658 research outputs found

    Wave shapes in alternating DSC

    Get PDF
    ADSC with its periodical temperature programs combines the features of DSC measured at high heating rate (high sensitivity) with those at low heating rate (high temperature resolution). In addition, the "reversing” cp effects can be separated from the "non-reversing” latent heat effects. Various periodical temperature programs can be applied. This paper compares the different possible temperature programs and their algorithms for the cp determination for metal, metal oxide and polymer of various properties. Simulated and measured results for various wave shapes and samples are presented. The relevant sample properties and their influence on the measurements are identified and guiding rules for the proper choice of the various experimental parameters are given. Measurements with different samples, performed with the new METTLER TOLEDO STARe-System, are shown and compared with the simulation results. The simulations and the measurements clearly show that the alternating techniques can yield new information about sample properties, but are susceptible to the proper choice of the various experimental parameter

    Offline Signature Verification by Combining Graph Edit Distance and Triplet Networks

    Full text link
    Biometric authentication by means of handwritten signatures is a challenging pattern recognition task, which aims to infer a writer model from only a handful of genuine signatures. In order to make it more difficult for a forger to attack the verification system, a promising strategy is to combine different writer models. In this work, we propose to complement a recent structural approach to offline signature verification based on graph edit distance with a statistical approach based on metric learning with deep neural networks. On the MCYT and GPDS benchmark datasets, we demonstrate that combining the structural and statistical models leads to significant improvements in performance, profiting from their complementary properties

    Pilot-scale Production of Functionalized mcl-PHA from Grape Pomace Supplemented with Fatty Acids

    Get PDF
    Bioprocess optimization is a prime target to decrease the cost of functionalized medium-chain-length poly(3-hydroxyalkanoate) (mcl-PHA). We have already demonstrated at the laboratory scale that the pomace of white wine grapes is a promising growth substrate for the biosynthesis of mcl-PHA that is both cheap and does not compete with food and land use. Here, we report the scale-up of a 2-step, 100 L bioprocess with Pseudomonas putida KT2440 involving: (1) a batch growth phase on extract of Gewürztraminer grape pomace, and (2) a fed-batch polymer accumulation phase with a linear feed of 50 mol % octanoic acid and 50 mol % 10-undecenoic acid. With this approach, we achieved a cell dry weight of 14.2 ± 0.3 g L–1 containing 41.1 ± 1.3 wt % of poly(3-hydroxyoctanoate-co-3-hydroxy-10-undecenoate) with 53 mol % and 47 mol % of saturated and unsaturated monomers, respectively. The molecular weight (Mw) was 139 000 Da (PDI = 1.97) and DSC analysis showed a Tg of –45.5 °C but no Tm thus indicating a completely amorphous polymer

    Predicting the whispering gallery mode spectra of microresonators

    Get PDF
    The whispering gallery modes (WGMs) of optical resonators have prompted intensive research efforts due to their usefulness in the field of biological sensing, and their employment in nonlinear optics. While much information is available in the literature on numerical modeling of WGMs in microspheres, it remains a challenging task to be able to predict the emitted spectra of spherical microresonators. Here, we establish a customizable Finite- Difference Time-Domain (FDTD)-based approach to investigate the WGM spectrum of microspheres. The simulations are carried out in the vicinity of a dipole source rather than a typical plane-wave beam excitation, thus providing an effective analogue of the fluorescent dye or nanoparticle coatings used in experiment. The analysis of a single dipole source at different positions on the surface or inside a microsphere, serves to assess the relative efficiency of nearby radiating TE and TM modes, characterizing the profile of the spectrum. By varying the number, positions and alignments of the dipole sources, different excitation scenarios can be compared to analytic models, and to experimental results. The energy flux is collected via a nearby disk-shaped region. The resultant spectral profile shows a dependence on the configuration of the dipole sources. The power outcoupling can then be optimized for specific modes and wavelength regions. The development of such a computational tool can aid the preparation of optical sensors prior to fabrication, by preselecting desired the optical properties of the resonator.Comment: Approved version for SPIE Photonics West, LASE, Laser Resonators, Microresonators and Beam Control XV

    Method for predicting whispering gallery mode spectra of spherical microresonators

    Full text link
    A full three-dimensional Finite-Difference Time-Domain (FDTD)-based toolkit is developed to simulate the whispering gallery modes of a microsphere in the vicinity of a dipole source. This provides a guide for experiments that rely on efficient coupling to the modes of microspheres. The resultant spectra are compared to those of analytic models used in the field. In contrast to the analytic models, the FDTD method is able to collect flux from a variety of possible collection regions, such as a disk-shaped region. The customizability of the technique allows one to consider a variety of mode excitation scenarios, which are particularly useful for investigating novel properties of optical resonators, and are valuable in assessing the viability of a resonator for biosensing.Comment: Published 10 Apr 2015 in Opt. Express Vol. 23, Issue 8, pp. 9924-9937; The FDTD toolkit supercomputer scripts are hosted at: http://sourceforge.net/projects/npps/files/FDTD_WGM_Simulator

    Graph-Based Offline Signature Verification

    Get PDF
    Graphs provide a powerful representation formalism that offers great promise to benefit tasks like handwritten signature verification. While most state-of-the-art approaches to signature verification rely on fixed-size representations, graphs are flexible in size and allow modeling local features as well as the global structure of the handwriting. In this article, we present two recent graph-based approaches to offline signature verification: keypoint graphs with approximated graph edit distance and inkball models. We provide a comprehensive description of the methods, propose improvements both in terms of computational time and accuracy, and report experimental results for four benchmark datasets. The proposed methods achieve top results for several benchmarks, highlighting the potential of graph-based signature verification

    Automatic human action recognition in videos by graph embedding

    Full text link
    The problem of human action recognition has received increasing attention in recent years for its importance in many applications. Yet, the main limitation of current approaches is that they do not capture well the spatial relationships in the subject performing the action. This paper presents an initial study which uses graphs to represent the actor's shape and graph embedding to then convert the graph into a suitable feature vector. In this way, we can benefit from the wide range of statistical classifiers while retaining the strong representational power of graphs. The paper shows that, although the proposed method does not yet achieve accuracy comparable to that of the best existing approaches, the embedded graphs are capable of describing the deformable human shape and its evolution along the time. This confirms the interesting rationale of the approach and its potential for future performance. © 2011 Springer-Verlag

    Isolation and structure of rolliniastatin 2 : a new cell growth inhibitory acetogenin from Rollinia mucosa

    Get PDF
    Un nouvel inhibiteur de la croissance cellulaire, dénommé Rolliniastatine 2 a été isolé des graines de #Rollinia mucosa$ et sa structure déterminée. (Résumé d'auteur

    Modal analysis of holey fiber mode-selective couplers

    No full text
    Mode Division Multiplexing is currently investigated as a possible way to increase fiber system capacity. With this approach, different modes of the same fiber carry distinct information. One of the problems to be solved in these systems concerns coupling/decoupling of the various modes to/from the same fiber. In this presentation, the mode features of a mode mux/demux based on holey fibers are investigated, with particular emphasis on optimal device design. Some preliminary experimental results will also be presented
    • …
    corecore