15 research outputs found

    Dynamics of Surfactants at Soft Interfaces using Droplet-Based Microfluidics

    Get PDF
    In this work, I studied the impact of surfactants on interfacial phenomena out of equilibrium. I investigated three different effects, (1) the stabilisation of interfaces upon surfactant adsorption (adsorption kinetics), (2) the interaction of the surfactant with the interior of the droplet (surfactant synthesis) and (3) the interaction of the surfactant with the exterior of the droplet (interfacial flows). Adsorption kinetics of surfactants are of relevance for the stabilisation of interfaces against coalescence and transport. I investigated the adsorption kinetics of the acidic surfactant KrytoxFSL to the interface of water-in-fluorinated-oil emulsions using droplet-based microfluidics. The surfactant, which is soluble inside the fluorous continuous phase, adsorbs to the interface of the aqueous droplet after droplet production. Upon adsorption the surfactant deprotonates causing a change in the pH inside the aqueous phase containing a buffer. I measured this pH change with a pH dependent dye using a fluorescence setup. The age of the droplet can be related to the distance from the production unit on chip. The pH change provides information on the adsorption kinetics of the surfactant. The pH change is faster and more pronounced the higher the initial surfactant concentration inside the fluorous phase. This relation was determined for surfactant concentrations above the CMC (4 µmol/L). For the highest concentration investigated in this study (C = 0.69 mM, 0.07 w% in oil), the pH change induced through the adsorption is even larger than 1 and is obtained within the order of seconds. The equilibrium change in proton concentration inside the aqueous phase equals the surfactant concentration that was initially inside the fluorous phase. The pH change results from the adsorption of the acidic surfactant to the interface, its deprotonation, the subsequent formation of the salt with a counter ion from the aqueous phase (sodium ion) and the desorption of this surfactant from the interface. Thus, the transfer of protons and other ions across the interface is related to their partitioning between the two phases. The adsorption / desorption process is quantitatively linked with the kinetics of partitioning. At small length scales, the adsorption process of the surfactant to the interface is slower than the dffusion of surfactant molecules towards the interface, causing the adsorption process to be rate limiting. Thus, the kinetics of the adsorption process of surfactants are accessible using droplet-based microfluidic experiments. To measure the adsorption kinetics, I used the pH change as an indicator for the amount of adsorbed acidic surfactant to the initially empty, and at a later stage partially and then fully, covered interface. Describing the surfactant adsorption with a simple first order Langmuir model fails, because the rate of adsorption does not scale linearly, but rather quadratically with the surfactant concentration. The adsorption rate constant can be obtained applying the second order adsorption model developed here with the proviso that the equilibrium surfactant coverage is independently determined through standard measurements. Additionally, the adsorption model gives information on the timescale of the adsorption process. The pH change and the partitioning take place with a timescale of the order of one second. Therefore, phase partitioning across the interface is always in equilibrium for any process occurring at larger timescales. At smaller timescales the dynamics of surfactants at the interface have to be taken into account. The timescale of partitioning (and pH change) increases with the radius of the droplet and decreases with the typical speed, which depends on the adsorption constant, the concentration of the surfactant and the free sites at the interface. The timescale of partitioning is at least one or two orders of magnitude larger than the timescale for the stabilisation of the interface obtained from coalescence experiments. Combining these results it is found that the stabilisation of two interfaces against coalescence is only possible for surfactant concentrations close to or larger than the CMC. The maximum interfacial coverage is accessible from standard bulk interfacial tension measurements by applying a model for the adsorption kinetics. The Langmuir and the second order adsorption model provide the same value for the maximum interfacial coverage (8 µmol/m2). Hence, bulk interfacial tension techniques cannot distinguish between different adsorption isotherms which is in contrast to the microfluidic method developed in this study. As demonstrated, the pH change is due to an acidic surfactant (Krytox) adsorbing to the interface at any time during the experiment. Small amounts of residual acid in another surfactant lead to a pH change of the droplet. Accordingly, acid free surfactants are crucial for the use in emulsion stabilisation. The typical surfactant used in droplet-based microfluidics is usually synthesised from such an acidic surfactant. Hence, a high purity of the synthesised surfactant is required. The product quality depends on the residual acidic surfactant. Additionally, this impurity (acidic surfactant) needs to be quantified for a reliable use of the synthesised surfactants for the stabilisation of emulsions. In this work, I improved the synthesis showing the crucial role of inert atmospheric conditions. I characterised the purity of the synthesised surfactant using infrared spectroscopy and partitioning experiments between an aqueous phase and a fluorous phase. The partitioning experiments are bulk measurements and determine the amount of water soluble dye (Rhodamine 6G) extracted towards a fluorous phase in which the surfactant is dissolved. The amount of extracted dye correlates directly with the amount of residual carboxylic acid (acidic surfactant) present inside the surfactant. I found that my synthesised surfactants show a partitioning corresponding to less than 1 w% contamination of carboxylic acid. The purity of the final product is therefore of the order of 99 w%. With the improvement of the synthesis and the possibility to characterise the amount of residual carboxylic acid, a more reliable production of surfactants for emulsion stabilisation becomes feasible. Adsorption of surfactants to interfaces influence the behaviour of droplets in emulsions. Out-of equilibrium dynamics at interfaces can lead to the Marangoni effect, which couples inhomogeneities of the surfactant distribution at the interface to interfacial flows and can lead to self-propulsion of droplets. The self-propulsion of droplets is directly linked to the dynamics of surfactants at interfaces and thus to the adsorption kinetics of surfactants. To obtain further insight into the relation between self-propulsion and surfactant adsorption, I studied interfacial properties of aqueous droplets in a squalane continuous phase. These droplets show biomimetic behaviours (ongoing experiments) such as swimming, deformation (ameoba-like), division or microemulsification of the droplet or formation of a shell around the droplet. These different behaviours depend on the concentration of the solutes inside the aqueous phase and on the concentrations of the surfactant oleic acid inside the oil phase. In this system, the movement of the droplet is likely related to the pH of the droplet and the pKa of the oleic acid. The characterisation of the temporal evolution of the interfacial tension and its dependence on the concentration of the oleic acid, including the determination of the CMC, is of great relevance for the understanding of these behaviours. These measurements are challenging, due to the impurity present in the oil from the supplier. Purifications upon filtering over Celite® or Alumina do not remove all impurities. Therefore, the determination of the CMC, 40 µmol/L, is only a rough estimate on the preliminary data. In additional experiments, I developed a microfluidic device to study the evolution of the droplet velocity upon surfactant adsorption. Due to height variations of the microfluidic channels, no final conclusion on the Marangoni effect was obtained so far. These two ongoing experiments are promising to gain insight into the interplay of the interfacial flow and the adsorption kinetics of surfactants

    Thermal expansion and the glass transition

    Get PDF
    Melting is well understood in terms of the Lindemann criterion, which essentially states that crystalline materials melt when the thermal vibrations of their atoms become so vigorous that they shake themselves free of the binding forces. This picture does not necessarily have to hold for glasses, where the nature of the solid–liquid cross-over is highly debated. The Lindemann criterion implies that the thermal expansion coefficients of crystals are inversely proportional to their melting temperatures. Here we find that, in contrast, the thermal expansion coefficient of glasses decreases more strongly with increasing glass temperature, which marks the liquid–solid cross-over in this material class. However, this proportionality returns when the thermal expansion coefficient is scaled by the fragility, a measure of particle cooperativity. Therefore, for a glass to become liquid, it is not sufficient to simply overcome the interparticle binding energies. Instead, more energy must be invested to break up the typical cooperative particle network that is common to glassy materials. The thermal expansion coefficient of the liquid phase reveals similar anomalous behaviour and is universally enhanced by a constant factor of approximately 3. These universalities allow the estimation of glass temperatures from thermal expansion and vice versa

    Thermal expansion and the glass transition

    Get PDF

    Emergent interparticle interactions in thermal amorphous solids

    Get PDF
    Amorphous media at finite temperatures, be them liquids, colloids, or glasses, are made of interacting particles that move chaotically due to thermal energy, continuously colliding and scattering off each other. When the average configuration in these systems relaxes only at long times, one can introduce effective interactions that keep the mean positions in mechanical equilibrium. We introduce a framework to determine the effective force laws that define an effective Hessian that can be employed to discuss stability properties and the density of states of the amorphous system. We exemplify the approach with a thermal glass of hard spheres; these experience zero forces when not in contact and infinite forces when they touch. Close to jamming we recapture the effective interactions that at temperature T depend on the gap h between spheres as T/h [C. Brito and M. Wyart, Europhys. Lett. 76 , 149 (2006)]. For hard spheres at lower densities or for systems whose binary bare interactions are longer ranged (at any density), the emergent force laws include ternary, quaternary, and generally higher-order many-body terms, leading to a temperature-dependent effective Hessian

    Tod als Grundthema der Religion(en)

    No full text

    Tod als Grundthema der Religion(en)

    No full text

    The homogeneous ice nucleation rate of water droplets produced in a microfluidic device and the role of temperature uncertainty

    No full text
    Riechers B, Wittbracht F, HĂĽtten A, Koop T. The homogeneous ice nucleation rate of water droplets produced in a microfluidic device and the role of temperature uncertainty. Physical Chemistry Chemical Physics. 2013;15(16):5873-5887.Ice nucleation was investigated experimentally in water droplets with diameters between 53 and 96 micrometres. The droplets were produced in a microfluidic device in which a flow of methyl-cyclohexane and water was combined at the T-junction of micro-channels yielding inverse (water-in-oil) emulsions consisting of water droplets with small standard deviations. In cryo-microscopic experiments we confirmed that upon cooling of such emulsion samples ice nucleation in individual droplets occurred independently of each other as required for the investigation of a stochastic process. The emulsion samples were then subjected to cooling at 1 Kelvin per minute in a differential scanning calorimeter with high temperature accuracy. From the latent heat released by freezing water droplets we inferred the volume-dependent homogeneous ice nucleation rate coefficient of water at temperatures between 236.5 and 237.9 Kelvin. A comparison of our newly derived values to existing rate coefficients from other studies suggests that the volume-dependent ice nucleation rate in supercooled water is slightly lower than previously thought. Moreover, a comprehensive error analysis suggests that absolute temperature accuracy is the single most important experimental parameter determining the uncertainty of the derived ice nucleation rates in our experiments, and presumably also in many previous experiments. Our analysis, thus, also provides a route for improving the accuracy of future ice nucleation rate measurements
    corecore