predict the metabolite concentration from the microbiome composition and produce a latent representation of the interaction. This representation is then used to predict the host condition. LOCATE’s accuracy in predicting the metabolome is higher than all current predictors. The metabolite concentration prediction accuracy significantly decreases cross datasets, and cross conditions, especially in 16S data. LOCATE’s latent representation predicts the host condition better than either the microbiome or the metabolome. This representation is strongly correlated with host demographics. A significant improvement in accuracy (0.793 vs. 0.724 average accuracy) is obtained even with a small number of metabolite samples ( ∼50\sim 50 ∼ 50 ). Conclusion These results suggest that a latent representation of the microbiome-metabolome interaction leads to a better association with the host condition than any of the two separated or the simple combination of the two. Video Abstrac

    Show Me Your Evidence - an Automatic Method for Context Dependent Evidence Detection

    No full text
    Engaging in a debate with oneself or others to take decisions is an integral part of our day-to-day life. A debate on a topic (say, use of per-formance enhancing drugs) typically proceeds by one party making an assertion/claim (say, PEDs are bad for health) and then providing an evidence to support the claim (say, a 2006 study shows that PEDs have psychiatric side effects). In this work, we propose the task of automatically detecting such evidences from unstructured text that support a given claim. This task has many practical applications in decision support and persuasion enhancement in a wide range of domains. We first introduce an extensive benchmark data set tailored for this task, which allows training statistical mod-els and assessing their performance. Then, we suggest a system architecture based on super-vised learning to address the evidence detec-tion task. Finally, promising experimental re-sults are reported.

    A benchmark dataset for automatic detection of claims and evidence in the context of controversial topics

    No full text
    Abstract We describe a novel and unique argumentative structure dataset. This corpus consists of data extracted from hundreds of Wikipedia articles using a meticulously monitored manual annotation process. The result is 2,683 argument elements, collected in the context of 33 controversial topics, organized under a simple claim-evidence structure. The obtained data are publicly available for academic research

    The effect of weight loss following 18 months of lifestyle intervention on brain age assessed with resting-state functional connectivity

    No full text
    Background: Obesity negatively impacts multiple bodily systems, including the central nervous system. Retrospective studies that estimated chronological age from neuroimaging have found accelerated brain aging in obesity, but it is unclear how this estimation would be affected by weight loss following a lifestyle intervention. Methods: In a sub-study of 102 participants of the Dietary Intervention Randomized Controlled Trial Polyphenols Unprocessed Study (DIRECT-PLUS) trial, we tested the effect of weight loss following 18 months of lifestyle intervention on predicted brain age based on magnetic resonance imaging (MRI)-assessed resting-state functional connectivity (RSFC). We further examined how dynamics in multiple health factors, including anthropometric measurements, blood biomarkers, and fat deposition, can account for changes in brain age. Results: To establish our method, we first demonstrated that our model could successfully predict chronological age from RSFC in three cohorts (n=291;358;102). We then found that among the DIRECT-PLUS participants, 1% of body weight loss resulted in an 8.9 months’ attenuation of brain age. Attenuation of brain age was significantly associated with improved liver biomarkers, decreased liver fat, and visceral and deep subcutaneous adipose tissues after 18 months of intervention. Finally, we showed that lower consumption of processed food, sweets and beverages were associated with attenuated brain age. Conclusions: Successful weight loss following lifestyle intervention might have a beneficial effect on the trajectory of brain aging. Funding: The German Research Foundation (DFG), German Research Foundation - project number 209933838 - SFB 1052; B11, Israel Ministry of Health grant 87472511 (to I Shai); Israel Ministry of Science and Technology grant 3-13604 (to I Shai); and the California Walnuts Commission 09933838 SFB 105 (to I Shai)

    Wolffia globosa–Mankai Plant-Based Protein Contains Bioactive Vitamin B12 and Is Well Absorbed in Humans

    No full text
    Background: Rare plants that contain corrinoid compounds mostly comprise cobalamin analogues, which may compete with cobalamin (vitamin B12 (B12)) metabolism. We examined the presence of B12 in a cultivated strain of an aquatic plant: Wolffia globosa (Mankai), and predicted functional pathways using gut-bioreactor, and the effects of long-term Mankai consumption as a partial meat substitute, on serum B12 concentrations. Methods: We used microbiological assay, liquid-chromatography/electrospray-ionization-tandem-mass-spectrometry (LC-MS/MS), and anoxic bioreactors for the B12 experiments. We explored the effect of a green Mediterranean/low-meat diet, containing 100 g of frozen Mankai shake/day, on serum B12 levels during the 18-month DIRECT-PLUS (ID:NCT03020186) weight-loss trial, compared with control and Mediterranean diet groups. Results: The B12 content of Mankai was consistent at different seasons (p = 0.76). Several cobalamin congeners (Hydroxocobalamin(OH-B12); 5-deoxyadenosylcobalamin(Ado-B12); methylcobalamin(Me-B12); cyanocobalamin(CN-B12)) were identified in Mankai extracts, whereas no pseudo B12 was detected. A higher abundance of 16S-rRNA gene amplicon sequences associated with a genome containing a KEGG ortholog involved in microbial B12 metabolism were observed, compared with control bioreactors that lacked Mankai. Following the DIRECT-PLUS intervention (n = 294 participants; retention-rate = 89%; baseline B12 = 420.5 &plusmn; 187.8 pg/mL), serum B12 increased by 5.2% in control, 9.9% in Mediterranean, and 15.4% in Mankai-containing green Mediterranean/low-meat diets (p = 0.025 between extreme groups). Conclusions: Mankai plant contains bioactive B12 compounds and could serve as a B12 plant-based food source

    Successful weight regain attenuation by autologous fecal microbiota transplantation is associated with non-core gut microbiota changes during weight loss; randomized controlled trial

    Get PDF
    ABSTRACTWe previously reported that autologous-fecal-microbiota-transplantation (aFMT), following 6 m of lifestyle intervention, attenuated subsequent weight regain and insulin rebound for participants consuming a high-polyphenol green-Mediterranean diet. Here, we explored whether specific changes in the core (abundant) vs. non-core (low-abundance) gut microbiome taxa fractions during the weight-loss phase (0–6 m) were differentially associated with weight maintenance following aFMT. Eighty-two abdominally obese/dyslipidemic participants (age = 52 years; 6 m weightloss = −8.3 kg) who provided fecal samples (0 m, 6 m) were included. Frozen 6 m’s fecal samples were processed into 1 g, opaque and odorless aFMT capsules. Participants were randomly assigned to receive 100 capsules containing their own fecal microbiota or placebo over 8 m-14 m in ten administrations (adherence rate > 90%). Gut microbiome composition was evaluated using shotgun metagenomic sequencing. Non-core taxa were defined as ≤ 66% prevalence across participants. Overall, 450 species were analyzed. At baseline, 13.3% were classified as core, and Firmicutes presented the highest core proportion by phylum. During 6 m weight-loss phase, abundance of non-core species changed more than core species (P < .0001). Subject-specific changes in core and non-core taxa fractions were strongly correlated (Jaccard Index; r = 0.54; P < .001). Following aFMT treatment, only participants with a low 6 m change in core taxa, and a high change in non-core taxa, avoided 8–14 m weight regain (aFMT = −0.58 ± 2.4 kg, corresponding placebo group = 3.18 ± 3.5 kg; P = .02). In a linear regression model, low core/high non-core 6 m change was the only combination that was significantly associated with attenuated 8–14 m weight regain (P = .038; P = .002 for taxa patterns/treatment intervention interaction). High change in non-core, low-abundance taxa during weight-loss might mediate aFMT treatment success for weight loss maintenance.ClinicalTrials.gov: NCT0302018
    corecore