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Abstract

The response to di�erent stress amplitudes at temperatures below the glass transition tem-

perature is analyzed by mechanical oscillatory excitation of Pd40Ni40P20 metallic glass sam-

ples in single cantilever bending geometry. The strain response of the material is well below

the critical yield stress even for highest stress amplitudes, implying the expectation of a lin-

ear relation between stress and strain according to Hook's Law. However, a deviation from

the linear behavior is evident, which is evaluated in terms of temperature dependence and

in�uence of the applied stress amplitude by two di�erent approaches of evaluation.

The nonlinear approach is based on a nonlinear expansion of the stress-strain-relation, assum-

ing an intrinsic nonlinear character of the shear or elastic modulus. The degree of nonlinearity

is extracted by a period-by-period Fourier-analysis and connected to nonlinear coe�cients,

describing the intensity of nonlinearity at the fundamental and higher harmonic frequencies.

While rather small stress amplitudes are connected to a linear response behavior, higher stress

amplitudes result in nonlinear behavior, which is enhanced with increasing temperature. The

characteristic timescale to adapt to a signi�cant change in stress amplitude in terms of a re-

covery timescale to a steady state value is connected to the structural relaxation time of the

material, suggesting a connection between the observed nonlinearity and primary relaxation

processes.

The second approach of evaluation is termed the incremental analysis and relates the ob-

served response behavior to avalanches, which occur due to the activation and correlation

of local microstructural rearrangements consisting of a few tens of atoms. These rearrange-

ments are termed as shear transformation zones and correspond to localized plastic events,

which are superimposed on the linear response behavior of the material. Temperature and

stress enhance the occurrence of intervals of monotonously increasing or decreasing strain.

These are connected to avalanche behavior according to the power-law observed in the dis-

tributions of strain response. Despite the onset of nonlinearity observed in connection with

the nonlinear analysis, the power-law behavior is extracted for all applied stress amplitudes,

high and low, suggesting activated plastic events throughout the so called Hookean response

regime. The intensity of strain response itself shows a direct relation to the strain rate of

the experiment.

Both approaches of evaluation are compared regarding common aspects and limits. Response

phenomena connected to plastic events in the linear response regime are barely reported in

literature even though their existence is implied. The incremental analysis yields experimen-

tal evidence supporting their occurrence. Moreover it re�ects the limits of the nonlinear

approach, which neglects strain response on the small scale by the period-wise analysis of the

data, resulting in an apparent linear strain response. Still, the nonlinear approach illustrates

clearly on a global scale, that stress and temperatures have a similar e�ect of pushing the

material further towards the yielding transition and thus a more compliant behavior.
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Chapter 1

Introduction

Amorphous materials span over a huge variety of classes, including network glasses, e.g. SiO2

[38], polymers, such as polymethylmethacrylate [44] or polycarbonate [58], sugars and alco-

hols, for example glycerol [148] and propylene glycol [148], metallic glasses like Pd40Ni40P20

[125, 151, 67], plastic crystals, e.g. neopentylglycol [118] or cyclo-octanol [93], and many

more. All of these materials have in common that under speci�c preparation conditions or

even naturally an amorphous order regarding their structure is exhibited. In case of structural

glass-formers, the molecules or atoms of the material are arranged in a way that allows for

short-range order, but it is elusive of long-range order [38].

The preparation techniques to obtain amorphous materials are numerous, among them sput-

tering [156], pulsed laser deposition [123], and melt quenching [75]. The melt quenching

technique can be applied to prepare samples of bulk metallic glass. Therefore the melt of

an alloy of desired composition is cooled with such a high cooling rate that crystallization is

avoided. The melt traverses the melting point without immediate solidi�cation resulting in a

supercooled melt. By further rapid decrease in temperature, particle motion becomes more

and more kinetically hindered, until the sample is referred to as being in the glassy state. In

simple words, the particles get stuck in their positions due to the very quick cooling, before

the atoms or molecules have enough time to order into a crystalline state.

At temperatures close to or above the glass transition temperature, the response to the ex-

citation by a small external �eld on a su�ciently small timescale results in the measurement

of relaxations. These correspond to structural rearrangements of the constituents of the

amorphous material. The activation and correlation of structural rearrangements result in

the characteristic response behavior, which can be measured for example by mechanical exci-

tation. The more relaxations become active in the material, the more intense is the response

to an applied �eld. To understand how these structural relaxations occur and moreover how

they correlate on the microscale is highly relevant to be able to understand the macroscopi-

cally observed behavior.

This macroscopic relation between an applied force and the corresponding displacement of

the sample is given by the stress-strain-curve. Its slope is identi�ed with the mechanical

susceptibility, referred to as the modulus. It is constant for small mechanical excitations, but

approaches zero under intense mechanical load. On this macroscopic, i.e. global scale, the

modulus is intrinsically nonlinear, as re�ected by the deviation from the constant modulus-

value if an elevated stress is applied.

In 1965 Adam and Gibbs proposed the idea of cooperative rearranging regions [1], which laid

the basis for the interpretation of deformation in amorphous materials. These were developed

to the picture of shear transformation zones as proposed by Argon [5, 6, 129]. Simpli�ed,

STZs are depicted as the basis of mechanical deformation in amorphous metals, which exhibit

a correlation in space and time [82, 122]. Depending on the interplay between stress and

temperature, these correlations can evolve to shear bands, which become system-spanning

events and eventually lead to sample failure, similar as observed for crystalline materials.
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2 CHAPTER 1. INTRODUCTION

As stated before, the analysis of the interplay between microscopic rearranging processes is

the basis for the understanding of the mechanical deformation in amorphous materials. The

identi�cation of the highly nonlinear part of the stress-strain-curve at elevated stresses as

the plastic regime which exhibits macroscopic shear bands is one important step. However,

the converse argument that the linear response regime is solely connected to elastic response

behavior is challenged in literature [77]. The linear response regime exhibits events of plastic

character as well, even though much less pronounced than the case during shear band for-

mation. To elucidate the response characteristics of the so called linear mechanical response

regime of metallic glasses, Pd40Ni40P20-samples are analyzed regarding nonlinear response

aspects and indications for the occurrence of STZs.

In order to present the various aspects of this intention, chapter 2 evolves on theoretical

aspects and models regarding the amorphous state, relaxation processes and their interpre-

tation. Chapter 3 summarized the methods used for sample characterization and techniques

for the mechanical measurements. It moreover gives a detailed description on the two di�er-

ent analysis approaches, i.e. the nonlinear and the incremental analysis. The results on the

sample characterization are given in chapter 4, while the results on the mechanical experi-

ments themselves are presented in chapter 5. These are separated into several sub-chapters,

which are on the qualitative sample response (section 5.1 and 5.2), the quantitative sam-

ple response based on the nonlinear analysis (section 5.3), and results on the quantitative

sample response based on the incremental analysis (section 5.4). A discussion of the results

and a critical examination of the connection of the di�erent analysis approaches are given in

chapter 6.



Chapter 2

Theoretical Framework

This chapter gives an overview of the topics relevant for the experimental approach of this

thesis based on literature research. It re�ects personal insights and scienti�c interrelations

gained during the time spent on the development of the thesis with Prof. Konrad Samwer,

on projects with Prof. Ranko Richert and Prof. Itamar Procaccia, and by the participation in

a number of national and international conferences confronting with present scienti�c ques-

tions of the �eld.

Initially, it covers the description of how to attain an amorphous state, and of the nature of

the glass transition. Evidently, di�erent types of processes dominate in the glass and in the

supercooled liquid. This is addressed by discussing the change of activation energies with

temperature, followed by the classi�cation into fragile and strong glass formers, and an intro-

duction to the potential energy landscape model. It serves as a helpful, even though limited

model to explain temperature and stress dependent behavior and di�erentiate between di�er-

ent relaxation types. Primary and secondary relaxations are described due to their evolution

in loss spectra, as well as on the micro-structural scale. They are connected to reversible

and irreversible processes based on shear transformation zones and thus Eshelby-type elastic

interactions. The in�uence of mechanical excitation on the processes is illustrated with help

of an experimental stress-strain-measurement, introducing shear-bands and their connection

to the primary relaxation process. Further on, the implication of high �eld excitation is dis-

cussed with regard to the in�uence on the glass transition temperature and the mechanical

yielding transition. It is followed by a more detailed description on dielectric spectroscopy

measurements exemplifying the experimental approach of this thesis, which is elucidated in

the successive sections. Finally, this nonlinear approach is opposed to the consideration of

the high-�eld response as a state that can be connected to avalanche dynamics based on the

evaluation of instabilities in the elastic behavior, referring to statistical, localized breakdowns

of elasticity.

3



4 CHAPTER 2. THEORETICAL FRAMEWORK

2.1 The Glass Transition

When the temperature of a liquid is decreased, the path of solidi�cation depends highly on

the kinetics of the material and the cooling rate.

From a thermodynamic point of view a system with mobile atoms or molecules will crys-

tallize, if the free enthalpy of the solidus line becomes smaller than the one of the liquidus

line while cooling. This crystallization will occur at a temperature TS (see �g. 2.1a) under

sudden contraction to a solid exhibiting order both on short and long ranges.

Another route leads to a solidi�cation into the amorphous phase. It can be addressed by

realizing very high cooling rates (e.g. 10
5
K s

�1
for metallic glasses [51]), especially in mate-

rials of low atomic or molecular mobility. Due to the quick cooling the viscosity is increased

su�ciently fast to hinder the development of long-range order. The material is called a su-

percooled liquid as long as the system pursues the liquidus line even though the temperature

is below TS. If the temperature is decreased further and the system relinquishes the super-

cooled liquid state it falls out of equilibrium and becomes a glass, the metastable state of an

amorphous solid. In a plot of volume V or entropy S versus temperature T , the temperature

range of changing slope is called the glass transition range. The temperature at which the

supercooled liquid regime is abandoned is called the glass transition temperature Tg. The

temperature at which an extrapolation of the glass and the supercooled liquid curve intersect

is the �ctive temperature Tf [43]. Tg (as well as Tf ) is highly dependent on the cooling rate.

Di�erent cooling rates result in di�erent branches of the glass. These branches separate at

higher temperatures from the supercooled liquid with larger cooling rates, thus Tg1 is gained

by faster cooling than Tg2 (cf. �g. 2.1a). The volume for a glass is roughly 1% higher than

in the crystalline state, even though the slope in the plot against temperature is comparable.

The heating rate has an in�uence on the glass transition as well, if the system is heated

from the glassy state to temperatures close to Tg: The temperature at which the system

gets back into the supercooled liquid state is lower, if the heating rate is small. Holding a

glass at temperatures not lower than 50K to 100K from Tg gives the system the chance to

relax on a certain timescale [90] to a state of less volume (T1), thus decreasing the �ctive

temperature. This relaxation process is also called aging, as it occurs with time and endures

longer for low the temperatures. It can be in the range of several minutes slightly below Tg,

or hundreds of years far below the glass transition temperature. In this sense it is also possible

to rejuvenate a glass, e.g. by radiation. Volume can be introduced into the material and the

(a) (b)

Figure 2.1 (a) Volume V plotted against temperature T . (b) Speci�c heat CP plotted against

temperature T . Both giving a schematic example for the �rst order phase transition from the liquid

to the crystalline state, and the transition from the liquid, via the supercooled liquid, to the glassy

state, cf. [38].
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entropy is thereby increased. The resulting rejuvenated state is connected to a higher �ctive

temperature.

The glass transition itself is not considered a thermodynamic phase transition, even though

it was suggested that it might be a second-order phase transition according to Ehrenfest's

scheme [37]. Here, the order of the phase transition is de�ned as the lowest derivative of the

Gibb's free energy FG which shows a discontinuity at the transition point [38]. In glasses,

the second derivative of Gibbs free energy FG shows a discontinuity in di�erential quantities,

which is e.g. the speci�c heat CP . However, the strong dependence on thermal history and

cooling rate of the glassy state and the glass transition itself stands in contradiction to this

categorization. Fig. 2.1b shows schematically the transition from the glassy state at low tem-

peratures to the supercooled liquid. For glass and crystal the speci�c heat CP is dominated

by vibrational contributions and shows thus comparable values (C
glass

P � C
crystal

P ). For the

supercooled liquid state the speci�c heat exceeds the value of the crystal. Con�gurational

degrees of freedom dominate in this regime, which are not accessible in the crystalline state.

S � � �@FG
@T



P

(2.1a)

CP � �@FG
@T


2
P

(2.1b)

Another option to de�ne the glass transition temperature is connected to the viscosity of the

system. A viscosity of 10
12
Pa s, equivalent to a relaxation timescale of 10

2
s, is chosen to be

the de�nition of the glass transition. This is a value, at which a system becomes measurable

on the laboratory timescale. As an example, a glass sample of 1 cm thickness, bonded to a

vertical plane surface will �ow on a measurable scale due to gravity within several month, if

the viscosity drops slightly below the value used to de�ne the glass transition temperature

[68].

Figure 2.2 Plot of the glass transition temperature Tg against frequency f connected to the exper-

imental timescale for poly-3:3-biscloromethyloacyclobutane. Experimental techniques are dielectric

spectroscopy (dielectric loss, f = 10
3
Hz), mechanical vibration (mechanical loss, f = 89Hz), slow

tensile deformation (f = 3Hz), and dilatometry (f = 10
�2

Hz) [38].

The glass transition temperature Tg depends highly on the chosen protocol and varies with

di�erent measurement techniques as the timescale of the experiment changes. In �g. 2.2, Tg
is plotted against the experimental timescale which is measured by four di�erent measurement

techniques.

The con�gurational changes that occur explicitly in the supercooled liquid cause the relaxation

of the system. When the temperature of the system decreases, these relaxations become

slower. At a given temperature, which is the glass transition temperature Tg, the material
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(a) (b)

Figure 2.3 Angell-plots of viscosity � against normalized, inverse temperature Tg©T for di�erent

amorphous systems. (a) According to [4]. (b) According to [67].

shows the behavior of a solid [38]. If the experimental timescale or observation time t0 is long

compared to the relaxation timescale �R (t0 % �R), the material shows a liquid-like behavior.

With an observation time being smaller than the relaxation timescale (t0 $ �R), the material

becomes solid-like. In this regard, the glass transition occurs at the temperature at which

both timescales are of comparable order of magnitude (t0 � �R).

2.2 Fragility of Amorphous Systems

The glass transition regime exhibits a rapid, but continuous change of the viscosity �. The

way how the viscosity changes with temperature is used to separate amorphous materials as

fragile or strong, as displayed in the Angell-plots [4, 67].

Strong behavior is often observed for network formers, e.g. SiO2, and their viscosity can

be described by an Arrhenius-like description (eq. 2.2). It is characterized by energy barriers

EA, which do not show an intrinsic dependence on temperature.These barriers have to be

overcome to initiate relaxation processes. The term kBT is due to the materials thermal

energy, with Boltzmann constant kB.

� � �0 � exp � EA

kBT

 (2.2)

Systems of fragile behavior are typically to be found in the class of organic or ionic glasses.

Their behavior shows an intense deviation from the Arrhenius-law especially for temperatures

clearly above Tg, as energy barriers depend on temperature. The Vogel-Fulcher-Tammann

(VFT)-equation [143, 46, 136] is used to describe this behavior, based on the strength

parameter D and TV FT :

� � �0 � exp � D � TV FTT � TV FT

 (2.3)

The fragility index m is introduced as a measure for the temperature-dependent viscosity of

a material for temperatures in the glass transition regime [12]:

m �

d log �

d�Tg©T �¶T�Tg (2.4)
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The stronger a system is, the smaller the fragility tends to be. The range of values starts

from 20 for extremely strong glasses as SiO2 up to 200 for extremely fragile systems in the

liquid extreme. Pd40Ni40P20 metallic glass can be classi�ed as relatively fragile with a fragility

index of m = 41:5 [125], as shown in �g. 2.3b.

The fragility index is related to the strength parameter D by [14]

m � �D© ln 10� � �T0©Tg� � �1 � T0©Tg��2 � 16 � 590©D: (2.5)

Adam and Gibbs proposed a connection between con�gurational entropy Sc and the relaxation

behavior [1]. They consider the mass transport in the system, e.g. di�usion or viscosity, as

a result of cooperative atomic or molecular rearrangements. By �nding the smallest size

of a group of particles that is capable of performing a rearrangement at a temperature T,

the probability of rearrangements and thus the viscosity can be expresses as a function of

con�gurational entropy Sc [38]. B and �0 are denoted as constants.

� � �0 � exp� B

TSc
� (2.6a)

Sc � E
T

T0

�CP d lnT (2.6b)

If the speci�c heat of an amorphous material is considered as small, the con�gurational

entropy is almost independent of temperature and yields an Arrhenius-like dependence of

viscosity on temperature. If in contrast the speci�c heat is large, the con�gurational entropy

depends considerably on temperature and shows therefore a rather fragile behavior.

An analytical description on the dependence of the viscosity � and thus the fragility m

on temperature T was recently established for metallic glasses [73, 76, 72]. Within this

approach, the e�ective atomic potential of a metallic glass is mapped onto a more simple

expression which contains the parameter �, describing the steepness of the repulsive part of

the potential. It is extracted by �tting the short-range ascending slope of the radial distri-

bution function g�r� and is the only free �t-parameter to yield the relation between shear

modulus and temperature G�T �:
G�T � � G�Tg� � exp ��T � Tg�2 � ���1 � T©Tg�� (2.7)

Here, G�Tg� is the shear modulus value at the glass transition, which can be expressed ana-

lytically, and �T is the Debye-Grüneisen thermal expansion coe�cient, which re�ects the an-

harmonicity of the potential. On the basis of the activation energy E�T � for local cooperative
rearrangements and the cooperative shear model (cf. section 2.5), the analytical connection

between viscosity � and temperature T can be derived, which is of double-exponential nature:

��T �
�0

� exp �Vc � G�Tg�
kBT

� exp ��2 � ���TTg�1 � T©Tg��� (2.8)

Vc represents the characteristic atomic volume, kB is the Boltzmann constant, and �0 is

a normalization constant. This equation can be connected to the fragility m according to

eq. 2.4. This analytical approach thus presents itself as a powerful tool to extract the depen-

dence of shear modulus G, viscosity �, and fragility m on the basis of only two parameters,

� and �T , which re�ect the repulsive and the attractive part of the e�ective inter-atomic

potential.

2.3 Potential Energy Landscape

Based on the work of Goldstein [48] and others [3, 133], the description of a topographic

multidimensional potential energy landscape (PEL) is established, that facilitates the un-

derstanding of relaxation processes in amorphous matter. The interaction of the system is
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captured by the potential energy function ���r1:::�rN� based on the spatial location �ri of each
particle. The elevation of � at any location �R � ��r1:::�rN� in con�guration space of the

N particle system stands for the potential energy, containing minima, maxima, and saddle

points similar to a topographic map of a landscape. This surface contains many minima of

various depths, which are arranged in a complex pattern. Each minimum correlates to a me-

chanically stable arrangement of the N particles in space. Any (small) displacement results in

restoring forces acting on the system's particles. The lowest lying minima became occupied

if the system were cooled to zero temperature slowly enough to stay in thermal equilibrium,

resulting in the state of an ideal crystal. Higher lying minima are related to amorphous states

of the system, equivalent minima can be obtained by a permutation of identical particles.

Adjacent basins, also referred to as inherent structure or inherent state, share a common

saddle point, called a transient state (cf. �g. 2.4).

Figure 2.4 Scheme of the potential energy landscape [27].

The equilibrium of the system at a given temperature T is connected to a preferential oc-

cupation of basins of depth �
��T �. For this reason the exploration of con�guration space

depends on temperature. A change from one basin to an adjacent one is realized by localized

structural rearrangements of very few particles, going along with overcoming an activation

barrier. The total amount of kinetic energy in the system is in general su�ciently high to pass

this barrier, but the kinetic energy is distributed over all particles of the system. Thus, the

lower the temperature, the lower the probability that the necessary kinetic energy is available

in the required location. Only under this condition a proper �uctuation occurs by overcoming

the transient state between basins. A hindrance of the hopping over barriers at low tempera-

tures results in longer relaxation times. At temperatures typical for the supercooled state the

system is in quasi-equilibrium, where it occupies and switches between minima with depths

close to �
�

l iq�T �. With decreasing temperature, after entering the glassy state, the system

falls out of equilibrium: Within a time smaller than the timescale necessary to change between

minima, the depth of occupied basins still corresponds to values of �
�

l iq�T � the system fails

to proceed to minima of lower depth. This is a description that suits the formerly mentioned

concept of �ctive temperature, the rate dependence of the glass transition, and the ageing

process in the glassy state.

Due to the direct connection between the activation energy EA regarding Arrhenius- and

non-Arrhenius-behavior and the depth of basins in the PEL, conclusions on the topography

of the PEL can be made regarding the fragile or strong character of a material.

In case of a strong glass the activation energy is almost independent of temperature. Thus,

regardless at which temperature the system samples the PEL, if one barrier can be overcome,

essentially all existing barriers can be overcome. This can only be the result of homogeneously

distributed basin depths and thus a homogeneous distribution of activation energies.
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For fragile glasses at temperatures below Tg only those parts of the PEL can be explored,

which consist of adjacent basins which are less deep than �
�

l iq�T �. Only if the temperature

rises above Tg, the depth of explorable basins increases and further parts of the PEL can be

explored. Barriers can be overcome which are related to larger activation energies. These

are due to cooperative rearrangements of a higher number of molecules than in the case of

temperatures below Tg. Thus, the distribution of basin depths must be heterogeneous, in-

cluding several metabasins, as depicted in �g. 2.5. Moreover, fragile materials should dispose

a higher density of basins as their speci�c heat and thus their con�gurational entropy is high

compared to strong materials [3, 4].

Figure 2.5 Schematic description of di�erences in the potential energy landscape for fragile and

strong materials [27].

2.4 Relaxation Processes

To measure the con�gurational degrees of freedom, a relaxation response function can be

obtained by a weak external excitation, which can be mechanical, electrical, thermal, or of

other kind. Either the decay of the response to the exciting �eld is measured as a function of

time, or the continuous dissipation due to an external sinusoidal excitation is detected. This

way the relaxation response function g depends either on time t or frequency f . It reveals

distinct processes, which occur on a very broad range of timescales.

At very short timescales intra-basin relaxations are active (not depicted in �g. 2.6a). These

are of the order of vibrational movements and are collectively referred to as the boson peak.

It occurs at frequencies between 10
10
Hz and 10

14
Hz in �g. 2.7. For larger timescales a

very broad relaxation regime follows, that is due to inter-basin relaxations. It is depicted in

�g. 2.6a as the �-process, also referred to as the secondary process. According to [55], the

� process might also be related to transitions between a �nite number of inherent states in

the sense of a seesaw hopping instead of only one transition from one basin to the next.

In the frequency spectrum in �g. 2.7 secondary processes are found at frequencies between

10
0
Hz and 10

9
Hz for T1 and between 10

4
Hz and 10

9
Hz for T2. Whether they show

the nature of a �ank or a separated peak depends on temperature and the constituents

of the amorphous system [160]. The �-relaxations overlap with the long-time limit, which

is connected to relaxations between metabasins. These are depicted as the �- or primary

process in �g. 2.6a and develop a relaxation peak at a frequency of 10
1
Hz or 10

4
Hz for
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(a) (b)

Figure 2.6 (a) Scheme of the potential energy landscape focusing on �- and �-relaxations. Changes

between adjacent basins correspond to �-processes, while the �-process is referred to as a transi-

tion from one metabasin to another. (b) Scheme of the peak relaxation frequency against inverse

temperature for both primary and secondary relaxation processes [133].

high and low temperature, respectively (�g. 2.7). The position of the �-relaxation peak is

generally close to the mean relaxation time of the system and shifts according to the VFT-

equation (2.3). The peak relaxation frequencies of the �- and the �-relaxation often show a

bifurcation with temperature as in �g. 2.6b. At a temperature above Tg, namely the merging

temperature Tmerge , the branches of the peak relaxation frequencies of �- and �-processes

join. Thus, for temperatures above Tmerge in the supercooled liquid as well as in the liquid

range both relaxation processes occur on the same timescale. For temperatures close to

and below Tmerge , the primary and secondary relaxation is split in the time- and frequency-

domain into two di�erent maxima, of which the primary relaxation kinetically freezes out

with decreasing temperature while the secondary persists [62].

Figure 2.7 Schematic plot of dielectric loss versus frequency for glass-formers obtained by broadband

spectroscopy for temperatures T1 and T2 [85].
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(a) (b)

Figure 2.8 (a) Böhmer-plot of fragility m against KWW-exponent �KWW for di�erent classes of

materials [14]. (b) Intrinsically exponential or non-exponential relaxations due to a heterogeneous or

homogeneous explanation of the overall non-exponential form of the distribution of relaxations [111].

The depth of minima in the PEL is directly related to the necessary activation energy EA

to overcome the barriers of these basins. If the thermal energy kBT is smaller than the

necessary activation energy, the system can be described by a harmonic oscillation within a

minimum, which is very well approximated by a parabolic. By a simple double-well potential

[70] a hopping rate is de�ned. It describes the probability to leave a basin towards another

minimum of notably di�erent depth. If the thermal energy of the system is equal or larger

than the activation energy. For jumps from one inherent state to another, the e�ective

rate is just proportional to the inverse of the Arrhenius-Law in eq. 2.2. It is connected to a

Debye-like decay [28, 29] with the relaxation time �R [90].

In the picture that is drawn by the model of the PEL, the change from one metabasin to

another should be described by the sum of the activation energies due to jumps through all the

sub-basins, that lead from one metabasin to another. In contrast to this, the activation energy

necessary for such a change of metabasins, which is equivalent to the process of primary

relaxation, is larger, as it is described by the VFT-equation (cf. eq. 2.3). To characterize the

relaxation function of primary relaxations, the Debye-like description has to be modi�ed to a

Kohlrausch-Williams-Watts (KWW) stretched exponential decay in time [69, 152], which is

written as:

g�t�� exp ���t©�KWW ��KWW � (2.9)

The stretching exponent �KWW "�0; 1� causes a non-exponential, stretched form of the

function, which is more pronounced if �KWW is small. If this exponent is equal to one,

eq. 2.9 corresponds to a symmetric Debye-relaxation with a single relaxation time equal to

�KWW . For many system �KWW is not constant with temperature even though this assump-

tion is often made. It becomes smaller with decreasing temperature while approaching Tg
[36].

Often the KWW-function is used as a �tting function, e.g. to extract the relaxation timescale

�R. This timescale exhibits a VFT-behavior if plotted against temperature for non-Arrhenius

relaxations.

Glass-formers show a non-exponential distribution of relaxations for temperatures below the

liquid state. Two extremes can describe this non-exponential form as displayed in �g. 2.8b,

while it is reasonable to assume that most materials show a behavior resulting from a com-
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Figure 2.9 A schematic plot of the back and forth motion of string-like, cooperative �-processes

(depicted in (a)) evolving in di�usion of single atoms (colored red in (b)) [159].

bination of both. On the one hand the non-exponential distribution can be explained by the

contribution of solely intrinsically non-exponential modes. On the other hand, the very same

overall non-exponential relaxation distribution can be gained by summing over exponential

modes of di�erent relaxation timescales �i . One approach to �nd a combination of both

cases is to de�ne an index describing the grade of non-exponentiality of contributing modes

by an intrinsic stretching exponent �in [13]. Typically, supercooled liquids exhibit a hetero-

geneous distribution of exponential relaxations [35, 112]. Some plastic crystals are more

precisely described by using an intrinsic stretching exponent which is empirically connected

to a more homogeneous character of the distribution [153, 118].

As the exponent �KWW is connected to the fragility index m, as it decreases linearly with

increasing �KWW within a material class according to the Böhmer plot [14], it exhibits the

connection of fragility to the non-exponentiality of the relaxation distribution.

m � �250 � 30� � 320 � �KWW (2.10)

The larger the fragility index m and the more fragile a system is, the smaller is the KWW-

exponent �KWW und thus the more non-exponential the distribution becomes. This relation

holds at least within material classes, as this relation may have an o�set in �KWW from one

class to another (cf. �g. 2.8a).

2.5 Microscopic Description of Rearrangements

In 1965 Adam and Gibbs reported about the idea of cooperative rearranging regions (CRR),

which they depicted as essential for relaxation processes in amorphous matter [1]. Many

studies were performed to gain an understanding of the nature, volume, and impact of oc-

curring CRRs, which are nowadays distinguished as �- and �-relaxations [62].

The �-process, also called secondary process, is observed dominantly at temperatures below

Tg, and occurs on shorter timescales than primary relaxations. It merges with the �-process

at the merging temperature Tmerge % Tg (cf. �g. 2.6b). It was initially observed for poly-

mer glasses [17], having its origin in rotational motions of side chains or functional groups

of the molecules, also referred to as intra-molecular motions. Based on measurements on

rigid polymers and molecular glasses showing a distinct signature of the �-process, Johari

and Goldstein pointed out, that it has a more universal signi�cance as it is also connected

to inter-molecular motion [62]. This was con�rmed by measurements on metallic glasses,

which consist of atoms lacking internal degrees of freedom but still show a contribution to
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the secondary process [65]. Hence, inter-molecular motion is considered to be the process

of fundamental importance, thus named Johari-Goldstein-relaxation [97].

Nuclear magnetic resonance experiments on simple glass formers show a very homogeneous

nature of the �-processes due to small rotational motions of all dipoles in the system [144].

In contrast, molecular dynamics (MD) simulations [31, 139, 132] and numerical simulations

[22] show rather heterogeneous behavior due to an approximately one-dimensional, string-like

cooperative process. It is of a di�erent nature than primary relaxations, and the cooperative

regions consist of 10 to 100 atoms [124]. Experiments on colloidal glass formers con�rm

relaxation processes on the timescale of the �-process [146] and also mechanical measure-

ments on metallic glasses report consistently [9]. In the PEL, �-relaxations are viewed as

changes between inherent states, which are located within the same metabasin (cf. 2.3). In

[52] it is shown that there is a direct correlation between �-processes and the elasticity of a

sample. As the �-process is reversible due to the elastic matrix surrounding the string-like

rearrangements the site holds a "memory" of the arrangement of particles before the sec-

ondary process occurred.

Moreover, the �-process shows a connection to the di�usion behavior in metallic glasses for

the smallest constituting atoms [159]. Due to the back and forth motion of the string-like

relaxations, atoms on the end of the strings may leave one string by following another, re-

sulting in an e�ective displacement, i.e. di�usion of that atom (cf. �g. 2.9). Further details

on secondary relaxation processes are given in the review by Yu et al. [160].

The �-process becomes active within the glass transition range with increasing tempera-

ture, and is assumed as a spatio-temporal correlation between plastic events, which leads to

irreversibility of the rearrangements [88]. Argon speci�ed a plastic rearrangements of atomic

regions of tens of atoms as a shear transformation zone (STZ) [5, 6, 129]. These STZs

are con�ned in an elastic matrix, which is described using Eshelby analysis [42, 41]. The

Eshelby stress �eld is a quadrupolar elastic matrix displacement around the rearrangement's

site. It can also be imagined as hypothetically cutting the very localized volume of the plastic

rearrangement out of the matrix before it is sheared, then shear it so it takes another form,

and inserting it back into its place. Now the matrix surrounding it has to compensate for the

change in shape by elastic deformation. This elastic matrix can also be attributed for storage

of energy, resulting in a memory of the original untransformed state. However, the restoring

of the original state is very unlikely due to the relatively large number of involved particles.

The Eshelby stress �eld can be used to describe the matrix around a plastic event, hitherto

referred to as an STZ. The Eshelby �eld can also be applied to describe the surroundings of

a string-like reversible �-relaxation. This fact emphasizes the similarity between single STZs

and secondary processes. Both result in a typically elastic response of the surroundings,

even though the former includes the occurrence of a very local plastic rearrangement and

is thus to a certain extend of irreversible character [62], while the later is assumed to be

fully elastic and thus of reversible nature. Primary relaxations involve rearrangements on a

larger scale than secondary processes, and show a longer relaxation timescale (cf. �g. 2.7),

which is connected to a higher degree of correlations between the constituents of a material.

The cooperative shear model (CSM) combines the idea of STZs with the PEL [64]. Here,

primary relaxations correspond to a transition from one metabasin to another (cf. 2.3), and

an �-process is related to a succession of �-processes leading to this metabasin transition

[52]. The metabasin transition comes along with a breakdown of elasticity, which might

be understood as a (more or less complete) destruction of Eshelby stress �elds surrounding

sites of STZs. This comes along with the abundance of shape memory resulting in a plastic

deformation of the material, which is irreversible. The CSM gives furthermore the basis for

the calculation of the activation volume of an STZ [104] and thus the number of atoms

involved in the plastic rearrangement. It is calculated to consist of roughly 690 atoms for

Pd40Ni40P20 assuming a spherical geometry of the activation volume. In an experimental

study on Pd77:5Cu6:0Si16:5 the strong correlation of the activation volume to temperature
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and applied stress is measured. It reveals an increase in activation volume of roughly a factor

of 2 due to the in�uence of temperature and stress [127]. Other models were suggested to

calculate length scales of correlated atoms in metallic glasses [120], e. g. by a connection of

the width of the relaxation spectrum to the KWW-exponent �KWW (cf. eq. 2.9) by Moynihan

[94, 95], or by the evaluation of higher harmonic contributions due to plastic events [16, 2].

Figure 2.10 Plot of mechanical loss G
¬¬

versus temperature T for glass-formers obtained by dynamical

mechanical analysis at constant frequency [119].

In �g. 2.10 mechanical loss is plotted against temperature which shows striking similarity

to �g. 2.7. This similarity is described by the principle of time-temperature-superposition,

which is valid under quasi-equilibrium conditions, i.e. small excitations which probe the loss

spectra [112]. At temperatures below Tg the �-process becomes more and more activated

with increasing temperature, superimposed with the �-process which sets in at the glass

transition temperature. This shows once more, that the occurrence of structural rearrange-

ments depends highly on the kinetic energy of the system in the sense of temperature, but

also on the timescale probing the system. The frequency spectrum can be shifted by measur-

ing at higher temperature towards higher frequencies, as relaxation processes can follow on

shorter timescales. The same argument can be applied to the temperature dependent plot

in �g. 2.10: If the system were probed at a lower frequency, the loss spectrum was shifted

to the left towards lower temperatures, as the onset of the glass transition depends on the

probing timescale of the measurement.

The approach of distinguishable processes is clearly connected to a heterogeneous distribu-

tion of rearrangements. Experimentally this heterogeneity was measured by Samwer et al.

[145], and a much broader distribution of local shear modulus is observed for metallic glasses

than the case for crystalline materials.

According to Eshelby analysis, the strain �eld around a plastic inclusion or rearrangement is

of quadrupolar nature [91]. This quadrupolar strain �eld is re�ected in the local non-a�ne

displacements of particles surrounding the plastic rearrangement (see �g. 2.11). Non-a�ne

refers to that part of a particle's displacement which is not expected due to its elastic shear

modulus [59]. As in metallic glasses and other amorphous bulk materials the displacement

of atoms or particles is not an accessible quantity, molecular dynamics (MD) simulations,

numerical analysis, and experiments on colloidal systems are used as tools to learn about the

microstructure of relaxation processes.



2.5. MICROSCOPIC DESCRIPTION OF REARRANGEMENTS 15

Figure 2.11 Force response to simple shear on the left and non-a�ne displacement �eld for the same

state on the right based on numerical analysis [89].

By numerical simulations [89, 88, 137], an athermal system with a soft sphere potential

is quasi-statically prepared under simple shear. Both the potential energy and the particle

positions for each shear step are analyzed. Emphasized observations are upon others the

quadrupolar nature of energy �uctuations and cascades of these during a single transition

from one inherent state in the PEL to another. First of all, the observation of quadrupolar

�uctuations in energy con�rms the application of Eshelby analysis. Furthermore, the poten-

tial energy as a function of strain shows the existence of continuous segments, which are

interrupted by sudden drops in stress and thus energy. This is a typical signature in systems

under shear exhibiting plastic events as in �g. 2.12. For such a drop, many individual events

become detectable under detailed analysis. This observation suits to the interpretation, that

a drop in energy is connected with not only one event, but with a cascade of quadrupolar

events. These cascades do not persist, but occur only during a single, in�nitesimal small

strain step of the simulation. They propagate through the system and vanish, and can thus

be regarded as of a rather �uctuating nature (cf. �g. 2.13). If the system is driven more

intensely, concurrently occurring events are to be expected in space such that quadrupolar

patterns of several events superimpose. The cascades of STZs lead to the breakdown of

elasticity. What remains unclear in comparison to the interpretation of the model on the

PEL is, why these cascades occur during transitions from one inherent state to another in

case of the reported simulation.

Figure 2.12 Potential energy U as a function of strain � under quasi-static shear based on numerical

analysis [88].
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Figure 2.13 Instantaneous velocity �eld of a growing shear transformation zone, triggering the �ip

of another zone in its vicinity based on MD simulations [82].

The coupling model by Ngai [100, 98, 99] emphasizes the strong correlation of �- and �-

relaxation very clearly. It connects the rather independent nature of secondary relaxations to

primitive �-relaxations exhibiting a similarly independent relaxation behavior. The timescale

of this primitive �-relaxation �0 can be extracted by the de�nition of an onset of slowing

down the independent relaxations at the time tc . The magnitude of tc is dependent on

the strength of interaction between relaxations. Before tc (t $ tc) the response of the

�-relaxation is assumed to be purely exponential as the case for �-relaxations (cf. eq. 2.2).

After tc (t % tc) the cooperative relaxation occurs as �� as in the stretched-exponential

KWW function (eq. 2.9), whose exponent is directly connected to the coupling parameter n,

and which is typically observed in case of �-relaxation (cf. eq. 2.3). These timescales can be

connected to another by assuming continuity of the exponential and stretched exponential

behavior at t � tc according to:

�� � �t�nc �0�1©�1�n� (2.11)

As a result of these assumptions, the timescale of secondary relaxation is at the glass transi-

tion temperature of comparable order of magnitude as the timescale of primitive �-relaxations

(���Tg� � �0�Tg�). This indicates a close relation of �- and �-relaxations, even though the

primitive �-relaxation and the �-relaxation is not assumed to be identical.

(a) (b)

Figure 2.14 Spatial distribution of strain (a) in y-z- and (b) x-z-plane for an STZ, with particles

colored corresponding to their shear strain (cf. colorscale in �g. 2.15) based on experiments on

colloidal systems [122].

In colloidal systems, sites of structural rearrangements are identi�ed, and the quadrupolar dis-

tribution of displacements surrounding an STZ is measured in three dimensions [122, 20, 19].

STZs are induced both thermally, appearing as thermal strain �uctuations, and mechanically
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by a shear stress close to the yielding stress of the system (cf. section 2.6). Fig. 2.14 shows

the response of a glass to a shear strain applied in y-direction, in (a) a section of the y-z-

plane of the system is shown. The arrow points towards the center of an STZ, consisting of

particles exhibiting a high positive strain and thus a high positive displacement (red colored).

Surrounding this plastic core, four regions of negative shear (indicated by blue regions) are

located, which correspond to the typical form of the quadruploar displacement �eld due to a

structural rearrangement in its center [41]. The observed displacements are constant within

the region of the core, which extends over a radius of rc � 3:07rp, where rp denotes the

average particle radius of the system. For radial distances larger than rc the displacement

�eld decays with � r
�3
, as expected [41]. Fig. 2.14b shows a section of the colloidal system

in the x-z-plane for the same STZ as in �g. 2.14a. The core seems to be slightly elongated

with a width wc � 6:67rp. Moreover, along the x-direction the core is enclosed by regions

of negative strain.

Not only single STZs are observed in the colloidal system, but also a coupling between persist-

ing and initialized STZs in their vicinity, such that the nucleation of new shear transformation

zones is faciliated. Branches of positive strain, i.e. positive displacements, evolve between

STZs with increasing experimental time, as shown in �g. 2.15. Red colored regions corre-

spond to STZs, yellow colored particles indicate regions of enhanced strain. Clearly, STZs

connect to a kind of network which intermingles and �nally permeates the entire plane. Sub-

�gures A to C in �g. 2.15 show the spatial distribution of strain of all particles in the plane,

while sub�gures D to F are restricted to enhanced strain values.

Figure 2.15 Evolution of strain with experimental time after 20min (A), 30min (B), and 50min

(C) with arrows indicating STZs for x-y-frames of 5 µm thickness in z-direction. D to F for same

experimental times, but including highly strained particles for x-y-frames of 16 µm thickness in z-

direction, based on experiments on colloidal systems [122].

A further topic highly related to the microstructure of rearrangements is the formation of

shear bands, which evolve characteristically in a system driven by very high stress or strain.

In metallic glasses shear bands inherit a two-dimensional topology of a highly strained core of
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a few nm in thickness, surrounded by a tens of µm thick soft zone [87]. Shear bands become

system spanning and cause the failure of the system and are of permanent character. An im-

portant question is if and how cascades of STZs, which are of a �uctuating, transient nature,

correlate to form persistent shear bands. The evolution of shear bands from STZs is assumed

to be the underlying mechanism, which occurs when a critical density of STZs is achieved by

mechanical excitation [49]. In contradiction, Le Bouil et al. [80] published experimental data

based on a granular material under stress, showing distinct di�erences between the nature of

a cooperative avalanche network as observed in [122], too, and a persistent shear band. The

angle � of the observed microstructural rearrangements relative to the direction of applied

shear di�ers signi�cantly by 20° (transient avalanche network with � � � 45°; permanent

shear band with � � � 65°). Moreover the avalanche network coexists near failure with the

permanent shear band, and the authors claim that the relationship between these transient

microbands [i.e. avalanches] and the �nal permanent frictional shear band is more complex

than the description of a �nal persistent shear-band formation as a mere growing cascade

of local rearrangements. However, an alternative model to describe the initiation of shear

bands is not given, thus the emergence of persistent shear-bands from cascades of local

rearrangements is currently considered as the most appropriate description.

2.6 In�uence of Mechanical Excitation on Structural Rearrange-

ments

As described in the section on the microstructure of relaxation processes (sec. 2.5), viscosity

does not only depend on the material's temperature, but also on its structure [73, 76]. It is

determined by the history of the glass, e.g. the preparation technique, but is also depending

on how it is exposed to mechanical excitation [108].

Figure 2.16 Stress-strain-curves measured under compressive mechanical load up to six di�erent total

strains on a metallic glass [52].

The response in stress due to an applied strain is plotted for six di�erent total strains in

�g. 2.16. It is measured during mechanical compression of amorphous metallic glass samples

made of Pd43Ni10Cu27P20 at a constant strain rate of 10
�4

at a temperatures of 548K,

which is 21K below the calorimetric glass transition temperature [52]. In the stress-strain-
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curves, three distinctive regimes can be accounted for, which are due to di�erent mechanism

of rearrangement within the material.

The �rst stress-strain-curve in �g. 2.16 marked as (a) shows a linear-like increase which is

declared as the elastic part of the stress-strain-curve. In the case of an compression or shear

experiment, its slope is de�ned as the shear modulus G:

� � G � " (2.12)

It gives the relation between stress � and strain � for low values, where the material's re-

sponse is assumed to be purely elastic, i.e. where the occurrence of plastic processes is small.

The elastic regime ranges from lowest values in stress and strain up to the critical stress �c ,

at which the stress-strain-curve has its maximum (cf. (b)), which is referred to as the yield

point. In the model of the PEL (cf. ch. 2.3), this �rst regime of the stress-strain-curve is

dominated by intrabasin hopping correlated to �-processes or single STZs [52]. For stresses

� larger than the critical stress, changes between metabasins and thus irreversible processes

become more and more probable. In curves (c), (d), and (e) the stress-strain-curve shows

a decreasing behavior, which is due to an increasing tendency towards irreversible processes.

Thus, cascades or avalanches of STZs are expected which are connected to energy dissipa-

tion. This anelastic regime ends where the stress-strain-curve saturates to a plateau as in

(f). The plateau regime of constant stress even though increasing strain is called the plastic

regime. Here, the interbasin hopping rate, correlated to stress drops, and the elastic increase

in stress balances to a steady state. Here, shear band formation is typically observed, as

described microstructurally in section 2.5.

In [61] an order parameter is introduced, which compares the di�erent con�gurations of

the system while being strained. This parameter describes the overlap between the initial

con�guration at zero strain with any con�guration that occurs during the straining of the

system. In the regime of the yield point, this order parameter can be used to identify a phase

transition from the quasi-elastic to the elasto-plastic state. Here, all occurring con�gura-

tions lose their overlap with the initial con�guration, while at slightly lower strain the overlap

of con�gurations is still given. The characteristics of con�gurations in the two phases are

regarded the same, but the number of available con�gurations increases vastly at the yield

point, when the proclaimed phase transition occurs.

Whether shear band formation occurs, i.e. inhomogeneous �ow is established, or if the ma-

terial deforms homogeneously, depends on several parameters. These are the temperature T

relative to the glass transition temperature Tg, the applied shear stress relative to the shear

modulus (in �g. 2.17 depicted as � and �, respectively), and the strain rate _", as depicted in

the mechanical deformation maps as introduced by Spaepen [130]. In �g. 2.17 for relative

stresses below a threshold of roughly 0:02 the system deforms either elastically for temper-

atures below the glass transition temperature or due to homogeneous �ow. Depending on

the strain rate and accordingly the stress the material behaves liquid-like, i.e. Newtonian as

for lower stresses, or solid-like, i.e. non-Newtonian as for higher stress. If the normalized

stress exceeds the threshold of 0:02, the material exhibits inhomogeneous deformation as

described by the cooperative shear model [64], connected to shear banding and thus very

localized strain (cf. sec. 2.5).

If �x describes the relative displacement between two parallel plates with the space in be-

tween �lled by a liquid-like material, and d is the distance between the plates, the shear strain

" mentioned above is de�ned by " � �x©d [78]. With the stress � � F©A involving force

F and area of a plate A, and _" as the derivative of shear strain, the viscosity is de�ned as

� � � � _". Maxwell [90] connected strain rate _", viscosity �, and shear modulus G as

_" �
�
� �

_�

G
(2.13)
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Figure 2.17 Mechanical deformation map depicting deformation mechanisms in metallic glasses de-

pending on normalized temperature T©Tg, normalized stress �©�, and strain rate _�. [86].

applying for both the steady-state �ow in liquids ( _� � 0), also called Newtonian �ow, and

for solids (� � �), which is non-Newtonian. The broad range in between is a coupling

of both extremes called visco-elastic behavior. If the Newtonian part was represented by

a spring and the non-Newtonian part by a dash-pot, the Maxwell-model would couple both

in series. Another model, called Kelvin-Voigt-model, connects both extremes in a parallel

manner [45, 21] and thus attributes to the creep behavior typical for visco-elastic materials.

If one assumes an abrupt shearing displacement _"�t� � "0��t� within the Maxwell-model,

integration yields for t � 0:

"0 �
�

G
(2.14)

It becomes obvious that the shear modulus G is instantaneous or frequency-independent and

thus it is often denoted as G�.

For t % 0 the stress decays exponentially, thus the shear modulus can be connected to a

relaxation timescale � :

� �
�

G�
(2.15)

These equations re�ect again the complexity of the glass transition, as the material between

the �ctive plates behaves solid-like on timescale much shorter than � , as well as for large

shear rates, but behaves liquid-like on timescales which are comparatively long towards �

[34].

In case of a tensile experiment the slope of the elastic regime of a stress-strain-curve, which

is described by Hook's Law, is de�ned as the Young's modulus E [92].

� � E � " (2.16)

Shear modulus G and Young's modulus E are related by the Poisson's ration � via [107, 154]:

E � 2G�1 � �� (2.17)

The Poisson's ratio depends on the material, e.g. for the metallic glass Pd40Ni40P20 the

value is determined to 0:403 [102].
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The cooperative shear model (CSM) relates the value of the shear modulus G to the curvature

of the potential energy density � as a function of strain " by

G � �
¬¬
�

d
2
�

d"2
: (2.18)

This gives a connection of the shear modulus G with the position of the accounted system

regarding its depth in the PEL within a basin [161, 52, 63]. For lower states of potential

energy of the system the curvature of the basin, which the system inherits, becomes larger.

Thus, the value for the shear modulus exhibits higher values, if the density of minima in the

PEL can be assumed as constant. Under strain, the curvature of these minima is reduced,

resulting in a decrease in shear modulus in the picture of the PEL.

2.7 Response to High Field Excitations

MD-simulations and experiments on colloidal systems show that mechanical excitation is an

important tool to probe structural relaxations in form of microstructural rearrangements (see

section 2.5). Indeed, stress and strain play an important role, somehow similar to temperature

itself, regarding the in�uence on the onset of the glass transition region. As has been shown

in [11] and [50] by numerical analysis and simulations of Zr-based metallic glass, the glass

transition temperature Tg is directly linked to mechanical yielding.

The in�uence of applied stress and temperature on the damping behavior of a Pd-based

metallic glass is measured experimentally for temperatures below Tg by Schwabe et al. [126].

In �g. 2.18 the timescale of the damping during a creep measurement, denoted as delay-time,

is plotted and clearly increases with increasing stress and temperature. For small temperatures

and stresses the system is interpreted as elastically responding, connected to a small degree

of dissipated energy and minor damping. With increasing stress and temperature, more and

more energy is dissipated in the system, connected to the activation of irreversible plastic

processes connected to enhanced damping. The fact that stress and temperature in�uence

the damping behavior in a similar fashion leads to the conclusion, that similar processes of

structural rearrangements are triggered by both parameters.

Figure 2.18 In�uence of temperature T and stress on the damping controlled delay-time of

Pd77:5Cu6:0Si16:5 determined by mechanical creep measurements [126].
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(a) (b)

Figure 2.19 (a) Mechanical loss E
¬¬

as a function of temperature T , and (b) mechanical loss E
¬¬

as

a function of temperature T and strain amplitude "A, both based on MD-simulations [157].

Yu et al. [157] connected the mechanically driven glass transition with a change in fragility

m by performing MD-simulation of dynamical mechanical spectroscopy on a model metallic

glass. As in �g. 2.19, with increasing strain the spectrum of the mechanical loss spectrum

broadens signi�cantly in a nonlinear fashion, the low-temperature �ank is dominantly a�ected.

A fragile-to-strong transition is occurring with increasing strain amplitude as indicated by the

connection of the increasing width of the loss spectrum to the reduction of fragility [27]. The

calculation of the fragility via eq. 2.4 using the dependence of relaxation timescales of the

�-process on inverse temperature con�rms this observation. The relative change in fragility

is plotted in �g. 2.20.

This result suits the in�uence of stress on the PEL, as the landscape is tilted with increasing

stress as in �g. 2.21. The tilting leads to the destruction of inherent states in the PEL

by the applied strain, as the inherent state collides with a transient state. Furthermore,

the system drops in energy in an irreversible way, as the obtained state in the PEL before

the destruction of the occupied inherent state is not existent anymore. Schematically, an

applied stress of signi�cant amplitude leads to a PEL, which consists of few deep minima,

but rather homogeneous barriers, as depicted in �g. 2.5, which corresponds qualitatively to

the landscape typical for a rather strong glass-former (cf. section 2.3).

Figure 2.20 Normalized fragility index Norm�m� � mmeasured©m"A;min as a function of strain amplitude

"A deduced from MD-simulations [157].
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Figure 2.21 Scheme of the change of the potential energy landscape due to applied shear stress [59].

Interestingly, both the temperature-induced and the strain driven glass transition in metallic

glasses are attributed to the Lindemann criterion [83]. It is a theory for the melting of a

crystalline solid, considering the range of displacements of atoms as an indicator for the phase

transition. With increasing temperature the amplitude of the vibrational displacements of

particles increases. By de�ning a critical value, the vibrational amplitude at which the material

is considered as melted is identi�ed. The threshold is depending on the interaction potential

and is in most cases between 0:1 and 0:2. As an universal observation, the �-relaxation in

metallic glasses occurs if the most probable atomic displacement exceeds the critical value.

This is 20% of the average atomic displacement and re�ects the position of the in�ection

point in the e�ective inter-atomic potential. This approach is independent of the driving

parameter for the transition, which can be temperature, stress, or others [158].

2.7.1 Nonlinear Response in Dielectric Spectroscopy

The method of MD-dynamical mechanical spectroscopy used by Yu et al. [157] has its exam-

ple in dielectric spectroscopy, which is used to experimentally probe the nonlinear response

of amorphous materials to high �eld excitation and deduce information on the heterogeneity

of the relaxation spectrum [117].

Linear behavior exhibits a proportionality between excitation and response signal, which are

the electric �eld E and the polarization P in case of dielectric experiments, depicted as a

dashed line in �g. 2.22. Under high �eld excitation the sample response exhibits a nonlinear

relation between polarization and electric �eld, while the onset of nonlinearity depends on

the resolution limit of the measurement technique [113]. Two di�erent approaches can be

chosen to enter the nonlinear regime. Either the application of a large amplitude ac �eld Eac

as discussed below, or a small ac �eld superimposed on a large dc �eld Edc�ac .

Typically, nonlinearity in dielectric response experiments is described by

P �t�
"0

� �E�t� � �
�3�

E
3�t� � �

�5�
E
5�t� � �

�7�
E
7�t�: (2.19)

Under the assumption that contributions higher than the third order result in negligible out-

put, the frequency-dependent susceptibilities �
�n��!� can be expressed as [138]:

P1�!�
"0E0

� �1�!� � 3E
2

0

4
�
�3�
1

�!� � �1�!� �1 � � ln�1�!�� (2.20a)

P3�3!�
"0E0

�

E
2

0

4
�
�3�
3

�3!� (2.20b)

The indices of �
�n�
k denote the power n of the electric �eld associated with the susceptibility

and the Fourier component k of the polarization. Evidently, the nonlinear response results in

two e�ects, which are the change of the response in the fundamental frequency !, and the

generation of higher harmonic contributions.
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Figure 2.22 Scheme of nonlinear response as a third-order polynomial (solid line) deviating from the

linear behavior (dashed line) for an exciting electric �eld E and polarization response P [113].

To approach the nonlinear response regime a sinusoidal voltage, in other means an electric

�eld Ex�t� � E0 sin�!t�, is applied to a dielectric sample at a certain angular frequency

!. The �eld amplitude E0 is switched from a typically low value to a high value, and back

to the initial low value, each for a �xed number of cycles. The cycling is chosen to be

su�ciently long to measure the time-dependent response, but short enough to avoid Joule

heating e�ects [147]. Voltage and resulting current are measured, analyzed using period-by-

period Fourier analysis to extract amplitude and phase di�erence �� at desired frequencies

!, 2!, 3!, or higher harmonic orders. The storage and loss dielectric susceptibility "
¬�!�

and "
¬¬�!�, as well as the loss tan � � tan��©2 � ��� are analyzed. This is performed for

several frequencies � � !�2���1 in a range covering several orders of magnitude to measure

the frequency- and time-dependent nonlinear response signal. The resulting data in dielectric

loss for low-�eld and high-�eld amplitudes are plotted in �g. 2.23 for glycerol.

Figure 2.23 Dielectric loss "
¬¬

��� (symbols) against frequency � for glycerol at T � 213K at a

low-�eld amplitude of E0 � 14 kV cm
�1

(lower data) and a high-�eld amplitude of E0 � 283 kV cm
�1

(upper data). The line is based on assumptions due to the box-model [148].
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On the high-frequency �ank of the spectrum, the high-�eld loss data shows clearly values,

which are shifted towards higher frequencies, with the shifting e�ect well captured by the

so called box-model [117]. It aims on describing the nonlinear e�ects occurring due to

energy absorption from a high time-dependent external �eld under following assumptions.

The overall non-exponential relaxation spectrum is assumed to consist of distinct domains of

Debye-type, i.e. exponential character, consistent with heterogeneous dynamics (cf. section

2.3), as depicted in �g. 2.24.

Figure 2.24 Scheme of independent slow modes, weakly coupled to the phonon bath and thus ex-

hibiting slow relaxation of the energy absorbed from an external �eld. Thus, an increase in e�ective

temperature and a shift in the high-frequency �ank of the dielectric loss spectrum are expected [57].

These distinct modes are assumed not to couple with another and to relax independently.

If these modes are subject to selective heating, as due to coupling to an electric �eld of

frequency � � �2��i��1, they recover the absorbed energy via their coupling to a common

phonon bath. It is re�ected by the vibrational modes of the system, which inherit half the

speci�c heat Cp of the system, while the other half is due to the slow degrees of freedom,

i.e. the distinct exponential relaxations. Vibrational modes and the in comparison very slow

relaxations exhibit a very weak coupling for the observed temperature range, i.e. relaxations

are very weakly coupled to the phonon bath.

The energy, which is transferred irreversibly to the sample, can be expressed as average

power px . It depends on the frequency � of the external �eld, its amplitude squared E
2

0 , the

sample volume V , and the dielectric loss susceptibility "
¬¬���. As the energy relaxation to the

phonon bath is weak compared to the energy absorption from the external �eld, the thermal

relaxation time �T is large and an excess �ctive temperature Te (Tf � Tbath � Te) evolves

for the selected mode.
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The increase in �ctive temperature is related to �T via the speci�c heat Cp as

Te �
px
� �

�T � px
Cp

; (2.21)

with the heat conductance � � Cp©�T .
The e�ect of increased �ctive temperature can be quanti�ed as a change of the relax-

ation time ��T � of selected modes by the e�ective activation energy derived from low �eld-

measurements. The excess temperature can thus be determined by

Te��� � "0E
2

0�"

2�cp

!
2
�
2

1 � !2�2
; (2.22)

with �cp as the total heat capacity step associated with slow modes, "0 as permittivity of

vacuum, �" as the dielectric relaxation strength, assuming that the timescale of thermal

relaxation is identical to the timescale of polarization relaxation. For modes � %% 1©! an

increase in �ctive temperature is observed as a shift of the high frequency �ank in �g. 2.23.

For modes � $$ 1©! no e�ect is expected, as experimentally con�rmed for many structural

glass formers.

(a) (b)

Figure 2.25 Field amplitude dependence of relative change in dielectric loss � ln "
¬¬

vs. frequency. (a)

for a structural glass-former [148], (b) for a mono-hydroxy alcohol [58].

As eqs. 2.22 and 2.20a state, the shift of the loss spectrum for � %% 1©! due to the energy

absorption shows a squared-dependence on the high �eld amplitude. In the upper part of

�g. 2.25a, the relative change in dielectric loss, � ln "
¬¬
� �"¬¬hf � "

¬¬

l f �©"¬¬l f , is plotted against

frequency � for a structural glass-former. In the lower part, the relative change in dielectric

loss is normalized by s � E
2

ref ©E2

0 with a common �eld E
2

ref , resulting in a mastercurve. This

behavior, as well as the plot of � ln "
¬¬
against E

2

0 for a mono-hydroxy alcohol (�g. 2.25b)

agrees with the approach via the box-model.

The values of the relative change in dielectric loss � ln "
¬¬
are deduced from the steady state

behavior, after the system has saturated. The change of the loss signal with time is of special

interest, as it provides insight into the dynamics of the glass. As the box-model takes the

behavior of independent relaxations into account, the case of heterogeneous dynamics would

result in a frequency-dependence of the rate needed to achieve steady state. Fig. 2.26 shows

the time-dependent behavior of the relative change in loss � ln�tan �� for various frequencies,
which is typical for the behavior of structural glass-formers. It shows a frequency-dependence

up to frequencies � of the order of 10
2
�max , the loss peak frequency for low �eld amplitude.

At higher frequencies, a frequency-independent behavior is observed which is not indicated



2.7. RESPONSE TO HIGH FIELD EXCITATIONS 27

by the box-model. It is related to the isothermal aging of molecular glass-formers, i.e. time-

aging time-superposition [103], which is not covered by the model assumptions.

Figure 2.26 Time resolved relative changes in loss factor � ln�tan �� for various frequencies measured

on poly carbonate [58].

Measurements of higher harmonic contributions were performed on several glass-formers, e.g.

in [58]. Experimental results by Crauste-Thibierge et al. [23] were connected with a model

by Bouchaud and Biroli [16], which uses the response of the third harmonic contribution

to gain information on the number of correlated particles Ncorr [18]. The model points

out that in slow glassy systems under equilibrium conditions the nonlinear response to an

external �eld at the third harmonic probes how dynamics are correlated in space. Thus it is a

direct measure of the cooperative length, which is expected to increase as the temperature is

reduced. The predictions of the model are experimentally con�rmed and extended to several

glass-formers [8]. To extract the change of Ncorr with temperature, at each temperature

T the spectrum of the third harmonic dielectric susceptibility �3�!; T � is measured. The

temperature-dependence of the maximum of the hump is directly correlated to the behavior

of Ncorr with temperature (cf. �g. 2.27). Richert [115] points out, that the amplitude of

the observed hump of the third harmonic susceptibility can also be modeled by assumptions

based on a variation of activation energy not including any dynamical correlations or spatial

scales.

By the model, higher harmonic contributions to the dielectric susceptibility are associated with

an increase in 'amorphous order' while approaching the glass transition [2]. The existence

of an underlying phase transition is implied resulting in a state which consists of molecules

in 'well-de�ned yet disordered positions'. Results show a stronger frequency-dependence of

�5�!� than for �3�!�, i.e. the hump in �5�!� is more pronounced. Moreover �5 increases

stronger with decreasing temperature than �3, following �3 � �
2

5. Thus, the experimental

data con�rms long-range correlations which act over a length-scale l . It is connected to

the number of correlated particles Ncorr and a timescale ��. Moreover, the authors claim a

con�rmation of the thermodynamic signature of a phase-transition which is in contradiction

with purely dynamic scenarios as assumed by the box-model.

To extend the realm of nonlinear experiments to metallic glasses, the techniques described

above will be transferred to mechanical experiments performed on a Pd-based metallic glass.
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Figure 2.27 Relation between the number of correlated particles Ncorr (symbols) and the apparent

activation enthalpy (lines), which is adjusted by a normalization factor, against temperature T [8].

2.7.2 Linear Response and Instantaneous Breakdowns of Elasticity

As discussed in section 2.5, the occurrence of avalanche dynamics is connected to continu-

ous, linearly increasing segments interrupted by instantaneous drops in the potential energy.

If plotting the probability or number of counts of occurring energies dissipated during a drop,

double-logarithmic scaling exhibits a linear-like behavior between the energy jumps �E and

the probability P ��E� in accordance to avalanche dynamics theory. In �g. 2.28 the regime

exhibiting this power-law behavior extends over roughly three orders of magnitude with ex-

ponents, i.e. slopes in log-log scaling, between �0:51 and �0:83. The data is based on

numerical simulations applying quasi-static athermal shear as referred to on p. 15.

Figure 2.28 Distribution of drops in potential energy �E due to microstructural rearrangements based

on numerical simulations [88].
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This is one example on power-law behavior upon many, as it is a widely observed phenomenon

and occurs similarly for distributions on the magnitude of earthquakes [24], of Barkhausen

noise [106]. The reason for the universality of power-law behavior is due to self-organized

critical states and is described by avalanche dynamics theory. It occurs when a system con-

sists of states of minimal stability and small perturbations lead to reorganizations [7]. These

occur on very di�erent length scales, leading to a broad distribution of possible values of re-

arrangements or clusters over some orders of magnitude. It is a state which is also observed

under mechanical excitation of amorphous systems, typically connected to the plastic part

of the stress-strain-curve, where serrated �ow is observed due to shear bands [134]. In the

elastic and anelastic regime, the occurrence of STZs is postulated as well, and thus under

current investigation [54, 77]. Power-law analysis by means of experiments, simulations, and

numerical analysis for mechanically excited systems lead to a number of power-law exponents,

which are well deduced from experiments in the plastic regime of serrated �ow. In case of

�g. 2.29, the distribution is extracted by mechanical creep experiments on metallic glass. A

dependence of the power-law on the strain rate is suggested, resulting in a value of �0:8 in

case of reasonably low strain rates [74, 54]. The basis of evaluation is the extraction of the

waiting time, which is connected to the time that is needed to achieve the next strain step,

that is de�ned by the resolution of the strain measurement.

Figure 2.29 Waiting time distribution extracted by tensile creep experiments on Pd77:5Cu6:0Si16:5
metallic glass [74].

The appearance of plastic events, observed as drops in stress and potential energy, trig-

gers the question after the exact stress-strain-relation of the continuous segments between

events.

The slope of these segments was analyzed using numerical simulations at low temperature

under quasi-static straining [32]. Here, the slope of continuous segments is evaluated cover-

ing the elastic, anelastic, and plastic regime of stress-strain-curves. It is de�ned as piecewise

linear for the span of a continuous segment with �� � ��
��
 with stress �, strain 
, and

modulus �. Three di�erent approaches are realized to gain values for the modulus, i.e. the

slope of continuous segments, which are compared in �g. 2.30.

First, quenched averages of shear modulus are de�ned by determining the modulus for con-

tinuous segments occurring within a certain binning window of strain for an individual stress-

strain-curve. Then values of � for the same temperature and binning window but from

di�erent realizations, i.e. stress-strain-curves, are averaged, while the number of individual

values is in the order of 10
2
. These values of � are de�ned as $ d�©d
 % and plotted against


 in �g. 2.30 as red symbols.
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Figure 2.30 Modulus � against strain 
, determined by three di�erent routes as described in the text,

based on numerical simulations [32].

Second, the modulus is calculated using the Born approximation �B [15] according to

��
� � �B�
� � V

kBT
���2� � ����2� ; (2.23)

with volume V , temperature T , Boltzmann constant kB, as well as ��2� and ���2, obtained
from averages of the �rst and second moment of stress from all individual stress-strain-

curves. Corresponding data is plotted in �g. 2.30 as blue symbols, denoted as $ �B ��F %.

Third, to obtain annealed averages stress-strain-curves are averaged over many realizations

and the local slope, equivalent to the modulus, is measured and plotted in �g. 2.30 as

d $ � % ©d
 using green symbols.

It is evident that the �rst and second evaluation approaches yield matching behavior. Thus,

the response to mechanical excitation should be considered as piecewise linear, and not in

form of a nonlinear expansion. In other words, even for the plastic regime of a stress-strain-

Figure 2.31 Scheme of the characteristic stress-strain-behavior during the EIP-motif, exhibiting ini-

tially elastic behavior which is interrupted at the instability point by a stress drop due to a plastic

event [77].
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curve, the elastic modulus is well de�ned, while the net slope of zero and thus a coarsely

de�ned "modulus" close to zero is due to the counteracting behavior of positive elastic

response segments and negative plastic response. This is depicted by the "Elastic-Instability-

Plastic" or (EIP)-motif which consists of a segment of increasing stress, which is elastically

coupled to an increasing strain, and a subsequent drop due to a plastic event with inherent

energy dissipation. This motif re�ects characteristic behavior, which is observed throughout

the whole regime of strains, even though with changing intensities regarding occurrence, size

�� and duration �t.

At higher temperatures, plastic events become indistinguishable as they occur simultane-

ously in space and time, resulting in superimposed response of events and apparent slopes

that might di�er from the modulus calculated via the Born term. Thus, higher temperatures

exhibit modulus values with similarity to the data based on annealed averages. The authors

in [32] state, that a correct measurement of ��
� could be obtained by measuring stress

�uctuations and an estimation of the Born term, to derive the modulus according to eq. 2.23.

As [140] reports, the rate of an experiment has a strong e�ect on the occurrence of

avalanches. In quasi-static approaches the driving quantity, e.g. stress, strain, or mag-

netic �eld is hold at a constant value until the activated avalanches are petered out. Finite

driving rates are more realistic as these occur in experiments, for which the e�ect of super-

imposed plastic response is enhanced. This temporal overlap of avalanches results in a more

complicated response behavior as shown on the example of Barkhausen noise response to in-

creasing sweep rate in �g. 2.32. An avalanche begins when the voltage depicted on the y-axis

rises above the base-line voltage and ends when this base-line voltage is achieved again. For

small sweep rate the Barkhausen-avalanches are very narrow (A). For higher sweep rates as

depicted in (B) and (C), the avalanches exhibit longer durations and more intense behavior,

i.e. higher peak voltages. At very high sweep rates as in (D), the avalanches are persistent

as the base-line voltage is not approached any more.

Figure 2.32 Occurrence of Barkhausen noise plotted versus time with increasing sweep rate from A)

to D) [140].
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Chapter 3

Experimental and Analytical Methods

In this chapter, experimental methods for the sample characterization and high �eld measure-

ments by dynamical mechanical excitation are introduced. Further on, analytical methods

for data processing are described.

The material that is used for all experiments in this thesis is the metallic glass Pd40Ni40P20.

It is of high thermal stability in comparison to other glass-formers of this class, as the glass

transition temperature Tg at 569K is separated from the crystallization temperature by

roughly 90K (based on DSC measurements at 10Kmin
�1

[66]). Moreover it is considered

as rather stable towards oxidation under steady Ar-�ow, especially in comparison to other

metallic glasses. The calorimetric glass transition of Pd40Ni40P20 is pronounced and con-

nected to a change in heat capacity �c
s�l
p of 3:7 calmol

�1
K
�1

[56] between the glassy and

the supercooled liquid state due to additional con�gurational relaxations. To be able to com-

pare this value with the measured change in heat capacity �c
s�l
p , it can be transformed via

the molar volume Vmol of 7:68 cm
3
mol

�1
and the density � of 9:4 g cm

�3
[102] to SI-units,

resulting in a value of 214mJ g
�1

K
�1
. This is in comparable order as the value for �c

s�l
p of

290mJ g
�1

K
�1

derived by Wilde et al. [151].

From a mechanical point of view Pd40Ni40P20 is considered a ductile material. At room tem-

perature a yield stress �Y of 1600MPa is reported [96]. The instantaneous shear modulus

G� at room temperature is determined by means of ultrasonic measurements to 37�1�GPa
[66, 102, 79]. A slightly smaller value of 21�1�GPa is reported by Schröter et al. [125],

which is determined by torsional rheometry. The connection of elastic and shear modulus

via the Poisson ratio (cf. eq. 2.17) of 0:403 [102] allows for a conversion between the two

types of moduli. In case of ultrasonic measurements, an elastic modulus of 107�3�GPa is

gained, rheological experiments yield a value of 59�3�GPa. The elastic compliance is thus

9:3�3� � 10
�12

Pa
�1

for the former, and 16:9�9� � 10
�12

Pa
�1

for the later experimental

method.

The fragilitym of Pd40Ni40P20 is determined to 41:5measured by dynamical mechanical anal-

ysis at 1Hz [125]. This gives a KWW-exponent �KWW of 0:65�9� according to eq. 2.10.

The value of �KWW � 0:65 is used for KWW-�ts in the following chapters. VFT-parameters

are �0 � 5 � 10
6
Pa s, B � D � TV FT � 690K and TV FT � 500K according to [151].

3.1 Preparation of Metallic Glass Samples

To prepare Pd40Ni40P20 metallic glass samples, pure Palladium (Heraeus, bar, purity 3N5)

and pure Nickel (Alfa Aesar, lump, purity 3N7) are weighed to an accuracy of 0:1% and

melted several times in an arc melter in presence of Zirconium as an oxidant to gain a pre-

alloy. Phosphorus (Chempur, purity 5N) is weighed under Argon-atmosphere (Air Liquide,

purity 5N) to an accuracy of 0:1% with an addition of 3% in weight to the amount necessary

33
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to get the correct composition for the pre-alloy. Together with Boron-oxide B2O3 (ChemPur,

purity 4N), the pre-alloy and the Phosphorus are sealed under a protective atmosphere of

750mbar Argon into a quartz-tube. The quartz tube is positioned within an induction coil

and heated until a homogeneous melt is gained, which is rapidly cooled in a bucket of water.

In order to prepare the metallic glass, the alloy is chopped into pieces su�ciently small to

�t into a quartz tube using a hardened steel mortar. The quartz tube, providing an injection

hole of 0:8mm in diameter, is mounted in the vacuum chamber of a melt spinner, centered

within an induction coil. The quartz tube is connected by a valve to a pressurized gas

tank of Argon (Air Liquide, purity 5N) and is located above a copper form of low oxygen

content, which is cooled by a continuous �ow of liquid nitrogen. Chamber and pressure

tank are rinsed several times by successive evacuation and purging with Argon gas. After

the �nal evacuation, a minimal pressure of 10
�7

mbar is achieved. To prepare the shot, the

atmosphere in the chamber is set to 100mbar Argon pressure while the gas tank is adjusted

to 900mbar Argon pressure. The generator is set to a value of 5:0 to 5:5 to heat the alloy

up to temperatures of 1800K to 2200K via the induction coil. During the shot the molt

is blown into the copper form by abruptly opening the valve to the pressure tank. As soon

as the molt �lls the copper-mold, it is quenched by a rate of roughly 10
5
to 10

6
K s

�1
to a

metallic glass [149]. After separation of the sample from the copper form, a metallic glass

sample of 30mm length, 10mm width, and 1mm thickness is obtained. As a preparation

for mechanical experiments, bars of 1mm width are cut from the sample using an annular

diamond saw, resulting in samples of 1mm � 1mm � 30mm.

3.2 X-Ray Di�raction

The amorphous state of the samples is probed by X-Ray di�raction (XRD) using a D 8 by

Bruker Analytical X-Ray Systems with a Cu K�-cathode with a wavelength � of 157:4 pm.

A �-2�-setup is used which consists of the x-ray source, sample, and detector. Detector and

sample are moved in such a way, that only those x-rays are detected which are scattered by

twice the incident angle� relative to the sample-source-plane. The condition for constructive

interference is ful�lled by Bragg's Law

2d sin � � n�; (3.1)

where n is the order of the observed maximum. As there are no crystallographic planes

in a disordered system, only atoms at a certain distance d can contribute to a constructive

interference phenomenon. Thus, the signal is much less intense than for a crystalline material.

Moreover, there are no peaks observable, but rather widely spread maxima due to the broad

distribution of atomic distances [38].

Slits behind source and sample are chosen to a width of 0:6mm, the slit in front of the

detector has a width of 1:0mm. The amorphous samples are analyzed in an angular range of

� from 20° to 90° in order to get an overview over the �rst and second amorphous maximum.

Therefore, continuous scans with a rate of 20 °min
�1

and a step size of 0:1° are applied.

Furthermore, a detailed scan in the regime of the �rst amorphous maximum is performed

as a step scan with a rate of 10 s per step and a step size of 0:05°. Samples are analyzed

systematically on both the cut and the cast surface.

3.3 Energy Dispersive X-ray Spectroscopy

To analyze the chemical composition of the samples, a scanning electron microscope (SEM)

by Carl Zeiss NTS GmbH of type LEO SUPRA 35 is used in combination with an energy

dispersive X-Ray spectroscopy (EDX) system by Thermo Fisher Scienti�c GmbH.



3.4. DIFFERENTIAL SCANNING CALORIMETRY 35

The high energy electrons of the SEM beam excite electrons from the electron shells of the

sample material's atoms. Vacant electron sites in lower shells are reoccupied by electrons

from shells of a higher energy ground state. This process is accompanied by a release of

photons with a characteristic wavelength depending on the atomic species, which is in the

regime of x-rays. If these photons collide with the Si(Li)-detector, electron-hole-pairs are

generated. As their number is proportional to the energy of the absorbed photon, its wave-

length can be measured by an integration over the current which �ows due to the free charge

carriers excited by the photon with respect to time [60].

The EDX analysis was performed on �ve di�erent sites of a pristine sample of each sample

cast. Each sample was attached to an Aluminum holder by a carbon-based glue-pad and

inserted into the SEM. The samples were measured under 20 kV acceleration voltage and

the area contributing to the EDX spectrum corresponds to the scanned area under 1k magni-

�cation. EDX peaks resulting from material used for mounting the sample, as Aluminum and

Carbon, are excluded from the quanti�cation, as well as oxygen and silicon, which was found

in few spectra and accounts for less than 1%at: in the quanti�cation. The contributions of

elements included in the spectra is taken into account to deduce the average quanti�cation

for all samples.

3.4 Di�erential Scanning Calorimetry

To measure the calorimetric response of Pd40Ni40P20 and the onset of the glass transition

in particular, a DSC 7 by Perkin Elmer was used. It consists of two separate furnaces, one

for heating an Aluminum pan holding the sample, the other for heating the empty Aluminum

pan that works as a reference. Two Platinum wires are used as thermoelements, one for

each pan. The heating protocol dictates a constant heating rate for both furnaces and the

di�erential heat �ow necessary to accomplish this is measured under the assumption that

the Aluminum pans are identical in both furnaces. This way, ideally, the di�erential heat �ow

signal is only due to the heat necessary for increasing the temperature of the sample material.

Exothermic sample behavior creates thus a low di�erential heat �ow, endothermic behavior

a rather high di�erential heat �ow. The Aluminum pans in the furnaces are purged with

Argon gas to enhance the thermal coupling between pans and furnaces. As a preparation for

temperature scans, the system is calibrated by scans of Indium and Zinc. For both materials

the onsets of melting are measured as well as the melting enthalpy of Indium. The results

are compared to literature data, and used for rescaling heat �ow and temperature.

Measurements of metallic glass samples were performed in the range of 320K to 820K at

a heating rate of 10Kmin
�1
. The amount of sample material is in the order of 20mg. To

obtain the contributions to the speci�c heat which are due to the amorphous material only,

the samples are measured twice in the above stated temperature regime and the second

run is subtracted from the �rst. As crystalline and glassy speci�c heat is of comparable

order (cf. �g. 2.1a), the resulting di�erence in speci�c heat shows values close to zeros for

temperatures below Tg, followed by a pronounced glass transition and the dip due to latent

heat during crystallization. The onset of the glass transition is analyzed by using the double-

tangential method [121], which is based on linear regressions yg in the glassy temperature

regime and yt in the regime of the glass transition with:

yg � mg � T � bg and yt � mt � T � bt (3.2)

The abscissa of the intersection point of the �tting functions yg and yt is given by

S �
bg � bt
mt �mg

(3.3)

and is equivalent to the experimental glass transition temperature T
on
g . An example for the

application of the double tangential method is shown in �g. 4.3.
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3.5 Dynamical Mechanical Analysis

Figure 3.1 Scheme of the DMA 8000 setup [39].

With a dynamical mechanical analyzer (DMA) by Perkin Elmer of type DMA 8000, an os-

cillatory excitation is applied to a sample to measure the response of the sample. From this

the loss and storage modulus is determined, as well as the loss factor (cf. section 3.6).

The core of the DMA is the force motor. It drives the movable axis to apply a sinusoidal or

constant force to the sample (see �g. 3.1), which is clamped to its front end. The position

of the movable axis and thus the sample is measured by a linear variable di�erential trans-

former (LVDT). It consists of a primary coil and two secondary coils, which are attached to

the body of the DMA and enclose the primary coil. They are located close to the movable

axis, to which a ferromagnetic material is attached. It is positioned in the very center of

the coils if the movable axis is in the neutral position. When the movable axis is displaced,

the ferromagnetic material enhances di�ering inductive �elds in the secondary coils. This

di�erence in induction voltage is linearly connected to the displacement of the movable axis

and gives a reliable measure of the sample movement in a broad temperature and frequency

regime [92, 105]. For the analysis of the temperature dependent mechanical behavior, a

heating device can be installed covering the front of the DMA including the sample. It is

purged by Argon gas (Air Liquide, purity 5N) to reduce the oxidation of the probed material.

The range of parameters that can be inititalized by the DMA 8000 parameters are given in

table 3.1 [105].

Measurements are performed in single cantilever mode. One end of the sample is stationarily

�xed between two Titanium clamps, the other end is similarly clamped to the movable axis

and can thus be addressed by a well de�ned force by the force motor (see �g. 3.2). Always,

the sample is mounted with the cut surface perpendicular to the direction of displacement,

even though no di�erence between the mechanical response of the cut and the cast surface

was observed during test measurements.

Accessible Parameter Range

Temperature T 80K to 670K

Force F �10N

Displacement � �1mm

Frequency f 10
�2

Hz to 3 � 10
2
Hz

Table 3.1 Accessible range of parameters for DMA 8000 according to page 111 in [105].

To be able to calculate strain � and stress � for each sample, the sample dimensions are

measured using a micrometer caliper with an accuracy of 1 µm. Therefore, �ve values for

each the width (perpendicular to cast surfaces) and the thickness (perpendicular to cut sur-

faces, i.e. parallel to the movable axis) are measured. The minimum value is used for stress
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and strain calculations, as the sample is addressed most e�ectively in its most narrow cross-

sectional regime by the applied force. The length of the sample is set in the order of 10mm.

Its accurate value is measured after mounting the sample and is determined as the mean of

three values, which are taken from the middle position between clamps, where the sample is

ideally located, and slightly below and above the sample. To ensure that the clamps are par-

allel towards another, the top and bottom distance between clamps is checked and adjusted

if di�ering by more than 0:02mm.

Figure 3.2 Scheme of the sample mount in single cantilever mode in the DMA 8000 [40]. The three

short arrows indicate the sample thickness, while the long arrow depicts the sample length.

Depending on the intended measurement protocol, two di�erent programs can be used to

address the DMA 8000 to apply a force. One of them is the commercial program provided

by Perkin Elmer, which allows for setting up standard measurement protocols, e.g. temper-

ature scans. Heating rate, time intervals at constant elevated temperatures, constant and

sinusoidal forces can be adjusted according to the aims of the experiment.

To be able to deviate from these standard protocols, a C-Sharp program is used, further

on referred to as large amplitude oscillatory spectroscopy (LAOS)-program [44], which ad-

dresses the DMA 8000 directly and transfers a force protocol with 1ms resolution in time

via a waveform generator to the external input of the analyzer. In this case, the hardware

connection between the computer with the DMA-program and the DMA 8000 is severed

and the commercial program does neither control nor in�uence force or displacement. Only

the temperature protocol can be operated using the commercial program. The separation of

force and strain control from the DMA-program is necessary as otherwise additional frequen-

cies add to the signal, which evolve due to the analyzer's circuitry, and which interfere with

the evaluation by Fourier-analysis. The output is directly picked up from the LVDT via an

analog-digital-transformer. One data point per millisecond is saved and stored on an external

computer. By calibration of the LVDT-signal, a distinct displacement can be calculated.

This way, the commercial program can be used for adjustments in temperature, while the

LAOS-program dictates the amplitude and form of the applied force.

To keep the DMA in an operational state, several calibrations are performed on a regular

basis. The most frequent one is the 'Zero Force' calibration, which restores the movable axis

to its true zero position and stores the value necessary to perform the re-balance (cf. [105]),

and is performed before every measurement. This calibration is active when measured with

the DMA-program, but is not applied during measurements with the LAOS-program. More

detailed concepts of the calibration of o�set and temperature are given in the appendix.
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3.5.1 Temperature Scans and Static Stress-Strain-Curves

Temperature scans are performed using the Perkin Elmer program in a range from 300K to

ca. 590K at a frequency of 1Hz. Small displacement amplitudes between 1 µm and 5 µm

are applied to characterize the di�erent sample casts. Properties as the modulus E, the

phase shift between force and displacement �, and the onset of the glass transition T
on
g were

determined by these scans.

At a constant temperature the relation between static stress and static strain is measured

using the Perkin Elmer program. The maximum value of stress is de�ned as the upper limits

in force at 10N. The size of stress steps is de�ned by the force rate, which is 0:5Nmin
�1
.

The experiment is terminated if either the maximum force is established or if the maximum

displacement of 1mm is achieved.

3.5.2 Large Amplitude Oscillatory Spectroscopy

The protocol of LAOSexcitation is schematically shown in �g. 3.3. It aims on the measure-

ment of the time-dependent in�uence of high sinusoidal stress �elds on mechanical properties

of metallic glasses. The excitation is due to a sinusoidal force F �t� � F0 � sin�2�f t�. The

experiment starts with a relatively small force amplitude F0 which is applied for 3600 periods.

It is schematically depicted in �g. 3.3 as the blue sine waves during the �rst part of the

experiment which is referred to as 'initial low �eld'. It is followed by the high �eld excitation

for 3600 periods, which is indicated by an increase in force amplitude by a factor of �ve(red

lines, 'high �eld'). Finally the excitation amplitude is decreased again to the initial low �eld

value and persists for another 3600 periods. It is depicted as blue lines again, and referred

to as 'second low �eld'. This way, each experiment lasts for 3 � 3600 periods at a frequency

f of 1Hz, resulting in 3 h duration under a data acquisition rate of 1ms
�1
.

Figure 3.3 Scheme of the LAOS excitation protocol.

To equilibrate the sample thermally to a steady state before the LAOS-protocol is performed,

the commercial program is used to control the thermal conditions. Therefor the sample is

heated to the temperature at which the experiment will be executed. At this temperature,

the sample is annealed for 60min before the LAOS-program is started. Throughout the pro-

tocol described above the temperature is kept constant and the sample chamber is purged

with Argon gas to avoid sample oxidation.
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3.6 Nonlinear Analysis

In order to quantify the nonlinear contributions, which are expected to occur in mechani-

cal experiments under high �eld excitation, the response is analyzed regarding its nonlinear

components. This is accomplished by a period-by-period Fourier-analysis, giving quantitative

information on the response at the fundamental and higher harmonic frequencies. These

frequencies are individually connected to a nonlinear coe�cient, which gives a measure for

the extent of nonlinearity at a given stress. The equations for the linear and nonlinear relation

between stress � and strain " are explicitly stated in the following section. The procedure to

determine this global degree of nonlinearity from the experimental data is described in detail

regarding the Fourier-analysis and the �tting of the data by a squared KWW-function.

3.6.1 Nonlinear Response to Mechanical Excitation

In the case of an exciting sinusoidal strain of angular frequency !, the strain and the re-

sponding stress can be described as:

r" � "0 � e
i�!t��"� (3.4a)

r� � �0 � e
i�!t���� (3.4b)

In the case of a linear excitation, the complex modulus rE can be determined from stress and

strain according to Hook's Law as follows:

rE �

r�
r" �

�0
"0
�
e
i�!t����

e i�!t��"�
�

�0
"0
� e

i��"����
�

»»»»» rE»»»»» � e i� (3.5)

Via the phase lag � between stress � and strain ", the storage modulus E
¬
and the loss

modulus E
¬¬
are related at a given frequency in accordance to the Kramers-Kronig-relations

[26, 71, 109] and are connected by:

rE � E
¬
� iE

¬¬
(3.6a)

E
¬
�

»»»»» rE»»»»» � cos��� (3.6b)

E
¬¬
�

»»»»» rE»»»»» � sin��� (3.6c)

The storage modulus describes to which extent the energy absorbed by the sample is stored

reversibly in the system. The loss modulus quanti�es how much energy is irreversibly lost or

dissipated to the sample. The ratio between storage and loss modulus is de�ned as the loss,

also loss factor, tan �.

tan � � E
¬¬©E ¬

(3.7)

The relation between stress � and strain " to force F and deformation k depends on the

geometry of the sample and the setup of the measurement, but can be expressed generally

by the geometry factor b.
�0
"0

�

F0
k0
�
1

b
(3.8)

In case of a tension experiment the geometry factor is set to x�y

z
, with width x , thickness y ,

and length z of the sample. In a single cantilever experiment, as performed in this study, the

geometry factor is set to
x�y©z�

3

1�2:9�y©z�2
[105].
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Thus, for single cantilever experiments, the stress amplitude �0 can be calculated from the

force amplitude F0 via the stress factor b�:

�0 � b� � F0 �
�xy2©z�

3�1 � 2:9�y©z�2� � F0 (3.9)

The strain amplitude "0 can similarly be calculated from the displacement amplitude k0 via

the strain factor b":

"0 � b" � k0 � 3
y

z2
� k0 (3.10)

In case of a stress-driven experiment it is convenient to de�ne the compliance r��1�
as the

inverse modulus of the system:

r" � 1

rE � r� � r��1�
� r� (3.11)

Thus:

r��1�
� rE�1

�

"0
�0
� e

�i�
� �

¬�1�
� i�

¬¬�1�
(3.12)

Storage and loss compliances �
¬
and �

¬¬
can be written as:

�
¬�1�

�

"0
�0
� cos ���� � "0

�0
� cos ��� (3.13a)

�
¬¬�1�

�

»»»»»» "0�0 � sin ����»»»»»» � »»»»»»� "0
�0
� sin ���»»»»»» � "0

�0
� sin ��� (3.13b)

With increasing stress, the stress-strain-curve can be described by a nonlinear expansion.

Due to the point-symmetry around the origin, it consists of terms of odd order, similar to

approaches in dielectric spectroscopy as in eq. 2.19 based on [113]:

" � �
�1�

� � �
�3�

�
3
� �

�5�
�
5
� ::: (3.14)

with a nonlinear compliance �
�i�

for odd orders �i�. The stress applied during the experiment

is of a sinusoidal form with peak amplitude �0.

� � �0 � sin �!t� (3.15)

Substitution of this equation into eq. 3.14 yields

"©�0 � �
�1�
� sin �!t� � �

�3�
� �

2

0�sin �!t��3 � �
�5�
� �

4

0�sin �!t��5 � ::: (3.16)

With the trigonometric relations

�sin�x��3 � 3 sin�x� � sin�3x�
4

(3.17)

and

�sin�x��5 � 10 sin�x� � 5 sin�3x� � sin�5x�
16

; (3.18)

and under consideration of individual nonlinear coe�cients, the nonlinear expansion can be

written as [138]:

"©�0 � �
�1�
� sin �!t� � 3

4
�
�3�
1

�
2

0 sin �!t� � 5

8
�
�5�
1

�
4

0 sin �!t�
�
1

4
�
�3�
3

�
2

0 sin �3!t� � 5

16
�
�5�
3

�
4

0 sin �3!t�
�
1

16
�
�5�
5

�
4

0 sin �5!t�
(3.19)

Now, the nonlinear contributions can be expressed relatively to the linear compliance �
�1�

for the �rst harmonic ! as well as higher harmonic contributions. These quantities will be

extracted from the experimental data to describe the nonlinear behavior of the metallic glass

PdNiP in single cantilever bending experiments under high stress amplitude.
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For the �rst harmonic, i.e. at the fundamental frequency !, the total compliance reads:

�"©�0�! � �
�1�
�
3

4
�
�3�
1

�
2

0 �
5

8
�
�5�
1

�
4

0 (3.20)

By subtraction of and division by the linear compliance �
�1�

, the purely nonlinear part of

the �rst harmonic can be extracted. It reads including terms up to the third order in the

expansion from eq. 3.14:

� ln �"©�0�! � 3

4

�
�3�
1

��1�
�
2

0 �

�"©�0�! � �
�1�

��1�
(3.21)

Division of eq. 3.21 by �
2

0 yields:

� ln �"©�0�!
�2
0

�

3

4

�
�3�
1

��1�
(3.22)

For the third harmonic contribution follows:

�"©�0�3!
��1�

� �
1

4

�
�3�
3

��1�
�
2

0 (3.23)

3.6.2 Fourier Analysis of LAOS Measurements

To extract the nonlinear components from the experimental data, a Fourier-analysis is per-

formed. It gives the basis to establish a time-dependent analysis of phase and amplitude

signals for both force and displacement. Therefore, a program written by Prof. Ranko

Richert is used which analyzes the signal period-by-period at the fundamental frequency !

and higher harmonic frequencies 2!; 3!; ::: as desired up to the ninth harmonic, similar as in

[57]. The data enters the program in form of a text-�le containing three columns in total.

The �rst column contains the time step, the second one the exciting force, and the third

column enters with the measured displacement. The data output �le contains 4n � 2 values

per analyzed period, with n being the number of evaluated frequencies. For each frequency,

the amplitude and phase shift for both excitation and response signal is given, another two

values add for the o�sets in force and displacement. From the results of the Fourier-analysis

the period-wise stress, strain, modulus, and compliance data is calculated for the fundamen-

tal and higher order frequencies. The calibration is based on the calibration �le used by

the commercial Perkin Elmer program combined with adjustments to adapt to the Fourier-

analyzed data. According to the derivation in the previous section, nonlinear contributions

are extracted as shown in chapter 5.

3.6.3 Fit of Time-Dependent Behavior

To evaluate the time dependence of the response to high �eld excitation, a KWW function

is used based on the description in section 2.9. Due to the squared dependence of the

nonlinear contribution to the fundamental frequency on the stress amplitude �0 according to

eq. 3.21, the time-dependent behavior can be described by a KWW function with a squared

body function [155, 10], as in �g. 3.4. To �t the time-dependent behavior of a quantity X

in the case of mechanical retardation under high �eld, the KWW-function is written as:

X � Ahf � Bhf �1 � exp
��t©��

�KWW 
2 (3.24)
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Figure 3.4 Scheme of oscillating response with squared KWW-�ts for high �eld and second low �eld.

The relaxation during the second low �eld is assumed by:

X � Al f � Bl f �exp��t©���KWW 
2 (3.25)

The squared dependence on �0 is characteristically observed as an apparently longer timescale

during high �eld, and a comparably shorter decay during second low �eld. This is due to the

di�erence in the KWW-function during rise and decay, and can be attributed to the same

timescale � . Further �tting parameters, apart from the timescale � , are the instantaneous

response A and the continuous response B, which are related to the response data as shown

schematically in �g. 3.4. For all �ts the value of the Kohlrausch-William-Watts-exponent is

set to a constant value of �KWW � 0:65 according to the derivation from literature data for

Pd40Ni40P20 metallic glass (cf. page 33).

3.7 Incremental Analysis

The incremental analysis connects the experimental data to avalanche dynamics theory. It

aims on the identi�cation of piece-wise linear behavior interrupted by breakdowns of the

elasticity according to the EIP-motif or avalanches resulting from cooperative behavior of

STZs as discussed in theory section 2.7.2. The de�nition of intervals of strain, and the

connection to interval stress, interval duration, and apparent interval compliance is given in

detail. A description of the extraction of average values and distributions on the interval

strain concludes this section.

The excitation signal imposed on the DMA is assumed to result in a sinusoidal force working

on the sample. However, the true force acting on the sample is not measured, stress data

used during the analysis is due to the 'ideal' sinusoidal signal applied to the DMA. Thus, the

strain signal is expected to carry the information on avalanche dynamics. The strain data

provides 1000 data points per period and 3600 periods for a given stress amplitude in either

initial low �eld or high �eld. The data collected during second low �eld are not evaluated by

the incremental approach. Due to the excess of data, the incremental analysis is con�ned

to the positive ascending part of the sinusoidal signal for each period. The data for the

remaining three quarters of each period is still open for evaluation. The incremental analysis

was performed by several MatLab routines, which are presented in detail in the appendix,

section E.
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Figure 3.5 Scheme of oscillating excitation or response with positive ascending parts of each period

marked by green rectangles.

3.7.1 Extraction of Positive Ascending Part of each Period

To identify the positive ascending parts of the response signal, the strain data is �tted by a

sine over two successive periods, shifted period by period. From each �t the zero transitions,

as well as the minimum and maximum of the �rst period are deduced and used to separate

each period into four branches. These are the positive ascending, the positive descending,

the negative descending and the negative ascending branch. Each branch consists of 250

data points. Zero crossings and extrema are deduced from the strain data. The stress

data is period-wise categorized based on the strain branches, even though a phase shift

occurs connected to the arising loss in the experiments. Thus, the positive ascending branch

extracted for the strain will always start at the zero crossing and end in the maximum strain

of that period due to the de�nition of the protocol of evaluation. The according stress branch

might start at stresses larger than zero and end at a stress lower than the maximum stress, as

the maximum position was already passed. An example of this correlation and the resulting

strain-stress-curve is plotted in �g. 3.6. The data shown is the positive ascending part of an

arbitrary period of the initial low �eld. As both strain and stress are of sinusoidal form, the

data points in the strain-stress-curve are not equally distanced, but show a higher density of

data points towards higher strain and stress values. The green dotted line separates the data

into two halfs containing equal numbers of data points.

3.7.2 De�nition of Increments and Intervals

The basis of the incremental analysis is the incremental stress and strain data, ��incr and

��incr , which are de�ned as the di�erence between two successive data points m and m� 1:

��incr � �m�1 � �m with m " �1 � 249� (3.26a)

��incr � �m�1 � �m with m " �1 � 249� (3.26b)

As described in the theory section (see page 28), the material's response is assumed to be

related to avalanche dynamics based on the EIP-motif in �g. 2.31. Thus, the incremental
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Figure 3.6 An example for a positive ascending branch of strain data, and the resulting plot of strain

" against intra-periodic stress �c . The green dotted line separates the number of data points into

two halfs of same number of data points.

stress and strain data are used to de�ne intervals of stress and strain. An interval of strain

��itv l is de�ned as the sum of consecutive incremental strain steps ��incr of same sign:

��itv l �

B

=
incr�A

��incr (3.27a)

��itv l �

B

=
incr�A

��incr (3.27b)

�titv l � B � A (3.27c)

�itv l � ��itv l©��itv l (3.27d)

The interval stress ��itv l is de�ned on the basis of initial and �nal data points A and B of

correspondent strain intervals, and denotes the width of the interval in units of stress. This

width of an interval can similarly be described in units of time by �titv l , which is referred to

as the interval duration. To account for the dependence of the strain intervals on the exciting

stress, a quantity in the units of a compliance can be de�ned for each interval according to

equation 3.27d.

To investigate the dependence of the interval data on the experimental parameters, which

are temperature T , stress amplitude �0, and intra-periodic stress �c , averages and according

standard deviations of the interval data are determined. In this approach the incremental

analysis is restricted to the evaluation of periods regarded as being in steady state. Generally,

a su�cient number of periods is necessary for the calculation of interval averages and distri-

butions. For a time-sensitive evaluation only few periods should attribute to the averaging

process. This is in contradiction and explains why the steady state evaluation is more reli-

able. The average is extracted from the number of periods regarded as being in steady state,

which is Nss � 3600 for initial low �eld data and refers to the last 2400 periods of high �eld
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Figure 3.7 Zoom on data shown in �g. 3.6. Magenta circles depict the �rst data point belonging to

an interval of increasing slope (further on called a "positive" interval), equal to the end of an interval

with negative slope (referred to as a "negative" interval). Grey circles thus depict the �rst point of

a negative and the �nal data point of a positive interval.

data. To distinguish between di�erent levels of stress within the trajectory of a period, stress

windows of 2MPa width are de�ned.These give a subset for averaging, corresponding to a

binning with �xed window size. The stress of a binning window is termed as �c and re�ects

the scale of the applied stress within a period. Thus it is referred to as the intra-periodic

stress �c . The index declaring the stress window of interest is c , the number of intervals

within a stress window c of period j is thus given by nc�j�. This yields steady state mean

values in dependence of c , e.g. in case of interval strain $ ���itv l��i j %c . These are extracted
separately for low �eld and high �eld and either on intervals with positive strain (� � P ) or

negative strain (� � N):

$ ���itv l��i j %c�
Nss<
j�1

��nc�j�<
i�1

���itv l��i j�©nc�j��
Nss

(3.28)

This equation describes the determination of averages on interval stress, interval duration,

and interval apparent compliance as well, if the interval strain ��itv l in eq. 3.28 is replaced

by ��itv l , �titv l , or �itv l respectively.

The number of intervals contributing in the averaging process is in the order of 10
3
in case

of the high �eld data, and in the order of 10
4
regarding low �eld data. The reasons for the

di�erence in the number of intervals are simple. The average for high �eld data is based on

steady state periods, i.e. 2400 periods, while the low �eld excitation is assumed as being

in steady state over the full number of periods. Thus for low �eld averages, 3600 periods

contribute to the averaging procedure. Moreover, the width of the stress window is set

to 2MPa, i.e. a �xed value, and the low �eld stress amplitude is 20% of the high �eld

excitation. Thus the number of stress windows is reduced by a factor of �ve compared to

the high �eld data, and therefore the number of intervals per stress window is generally larger

for low �elds.
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As the strain rate _" plays an important role for the interpretation of the data, its dependence

on temperature T , stress amplitude �0, and intra-periodic stress �c is extracted. The sum

of interval strains �"itv l for positive and negative intervals over stress windows including 50

data points each is taken. This sum is divided by the related duration, i.e. �t � 50ms.

_"x �

Nss<
j�1

�X�50<
k�X

���itv l�k�
Nss � �t

forX � 50x; x " �0; 1; 2; 3; 4� (3.29)

3.7.3 Generation of Double-Logarithmic Distributions

To generate distributions on a quantity X, as for example the strain intervals �"itv l , the

probability of a value to occur is determined based on the number of counts of this value.

In the case of a non-discrete quantity as �"itv l , a binning is de�ned, which separates the

range of occurring values into boxes. For each box the number of values belonging into the

box is connected to the mean value of the parameter range of the box. As an example, if a

quantity X would yield values between 0 and 10, with a binning of Nbins � 20 a box would

have a width of 0:5. In the box ranging from 1:5 to 2:0, all X contribute which exhibit values

between these two numbers, and the number of these elements is counted. The mean of the

box range is 1:75, which is the x-value of the box in the plot of the distribution, while the

number of elements in the box is plotted on the y-axis.

To investigate power-law behavior, the distributions are plotted in double-logarithmic scaling

to extract the slopes of linear regimes in this scaling by linear regression. These slopes �

correspond to the exponents of the power-law behavior as:

log�P �X�� � � � log�X�
� log�X�� (3.30)

This corresponds to a power-law behavior in linear scaling, which contains � as the exponent

of the quantity of interest X.

P �X� � X
�

(3.31)

To extract the slope by linear regression, an equidistant binning is required. Otherwise

those regions of the �tting-range would be weighted which obtain a higher density of bins.

Therefore, it is necessary to apply a logarithmic binning, which is equidistant on the log-scale,

and which is accordingly not acquired on the linear scale. It is achieved by determination of

the maximum and minimum of the data set, giving the full range of the linear x-scale of the

distribution. On these values the logarithmic function is applied, yielding the full range of

the logarithmic x-scale. A number of bins Nbins is de�ned, which partitions this range into

boxes of equal width in log-scale. To generate the distribution, the width of the boxes is

transformed into linear scale and the data of interest is categorized into the boxes and the

elements are counted. This way, a distribution in linear scaling is deduced based on boxes

which are equally wide in log-space, but not in linear space. To account for the di�erence in

width between the boxes, the number of counts of each box is normalized by division with the

box's width. Finally, the data is transformed into logarithmic scaling by taking the logarithm

to base 10. To plot the distribution, the normalized number of counts, i.e. the probability

P �X�, is plotted against the mean value of the range of the boxes, which corresponds to a

value of the quantity X, in double-logarithmic scaling.



Chapter 4

Sample Characterization

Several methods aiming on sample characterization were executed to ensure that the prepared

metallic glass samples meet the required properties. Therefore, their characteristics regarding

the amorphous state, as well as the mechanical and calorimetric behavior were analyzed.

The results are presented in form of XRD-spectra, the composition measured by EDX, the

calorimetric and mechanically probed glass transition temperature Tg, the temperature of

crystallization Tx , the storage and loss modulus, E
¬
and E

¬¬
, as well as the storage and loss

compliance �
¬
and �

¬¬
.

4.1 X-ray Di�ractometry

Figure 4.1 Normalized intensity I plotted against angle� for various samples. Samples i to v measured

before, samples vi and vii measured after mechanical high-�eld experiments.

To ensure the amorphous state of the prepared metallic glass samples, each sample is mea-

sured by X-ray Di�ractometry (XRD). As expected for glassy materials, the samples do

not show crystalline peaks, but an amorphous halo which exhibits a maximum at 42:2°. In

�g. 4.1 detailed XRD-scans of several samples both before and after mechanical treatment

are shown. All scans presented here are performed on the surfaces which were cut using the

diamond saw as described before. As-cast and mechanically treated samples show perfectly

amorphous spectra, giving evidence that the preparation technique yields samples in the

amorphous state, which is not a�ected by LAOS-measurements in the sense of a promoted

crystallization.
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4.2 Energy Dispersive X-ray Spectroscopy

Samples of di�erent casts were analysed by EDX and the average quanti�cation is deter-

mined to 39:7�4�%at: for Palladium (Pd), 39:4�7�%at: for Nickel (Ni), and 20:9�9�%at: for

Phosphorous (P). Other elements are not detected with certainty, or could be excluded from

the analysis as elaborated in section 3.3.

4.3 Di�erential Scanning Calorimetry

Figure 4.2 Plot of the speci�c heat contribution �cp of the amorphous material against temperature

T derived from a DSC-measurement at a heating rate of 10Kmin
�1
. Magenta and orange lines

indicate linear �ts to determine the onset of crystallization Tx by the double-tangential method.

To determine the glass transition temperature, the onset of crystallization, and the speci�c

heat of the material, di�erential scanning calorimetry (DSC)-scans are measured at a heating

rate of 10Kmin
�1
. In �g. 4.2 the change in speci�c heat �cp is plotted against temperature

T , and a calorimetric response typical for an amorphous material is observed. The values

of �cp correspond to the di�erence in speci�c heat between the glassy and the crystalline

material (cf. sec. 3.4).

In the temperature regime of the glass up to 550K, �cp shows a plateau of negligible di�er-

ence between crystalline and amorphous speci�c heat. Fig. 4.3 shows a more detailed plot

of the glass transition regime and the crystallization of the material. It becomes evident,

that the plateau just before the glass transition regime shows a slight dip. At a temperature

of roughly 570K the glass transition sets fully in, the speci�c heat increases rapidly. It is

terminated by an overshoot, which is heating rate dependent in general. It is followed by

the regime of the supercooled liquid between 600K and 630K. At a temperature of 665K

the onset of �rst crystallization is marked by an apparent decrease in speci�c heat which

is technically due to the release of latent heat �Hx during crystallization. It is followed by

a second stage crystallization at a temperature of 690K. After crystallization, the speci�c

heat is at a level with the value observed in the glassy state of the sample, which is lower

than in the supercooled liquid as shown in �g. 4.3. To give an average for the glass tran-

sition temperature, the mean value from six di�erent DSC-measurements is calculated to

T
on
g;DSC � 570�1�K. On a similar basis a mean value for the onset of �rst crystallization is

determined to Tx1 � 665�4�K.
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Figure 4.3 Plot of speci�c heat contribution �cp of the amorphous material against temperature T in

the regime of the glass transition derived from a DSC-measurement with a heating rate of 10Kmin
�1
.

Dolid lines correspond to linear �ts to determine the glass transition temperature of the sample by the

double tangential method. The red dotted line indicates the level of speci�c heat of the supercooled

liquid, from which �c
s�l
p is determined to 236�2�mJg

�1
K

�1
.

4.4 Static Stress-Strain-Curves

In order to gain a qualitative estimate of the nonlinearity of the mechanical sample response

the relation of static stress to static strain is measured at 553K and 563K and plotted in

�g. 4.4. The black data corresponds to the lower temperature of 553K and exhibits an

increasing behavior for stresses up to 170MPa corresponding to strains up to 1:3%. The

higher the strain, the less steep is the evolution of the stress-strain-curve until it reaches its

maximum stress at 170MPa and a static strain of 1:3%. Then the stress decreases with

further increasing strain, initially rather shallow but then more abrupt down to a value of

155MPa when the experiment is terminated at 1:5%.

The stress-strain-curve measured at 563K shows a more compliant behavior compared to

the data set measured at 553K, as the resulting strain is gained by a much lower stress than

at lower temperature. Here, the stress increases in a more and more shallow fashion until

it achieves a maximum value of 70MPa at a strain of 0:9%. Then the stress decreases

towards a value of 40MPa at a maximum strain of 1:5%, while the slope gets steeper with

increasing strain.

At both temperatures a regime is absent which is clearly identi�ed as linear-like. The data

curves are rather bend, i.e. exhibiting nonlinear behavior. If a linear regression of the initial

part of the stress-strain-curve is �tted to the data, the slope yields a value of 41�1�GPa in

case of the measurement at 553K, and a slope of 27�1�GPa in case of the measurement at

563K. In detail, the stress-strain-curves have their origin at stress and strain values, which

clearly deviate from zero, leading to an o�set stress loading the sample in addition to the

excitation due to the measurement protocol. The o�set stress is about 10MPa for the lower

temperature and at 14MPa for the measurement at 563K.
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Figure 4.4 Static stress �st plotted against the static strain "st measured at two di�erent tempera-

tures. Dashed boxes indicate stress and strain regimes of LAOS-measurements.

4.5 Dynamical Mechanical Temperature Scans

In �g. 4.5 the storage and loss moduli E
¬
and E

¬¬
are plotted against temperature for three

arbitrary samples.

The storage modulus E
¬
shows a linearly decreasing behavior for low temperatures. Absolute

values for di�erent samples exhibit values ranging between 60GPa and 70GPa, resulting in a

mean elastic modulus of 66�7�GPa with an uncertainty of 15% relatively to the mean value,

which is based on values extracted at a temperature of 320K. With eq. 2.17 this yields a

shear modulus G of 24�3�GPa.
In the regime from 550K to 625K the glass transition region is clearly observable due to the

sudden drop in storage modulus E
¬
as expected due to Kramers-Kronig-relations. By evalu-

ation with the double-tangential method the onset of the glass transition can be determined

as an average over several measurements to T
on
g � 575�2�K.

The loss modulus E
¬¬
shows coherent behavior to E

¬
. While E

¬¬
is below the limit of resolu-

tion at low temperatures, measurable contributions evolve around 500K. At around 525K a

shoulder or excess wing is visible, which is typical for the �-relaxation. It is followed at 590K

by a maximum corresponding to primary or �-relaxations. The position of the �-relaxation

coincides with the in�ection point of the storage modulus E
¬
at T

P
g � 598�2�K.

At temperatures above 630K the increase in storage and loss modulus indicates the onset

of crystallization. The a�ected temperature regime is marked by a red background.

Figure 4.6 shows the data of the modulus measurement transformed into mechanical storage

and loss compliance, �
¬
and �

¬¬
. As the mechanical excitation during the temperature scan is

very low, Hookean behavior is assumed to determine the compliance according to eq. 3.12.

Even though the data contains identical information about the relation between storage and

loss, the glass transition temperature, and the onset of crystallization, it gives insight into

the compliance behavior, as measured in case of the LAOS-measurements. It becomes ob-

vious that both the storage and the loss compliance increase with increasing temperature

in agreement to literature data [125]. In the loss compliance, Newtonian �ow dominates

at temperatures above Tg as Maxwell predicts (cf. eq. 2.13), which hides the loss peak in

compliance.
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(a) Storage modulus E
¬ (b) Loss modulus E

¬¬

Figure 4.5 Storage modulus (a) and loss modulus (b), E
¬

and E
¬¬

, plotted versus temperature T

in a strain-controlled measurement at a displacement amplitude of 1 µm and a scanning rate of

2Kmin
�1
. The green and grey dashed lines depict the onset of the glass transition T

on
g and the

loss-peak temperature T
P
g with shaded areas in green and grey according to the standard deviation.

The red-colored background corresponds to the section of the temperature scan in which the sample

response is compromised by crystallization.

(a) Storage compliance �
¬

(b) Loss compliance �
¬¬

Figure 4.6 Storage compliance (a) and loss compliance (b), �
¬

and �
¬¬

, plotted versus temperature T ,

determined according to eq. 3.12 from the modulus due to low �eld temperature scans (cf. �g.4.5).

The green and grey dashed lines depict the onset of the glass transition T
on
g and the loss-peak

temperature T
P
g with shaded areas in green and grey according to the standard deviation. The red-

colored background corresponds to the section of the temperature scan in which the sample response

is compromised by crystallization.



52 CHAPTER 4. SAMPLE CHARACTERIZATION



Chapter 5

Results on LAOS Measurements

As described in section 3.5.2, a LAOS stress-protocol is applied to study the behavior of the

metallic glass Pd40Ni40P20 in single cantilever bending geometry under high stress.

In the following section, qualitative results are presented in form of Lissajous-plots, containing

the trajectories of stress and strain similar to the information given in a stress-strain-curve.

The in�uence of stress amplitude �0 and temperature T on the form of the Lissajous-plots

is described.

Further on, the Fourier-analysis of the data is presented, based on the assumption of a globally

nonlinear description of the compliance 3.6. The evolution of nonlinear contributions evolving

with high stress amplitudes �0 is presented at the fundamental and third harmonic frequency.

Finally, the incremental analysis is introduced which is based on the assumption of avalanche

dynamics as elaborated in chapter 2.7.2. Averages and distributions of strain intervals are

analyzed and the power-law behavior is evaluated in case of double-logarithmic distributions.
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5.1 Lissajous-Plots

To characterize the mechanical behavior of a material, stress-strain-curves are measured

giving information on the response behavior to a mechanical excitation. Similar to stress-

strain-curves, Lissajous-plots characterize the mechanical behavior in case of dynamical ex-

periments. Therefore, the strain response r" is plotted against the exciting stress r� for one

period, i.e. one sine wave of the LAOS experiments described in chapter 3.5.2. If not stated

di�erently, the depicted period corresponds to the next to the last period measured at the

speci�ed stress amplitude and is thus assumed to be in steady state.

(a) �0 � 12MPa (b) �0 � 26MPa

(c) �0 � 37MPa (d) �0 � 42MPa

(e) �0 � 51MPa (f) �0 � 59MPa

Figure 5.1 Lissajous-plots of stress r� and strain r� for increasing stress amplitude �0 at a temperature

of 563K.
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(a) T � 553K (b) T � 563K

(c) T � 565K

Figure 5.2 Lissajous-plots of stress r� and strain r� for increasing temperature at a stress amplitude

�0 of about 60MPa.

Fig. 5.1 shows Lissajous-plots of measurements at a temperature of 563K at six di�erent

stress amplitudes. Qualitative changes in the form of the plot under increasing stress am-

plitude are observed. In �g. 5.1a the response behavior in strain to a stress amplitude of

12MPa resembles a straight line, as there is no signi�cant di�erence between the branch of

increasing and the branch of decreasing stress values. The maximum strain is rather small

with a value of 0:02%. Plots in �g. 5.1b and �g. 5.1c show a more elliptic shape. The area

within the ellipsis tends to increase with increasing sress amplitude �0. At a stress amplitude

of 26MPa the maximum strain is 0:045%, and it further increases with increasing stress

amplitude. In �g. 5.1d to �g. 5.1f the form of the data resembles a distorted ellipsis, as the

slope in the regime of small stress values is tilting towards lower numbers. The slope at high

stresses in contrast remains at the value observed for the data at low stress amplitude, e.g.

as in �g. 5.1a. Stress amplitudes range from 42MPa to 59MPa with a maximum response

in strain of 0:10% to 0:12%.

To give an impression how the form of the stress-strain-plots depends on the temperature T ,

�g. 5.2 gives an overview of measurements of comparable stress amplitude �0 at di�erent

temperatures. The temperature in�uences the slope of the stress-strain-curves as data at

553K show a steeper stress-strain relation than data at 563K and 565K. Moreover, �g. 5.2a

shows an elliptical shape, whereas �g. 5.2b indicates a tendency to a superimposed tilt in the

regime of small stresses, which is even stronger in �g. 5.2c. A general observation is that

the higher the temperature is, the more pronounced the di�erence in the slope in the regime

of small stresses becomes relative to the slope at high stresses.
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The six plots in �g. 5.3 represent six di�erent sine waves as six di�erent points in time during

high �eld excitation, namely periods number 1, 51, 101, 1201, 2401, and 3598.

Fig. 5.3a depicts the stress-strain-relation during the very �rst period of high �eld excitation,

and it exhibits a rather elliptical shape. Fig. 5.3b shows the stress-strain-relation during the

51st period of high �eld excitation, �g. 5.3c the 101st period. Both plots show a steeper

slope at high stresses than at low stresses. This feature evolves more and more with time, as

can be seen in �gures 5.3d to 5.3f, which represent data from periods number 1201, 2401,

and 3598. The steepness of slope at high stresses is constant with time, while the value of

the slope at low stresses decreases.

(a) 1st period (b) 51st period

(c) 101st period (d) 1201st period

(e) 2401st period (f) Next to the last (3598th) period

Figure 5.3 Lissajous-plots of stress r� and strain r� for periods with increasing experimental time during

high �eld excitation at a temperature of 565K and a stress amplitude of 37MPa.
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5.2 Comparison of LAOS-Measurements to Temperature Scans

As the LAOS-experiments are stress controlled, the compliance characterizes the material's

response. In contrast, the performed temperature scans measure the loss and storage mod-

ulus under very low strain amplitude. As the strain excitation is very small, these modulus

values are transformed into compliance data according to equation 3.12. In �g. 5.4 a sec-

tion of the temperature scans is shown and compared to LAOS-experiments. The two

measurement-protocols, i.e. the temperature scans and the LAOS-excitation yield compli-

ance data in good agreement in case of LAOS-data from the initial low �eld (green symbols).

Both storage and loss data extracted from LAOS high �eld (red symbols) yield higher values

for the compliance, i.e. the material response exhibits super-linear behavior under high-�eld

excitation.

(a) Storage compliance �
¬

(b) Loss compliance �
¬¬

Figure 5.4 Comparison of temperature scans at low displacement amplitude (lines) and initial low

�eld values from LAOS experiments (green symbols) for storage (a) and loss (b) compliance, �
¬

and

�
¬¬

, plotted versus temperature T . Red symbols are steady state values under high �eld excitation

extracted from LAOS experiments. Data from temperature scans corresponds to data shown in

�g. 4.6 and 4.5. T
on
g and T

P
g correspond to the temperatures of the onset of the glass transition and

of the loss peak position.
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Figure 5.5 Strain amplitudes for 1
st
(v), 2

nd
(c), 3

rd
(]), 4

th
([), and 5

th
(�) harmonic frequency

extracted by Fourier-analysis from LAOS-measurements performed at 565K and a high �eld stress

amplitude of 54MPa.

5.3 Nonlinear Analysis

To extract the nonlinear response behavior, the period data on exciting stress and resulting

strain are period-by-period Fourier-analyzed to extract amplitudes and phase-shifts for fun-

damental and higher harmonic frequencies. The Fourier-amplitudes for the �rst to the �fth

harmonic are plotted for a complete measurement in �g. 5.5 to give an example on the ob-

served strain response. During initial low �eld excitation (�3600 s to 0 s) only a contribution

at the fundamental frequency is observed, the strain response is purely linear. During high

�eld excitation (0 s to 3600 s) nonlinear contributions appear, both at the fundamental and

at higher order frequencies. First and third order contributions show a time-dependent evo-

lution and strongest contributions, while even harmonic contributions are less intense than

the signal at even harmonic frequency of higher order. During the second low �eld (3600 s

to 7200 s) only a contribution at the fundamental frequency occurs, which ceases with time

towards the value of initial low �eld. Further higher harmonic frequencies do not show sig-

ni�cant contributions.

A quantitative analysis of the nonlinear contributions at fundamental and third harmonic

frequency is presented. Both the storage and loss contribution of the nonlinear compliance

at fundamental frequency is investigated regarding the nonlinear coe�cients as well as the

time-dependent behavior during high �eld and second low �eld. The complex compliance

at third harmonic frequency is evaluated in detail regarding the nonlinear coe�cient and the

time-dependent rise during high �eld.
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Figure 5.6 Example for time-dependent behavior of nonlinear relative change in storage compliance

at fundamental frequency � ln�"
¬

©�0�! at T � 563K and �0 � 51MPa.

5.3.1 Nonlinear Contribution of Storage Compliance at Fundamental Fre-

quency during and after High Field Excitation

For the analysis of nonlinear behavior due to high �elds at elevated temperature, the non-

linear contribution at fundamental frequency � ln�"©�0�! is of main interest. To extract

this quantity, the compliance during the initial low �eld �
�1�

is subtracted from the overall

compliance �"©�0�! at fundamental frequency, and the resulting di�erence is divided by the

initial low �eld value �
�1�

according to eq. 3.21.

In this chapter, the nonlinear contribution is calculated for the storage compliance, denoted

as � ln�"¬©�0�!. In �g 5.6 an example for the evolution of � ln�"¬©�0�! with time is plotted.

During the initial low �eld excitation a steady behavior is observed and the relative nonlinear

contribution is negligible. When the excitation signal is switched to high �eld amplitudes, the

storage compliance increases initially very rapidly, then the increase ceases. As soon as the

excitation signal is switched back to low �eld amplitude, the signal instantaneously jumps to

an initial value and decreases rapidly again, then approaches a low �eld plateau.

To evaluate the changes in � ln�"¬©�0�! during and after high �eld excitation, squared KWW-

functions are used for �tting as described in section 3.6.3. The quantities extracted are the

timescale of the change in response signal, which is �hf or �2nd l f , the instantaneous change

in signal AKWW , and the continuous change in response BKWW . The sum of instantaneous

and continuous amplitude, AKWW � BKWW yields the overall amplitude of the nonlinear

behavior denoted as �� ln�"¬©�0�!�hf in case of evaluation of the high �eld behavior, and�� ln�"¬©�0�!�2nd l f under second low �eld excitation.
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Figure 5.7 Steady state amplitude of relative nonlinear contribution to storage compliance at fun-

damental frequency during high �eld excitation �� ln�"
¬

©�0�!�hf determined by KWW-�ts based on

eq. 3.24 plotted vs. squared high �eld stress amplitude �
2

0 for several temperatures. Lines correspond

to linear �ts, shaded areas to the uncertainty of the respective �t.

Figure 5.8 Steady state amplitude of relative nonlinear contribution to storage compliance at fun-

damental frequency during second low �eld excitation �� ln�"
¬

©�0�!�2ndlf determined by KWW-�ts

based on eq. 3.25 plotted vs. squared high �eld stress amplitude �
2

0 for several temperatures. Lines

correspond to linear �ts, shaded areas to the uncertainty of the respective �t.
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Figure 5.9 Relative nonlinear coe�cients �
¬�3�
1

©�
¬�1�

based on data shown in �g. 5.7 and �g. 5.8

plotted in logarithmic scaling against temperature T . High �eld and second low �eld data is �tted by

linear regressions (dashed lines), see text for the resulting slopes and ordinates.

In�uence of Stress and Temperature on the Steady State Amplitudes of Relative Non-

linear Storage Compliance

Fig. 5.7 and �g. 5.8 show the extracted plateau-values of � ln�"¬©�0�! during high �eld and

second low �eld. According to eq. 3.21, this value for the relative nonlinear contribution at

fundamental frequency shows a linear relation towards squared high �eld stress �
2

0 with a slope

equal to 3

4
�
�3�
1

©��1�
and thus proportional to the nonlinear coe�cient �

�3�
1

. To determine

the nonlinear coe�cient �
¬�3�
1

©�¬�1�, the data is �tted using a linear regression through zero

for each temperature.

The resulting relative nonlinear coe�cients are plotted versus temperature in �g. 5.9 in

semi-logarithmic scaling. A linear dependence of log���3�
¬

1
©��1�

¬� on temperature is clearly

observed in the investigated temperature range. By means of linear regression the slope and

ordinate values are extracted.

For high-�eld data the slope is determined to 0:079�8� log�%�MPa��2� K�1
with an ordinate

of �46�4� log�%�MPa��2�. For low-�eld data the slope is 0:094�4� log�%�MPa��2� K
�1

and the ordinate has a value of �55�3� log�%�MPa��2�.
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Temperature-Dependent Timescales of Relative Nonlinear Storage Compliance

To investigate the in�uence of temperature on the timescale extracted by the KWW-�ts,

�g. 5.10 shows mean values of timescales of high and low �eld data, �hf and �2nd l f , plotted

against temperature. The average of �hf and �2nd l f is depicted as �mean. To allow for a

comparison with literature data on the �-relaxation timescale of Pd40Ni40P20, green symbols

show values of the temperature-dependent �� deduced from viscosity data [151] via eq. 2.15.

The viscosity data are measured by creep-experiments after su�cient annealing of the samples

to reach a metastable equilibrium. The average timescales �hf , �2nd l f , and �mean show a

rather constant behavior. The timescales deduced at a temperature of 553K, depicted at

T©Tg � 1:08, is close to the timescale of structural relaxation. For higher temperatures

the timescales extracted from the LAOS-measurements show values which are one order of

magnitude higher than the structural relaxation timescale.

Figure 5.10 Average timescales, �mean, �hf , and �2nd l f , based on high �eld and second low �eld

relative nonlinear storage compliance � ln�"
¬

©�0�! plotted versus temperature T . Green symbols with

line correspond to literature data by [151].
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5.3.2 Nonlinear Contribution of Loss Compliance at Fundamental Frequency

during and after High Field Excitation

As described in section 5.3.1, the nonlinear contribution to compliance under high �eld ex-

citation at the fundamental frequency � ln�"©�0�! gives insights into the response behavior

of metallic glasses under high stress at elevated temperature. In this chapter the loss part

of this quantity, � ln�"¬¬©�0�!, shall be investigated. It is determined by eq. 3.13 and data

typical for measurements at temperatures between 553K and 567K are plotted in �g. 5.11a.

After the initial low �eld response between �3600 s and 0 s, which shows constant steady

state behavior, a sudden rise in compliance occurs with the onset of high �eld excitation.

The compliance rises further and �nally saturates at a new steady state value. Even though

absolute values in loss and storage compliance di�er a lot as loss compliance �"¬¬©�0�! is

around 10% of �"¬©�0�!, the relative nonlinear loss compliance � ln�"¬¬©�0�! is of compa-

rable order of magnitude to � ln�"¬©�0�!. Still, the low absolute values in loss compliance

lead to rather noisy data for � ln�"¬¬©�0�! after high �eld excitation (3601 s to 7200 s). It is

observed that the relative nonlinear loss compliance � ln�"¬¬©�0�! jumps to an instantaneous

value with the beginning of the second low �eld excitation and decreases from this initial

point to a low-�eld steady state value.

(a) 563K to 567K (b) 553K

Figure 5.11 Examples for time-dependent behavior of nonlinear relative change in loss compliance

at fundamental frequency � ln�"
¬¬

©�0�!. (a) corresponds to data measured at T � 563K and

�0 � 51MPa, typical for measurements in the temperature range of 563K and 567K. (b) is based

on a measurement at 553K and �0 � 79MPa.

The relative nonlinear loss compliance � ln�"¬¬©�0�! at a temperature of 553K shows re-

producible behavior of a di�erent kind: Under initial low �eld excitation the signal mildly

decays where measurements at higher temperatures show a plateau. During high-�eld ex-

citation the loss signal shows a decrease instead of an increase towards a new steady state

(cf. fog. 5.11b). This behavior is not observed for the storage part. During second low �eld

excitation the relative loss response shows an instantaneous jump followed by a decay as ob-

served in measurements at higher temperatures as well. Comparable to the data analysis for

the storage part the data are �tted using squared KWW-functions as described in equations

3.24 and 3.25.
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Figure 5.12 Steady state values of relative nonlinear contribution to loss compliance at fundamental

frequency during high �eld excitation �� ln�"
¬¬

©�0�!�hf determined by KWW-�ts based on eq. 3.24

plotted vs. squared high �eld stress amplitude �
2

0 for several temperatures. Lines correspond to linear

�ts, shaded areas to the uncertainty of the respective �t.

Figure 5.13 Steady state values of relative nonlinear contribution to loss compliance at fundamental

frequency during second low �eld excitation �� ln�"
¬¬

©�0�!�2nd l f determined by KWW-�ts based on

eq. 3.25 plotted against squared high �eld stress amplitude �
2

0 for di�erent temperatures. Lines

correspond to linear �ts, shaded areas to the uncertainty of the respective �t.
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In�uence of Stress and Temperature on the Steady State Amplitudes of Relative Non-

linear Loss Compliance

As in the case of relative nonlinear storage compliance, a linear relation to the squared high

�eld stress �
2

0 is expected for the steady state value of the loss �� ln�"¬¬©�0�!� (eq. 3.21).

To evaluate this relation, steady state values of � ln�"¬¬©�0�! at high �eld and second low

�eld are extracted by KWW-�ts. These steady state values are shown in �g. 5.12 for

high �eld data and in �g. 5.13 for second low �eld data. In both �gures, the expected

linearity can be seen more or less pronounced depending on the temperature evaluated.

The slopes extracted in �g. 5.12 and 5.13 are proportional to the relative nonlinear coe�-

cient �
¬¬�3�
1

©�¬¬�1�. It yields a linear behavior in a semi-logarithmic plot versus temperature

(�g. 5.14). For evaluation of high-�eld data by a linear regression the slope can be determined

to 0:106�6� log�%�MPa��2� K
�1

with an ordinate of �61�4� log�%�MPa��2�. For evalu-

ation of second low-�eld data the slope is 0:078�4� log�%�MPa��2� K
�1

and the ordinate

has a value of �45�3� log�%�MPa��2�.

Figure 5.14 Relative nonlinear coe�cients �
¬¬�3�
1

©�
¬¬�1�

extracted from data shown in �g. 5.12 and

�g. 5.13 plotted in logarithmic scaling against temperature T . High �eld and second low �eld data is

�tted by linear regressions (lines), see text for slopes and ordinates.
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Temperature-Dependent Timescales of Relative Nonlinear Loss Compliance

Timescales extracted by KWW-�ts at high �eld (�hf ) and second low �eld (�2nd l f ) are av-

eraged over all measurements of the same temperature and plotted in �g. 5.15. The mean

of both high �eld and second low �eld timescales is denoted as �mean. Again, to allow for a

comparison with literature data on the �-relaxation timescale, green symbols show values of

the temperature-dependent �� deduced from viscosity data [151] via eq. 2.15, comparable

to the data shown in �g. 5.10.

At temperatures between 563K and 567K, i.e. between T©Tg between 1:05 and 1:07, �hf
and �2nd l f are mildly temperature-dependent and decreasing with increasing temperature.

Timescales measured under high �eld �hf are about one order of magnitude below corre-

sponding second low �eld data. Thus, the mean timescale �mean is between one and two

orders of magnitude above the literature data, which represents Vogel-Flucher-Tammann

behavior.

�hf and �2nd l f at 553K, i.e. T©Tg � 1:08 are very close and of the same order of magnitude

as mean timescales measured for higher temperatures. The timescales extracted from the

experiments are of the same order as the literature data for �� measured by Wilde et al.

[151].

Figure 5.15 Average timescales, �hf , �2nd l f , and �mean, based on high �eld and second low �eld

relative nonlinear loss compliance � ln�"
¬¬

©�0�! plotted versus temperature T . Green symbols with

line correspond to literature data by [151].
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5.3.3 Nonlinear Contributions of Compliance at Higher Harmonic Frequency

Figure 5.16 Example for time-dependent behavior of
��©�0�3!
��1� at T � 563K and �0 � 10MPa.

A typical feature of nonlinear response behavior due to sinusoidal excitation at high excita-

tion amplitude are odd higher-harmonic contributions. To evaluate the impact of mechanical

stress on their appearance, the relative third harmonic compliance ��©�0�3!©��1�
is deter-

mined according to eq. 3.23. The compliance � is equal to the absolute value of the complex

compliance r�. If the relative third harmonic compliance quantity is plotted versus time as in

�g. 5.16, parameters as the timescale and the steady state amplitude can be extracted by

�tting with a squared KWW-function.

In�uence of Stress and Temperature on Steady State Amplitudes of Relative Nonlinear

Third Harmonic Compliance

As for the compliance at fundamental frequency, the sum of instantaneous and continuous

amplitude yields the steady state value for high �eld. The quantity ��©�0�3!©��1�
is linearly

dependent on the square of applied high �eld stress (cf. eq. 3.23). Thus linear regressions are

calculated by the least square method with a �xed ordinate of zero for individual temperatures

as shown in �g. 5.17. The linear dependence of the steady state amplitudes reveals an

increase in the relative nonlinear coe�cient with temperature and an exponential behavior of

log���3�
3

©��1�� versus temperature T is observed. An exponential growth function y � y0 �

y1 �exp� �x�x0�



� was used to �t the data. Therefore, the amplitude was set to y1 � 8:9 10

�18
,

free �t parameters are the o�set y0 � 0:0079�2�, the shift parameter of x0 � 546:4�9� and

the exponent of 
 � 0:58�2�. In comparison to relative nonlinear coe�cients at fundamental

frequency, the exponent 
 deviates clearly from a linear relation between logarithmic relative

coe�cient and temperature. Technically, this is due to the o�set y0, which does not ful�ll

the approximation y0 $$ y in the case of the �t for third harmonic frequency data.
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Figure 5.17 Steady state values of relative complex compliance at third harmonic frequency during

high �eld excitation ���©�0�3!©�
�1�

�hf determined by KWW-�ts plotted against squared high �eld

stress amplitude �
2

0 for several temperatures. Lines correspond to linear �ts, shaded areas to the

uncertainty of the respective �t.

Figure 5.18 Relative nonlinear coe�cient �
�3�
3

©�
�1�

based on data shown in �g. 5.17 plotted against

temperature T . The black dashed line resembles an exponential �t, see text for details on the �t

function and for �t parameters.
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Temperature-Dependent Timescales of Relative Nonlinear Third Harmonic Compliance

The time-dependence of the response signal at the third harmonic frequency is represented

by the timescale �hf . It is extracted by KWW-�ts and is plotted against inverse temperature

in �g. 5.19. The timescale shows a temperature-dependence similar to the VFT behavior

of the literature data (green symbols with line), but are in general one order of magnitude

larger than the data on the structural relaxation timescale. However, the standard deviations

of the averages are high compared to the di�erence between average values at di�erent

temperatures.

Figure 5.19 Average timescales �hf of �3!©�
�1�

plotted versus temperature T . The green symbols

with line correspond to literature data by [151].
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5.4 Incremental Analysis

As studied numerically by Procaccia et al. [32], and observed in various other simulations

[88, 89] and experiments on colloidal systems [122, 20, 19], the modulus is de�ned for a

linear response behavior which is interrupted by breakdowns of elasticity as described by the

EIP-motif [77]. Thus, from the view-point of avalanche dynamics and microscopic rear-

rangements, modulus and compliance are not expected to exhibit intrinsic higher order terms

as described by a nonlinear expansion of the response behavior [110, 25]. Thus, the strain

response obtained by LAOS-experiments is evaluated in regard to avalanche dynamics by

means of an incremental analysis.

In the following chapter, the data accumulated in the LAOS-experiments is studied on the

level of intervals, which are de�ned by the strain as explained in section 3.7.2. An interval is

de�ned as the range of successive data points in strain which do either increase monotonously

(positive intervals) or decrease monotonously (negative intervals). The strain values con-

nected to such an interval are denoted as �"itv l . Moreover, the duration of strain intervals

�titv l in terms of time are analyzed. These interval-based quantities are discussed regarding

their average values. These are extracted as described in section 3.7.2, and the dependence

on temperature T , stress amplitude �0, and intra-periodic stress �c is discussed.

In addition, the distributions of strain intervals in dependence on the afore mentioned pa-

rameters are investigated in regard to power law behavior.
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5.4.1 Strain Rate

As described in section 3.7.1 the average strain rate _" is extracted as a mean value over

50 data points and plotted for a temperature of 563K in �g. 5.20a. The strain rate shows

a decrease on the intra-periodic scale. With increasing stress amplitude �0 the strain rate

increases, as is observed very clearly at low intra-periodic stresses. By normalization with the

maximum value of strain rate, all measurements collapse onto a mastercurve (�g. 5.20a).

The maximum strain rate which serves as the normalization factor is plotted in �g. 5.21

against the stress amplitude �0 for various temperatures. For the lowest temperature of

553K a linear dependence of _" on �0 is observed. Linear regression yields a slope of

9:5�1� � 10
�5

MPa
�1

s
�1

and an ordinate of �1:5�4� � 10
�4

s
�1
. For higher temperatures

a linear dependence of the strain rate is observed for low stress amplitudes, but a deviation

towards higher strain rates is evident with increasing stress amplitude �0.

(a)

(b)

Figure 5.20 Strain rate _" (a) and normalized strain rate _" (b) for various stress amplitudes �0 at

constant temperature T � 563K.
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(a)

(b)

Figure 5.21 Linearly plotted strain rate _" (a) and logarithmically plotted strain rate _" (b) against

stress amplitude �0 for various temperatures. The black dashed line represents a �t based on data

plotted as in (a) measured at 553K extracted by linear regression.
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5.4.2 Averaged Values for Strain Intervals

The averages of interval strain and interval duration are determined for strain intervals over

stress windows of 2MPa width according to eq. 3.28. The result is plotted against the mean

of the stress window, that is denoted as the intra-periodic stress �c .

Averages of Interval Strain

The averaged interval strain for positive intervals is shown in �g. 5.22a for several stress

amplitudes �0 measured at 563K. Open symbols represent strain data extracted from initial

low �eld response, while solid symbols show averages of interval strain based on high �eld

steady state data.

(a) For ��itv l % 0

(b) For ��itv l $ 0

Figure 5.22 Average of interval strain $ ���itv l�
�
i j %c in steady state for various stress amplitudes �0

at constant temperature T � 563K. (a) for positive and (b) for negative intervals.
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Within a data set, the average strain intervals $ ���itv l�Pij %c yield maximum values very early

on the intra-periodic timescale. These maximum values $ ���itv l�Pij %max
show a dominant

dependence on the stress amplitude �0, as their value increases with increasing �0. With

increasing values on the x-axis, the averaged strain data decreases and is connected to the

sinusoidal form of the excitation signal. This becomes evident under normalization of the

x- and y-axis as the data collapses to a mastercurve (cf.�g. 5.23a). The trajectory of the

mastercurve coincides for di�erent temperatures as well. The normalization of the y-axis is

accomplished by subtraction of and division by the maximum average strain of the data set,

concluding with the division by the minimum value of the data set according to equation 5.1

for � � P .

(a) For ��itv l % 0

(b) For ��itv l $ 0

Figure 5.23 Normalized average of interval strain $ ���itv l�
�
i j %

norm

c for various stress amplitudes �0
at constant temperature T � 563K. (a) for positive and (b) for negative intervals.
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$ ���itv l��i j %norm

c � �$ ���itv l��i j %c � $ ���itv l��i j %max

$ ���itv l��i j %max
� © $ ���itv l��i j %min

(5.1)

The dependence on stress for the average interval strain $ ���itv l�Nij %c in case of negative

intervals is depicted in �g. 5.22b. The data sets are similarly related to the stress amplitude

as in case of positive intervals. The higher the stress amplitude �0 is set, the less negative the

average strain values become. The data can be normalized to collapse to a mastercurve as

described in the case of positive interval averages. Also for negative intervals, the trajectories

of data sets measured at di�erent temperatures and stresses fall upon another in respect to

the accuracy of the measurements.

Moreover, both the mastercurves for positive and negative intervals of averaged interval

strain coincide with the trajectory of the mastercurve for the strain rate (cf. �g. 5.20b).

If $ ���itv l��i j %max
and $ ���itv l��i j %min

, which are used for the normalization of averaged

strain values, are plotted against the stress amplitude as in �g. 5.24, it becomes obvious that

the maximum average strain depends linearly on �0. A linear regression on $ ���itv l�Pij %max

yields a slope of 2:4�2� � 10
�5

%MPa
�1

(dashed line in �g. 5.24a) and an ordinate value of

3:7�1� � 10
�3

%.

For $ ���itv l�Nij %max
the linear regression gives a slope of 1:5�2� � 10

�5
%MPa

�1
and an

ordinate value of �3:8�1� � 10
�3

%.

The minimum $ ���itv l��i j %min
shows constant behavior with a mean value of 3:8�3� � 10

�3
%

in case of positive strain and �3:8�2� � 10
�3

% for negative strain averages. These mean

values coincide with the ordinates determined from linear regressions on $ ���itv l��i j %max

within the limits of errors.

This re�ects, that the stress amplitude in�uences the averaged strain mainly on the ini-

tial part of the intra-periodic timescale, where the averaged strain shows a maximum at

$ ���itv l��i j %max
both for positive (� � P ) and negative (� � N) intervals.
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(a) For ��itv l % 0

(b) For ��itv l $ 0

Figure 5.24 Minimum (min) and maximum (max) values of interval strain, $ ���itv l�
�
i j %

min
and

$ ���itv l�
�
i j %

max
,for various stress amplitudes �0 and temperatures T . (a) for positive and (b) for

negative intervals. Green lines correspond to the mean value of $ ���itv l�
�
i j %

min
, while the shaded

area re�ects the standard deviation.
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Averages of Interval Duration

Averaged data on interval duration for positive intervals are plotted against intra-periodic

stress �c in �g. 5.25a. Fig. 5.25b depicts this quantity for negative intervals. Shown are in

either case the mean values for low �eld (open symbols) and high �eld (solid symbols) and

the according standard deviations (error bars) measured at a temperature of 563K. Intervals

of both signs, positive and negative, show very similar behavior. Even though the error bars

exceed in all cases the di�erence between the mean values, an increase of the averaged

durations with �c is generally observed. As the case for interval strain, the interval duration

does not seem to depend on the absolute value of stress, as it decreases with rising stress

amplitude and shows the opposite with increasing intra-periodic stress.

(a) For ��itv l % 0

(b) For ��itv l $ 0

Figure 5.25 Averages of interval duration $ ��titv l�
�
i j %c in steady state for various stress amplitudes

�0 at constant temperature T � 563K. (a) for positive and (b) for negative intervals.
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A normalization of �c by �0 on the x-axis in connection to a normalization of the y-axis

according to eq. 5.2 results in a collapse of the di�erent data sets onto a mastercurve as in

�g. 5.26.

$ ��titv l��i j %norm

c � �$ ��titv l��i j %c � $ ��titv l��i j %max

$ ��titv l��i j %max
� © $ ��titv l��i j %min

: (5.2)

Here, $ ��titv l��i j %max
denotes the maximum average value of a data set, which is located

at the highest intra-periodic stress. $ ��titv l��i j %min
re�ects the plateau-like regime at low,

even though not generally lowest �c .

(a) For ��itv l % 0

(b) For ��itv l $ 0

Figure 5.26 Normalized average interval duration $ ��titv l�
�
i j %

norm

c for various stress amplitudes �0
at constant temperature T � 563K. (a) for positive and (b) for negative intervals.
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(a) For ��itv l % 0

(b) For ��itv l $ 0

Figure 5.27 Minimum and maximum values of interval duration, $ ��titv l�
�
i j %

min
and $

��titv l�
�
i j %

max
, for various stress amplitudes �0 and temperatures T . (a) for positive and (b) for

negative intervals. Green lines correspond to the mean value of $ ���itv l�
�
i j %

min
, while the shaded

area re�ects the standard deviation.
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The values at low �c , $ ��titv l��i j %min
, extracted from �g 5.25 show a clear dependence on

�0 as a decrease is observed with increasing stress amplitude. This behavior was extrapolated

by a linear regression, yielding a slope of �3:4�3� � 10
�3

msMPa
�1

and an ordinate value of

1:4�1�ms in case of positive intervals. For negative intervals, the slope and ordinate yield

identical values in the range of the error. The data on the maxima of interval durations show

a constant behavior and are thus independent of �0. Both for positive and negative intervals

a mean value of 1:4�1�ms is measured including data of di�erent temperatures. The values

extracted for the mean and the ordinate are equal within the regime of the errors, also if data

for positive and negative intervals are compared. Thus, the dependence of $ �titv l % on the

stress amplitude �0 and the intra-periodic stress �c is on average the same for positive and

negative intervals.
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5.4.3 Distributions of Strain Intervals

The in�uence of temperature T and stress amplitude �0 on the distribution of positive and

negative strain intervals ���itv l�� is analyzed. Therefore the value of strain intervals and

their occurrence are plotted in a double-logarithmic scaling. The values included in the

distributions correspond to the initial 2©3 of the amplitude of the positive ascending parts of

steady state periods, i.e. all data points at intra-period stresses which are below the green

dotted line as exempli�ed in �g. 3.6. Data sets include steady state periods which are either

based on the initial low �eld or the high �eld response as de�ned before.

(a) For ��itv l % 0

(b) For ��itv l $ 0

Figure 5.28 Double-logarithmic distribution of interval strain ���itv l�
�
for various stress amplitudes

�0 at a constant temperature T of 563K. Dashed-dotted lines correspond to maximum average

strain values for measurements with a stress amplitude of 7MPa (black) and of 59MPa (gray). The

dashed light gray line indicates the power-law regime. (a) for positive and (b) for negative intervals.
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Fig. 5.28a and 5.28b show distributions for positive and negative strain intervals at 563K

for several stress amplitudes. The distributions have the following features in common,

which are qualitatively comparable for positive and negative interval data, and independent

of temperature T or stress amplitude �0.

The distributions show a decreasing slope at low strain values, that passes into a hump and

is followed by a cut-o�. The range of the initial decreasing linear part and the onset of the

hump are strongly in�uenced by the number of bins, while the slope itself is not in�uenced

by the binning. From the linearly decreasing part of the distribution at very small values,

the slope is extracted by linear regression. It is evaluated in regard to its dependence on

temperature and stress amplitude.

Distributions of positive and negative strain intervals at low stress amplitude exhibit very

similar pro�les. Compared to the high �eld steady state distributions, minor changes can be

spotted, which are in accordance with the analysis of the averaged strain interval data. In

the regime of the hump, the distribution of values for positive strain intervals ���itv l�P shifts

towards higher strain values with increasing stress amplitude. The hump of the distribution of

negative strain intervals ���itv l�N on the contrary shifts towards smaller values with increasing

stress amplitude.

The analysis of power-law behavior is conducted in the range of small strain interval data

corresponding to the initial part of the distribution. The range of the linear behavior in the

log-log-representation extends over roughly one order of magnitude. The exponent denoted

as � is extracted for each data set by linear regression over the regime of interest, what is

indicated by the dashed light gray line in �g. 5.29 and 5.30. The values of � are plotted against

the stress amplitude �0 for various temperatures, for positive strain intervals in �g. 5.31a

and for negative strain values in �g. 5.31b. The error bar on the data points is due to the

error of the slope � extracted from the linear �ts. In both �gures, the exponent � does not

show a dependence on stress amplitude or temperature and yields a mean value and standard

deviation of �0:75�8� in case of positive and �0:75�15� in case of negative strain intervals.

In the plot, the mean is depicted as a dashed line, the shaded area re�ects the standard

deviation.

If the distributions of �g. 5.29 are taken into account, the temperature seems to have a

suppressing behavior on the hump. In comparison, the behavior at higher stress amplitudes

as in �g. 5.30 does not show a clear in�uence of temperature. However, the distribution on

negative intervals based on data measured at 553K and a stress amplitude of 60MPa shows

a power-law behavior over the full regime of measured interval strain (cf. �g. 5.30b). The

hump is not observed, and the exponent extracted over interval strain values spanning two

decades yields a value of �0:78�4�. It is not evident which parameters trigger the suppression

of the hump. This behavior is only observed in case of the evaluation of the negative intervals

occurring during the high-�eld excitation of the LAOS-measurement. The distributions on

the according low �eld excitation (�g. 5.29b) and the distribution on the positive intervals

(�g. 5.30a) exhibit a hump.
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(a) For ��itv l % 0

(b) For ��itv l $ 0

Figure 5.29 Double-logarithmic distributions of interval strain ���itv l�
�
at a stress amplitude �0 of

7MPa comparing various temperatures T . The dashed light gray line indicates the power-law regime.

(a) for positive and (b) for negative intervals.
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(a) For ��itv l % 0

(b) For ��itv l $ 0

Figure 5.30 Double-logarithmic distributions of interval strain ���itv l�
�
at a stress amplitude �0 of

60MPa comparing various temperatures T . The dashed light gray line indicates the power-law regime.

(a) for positive and (b) for negative intervals.
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(a) For ��itv l % 0

(b) For ��itv l $ 0

Figure 5.31 Exponent � based on the linear regime of double-logarithmic distribution on interval

strain $ ���itv l�
�
i j % (cf. e.g. �g. 5.29 and �g. 5.30). (a) for positive and (b) for negative intervals.



Chapter 6

Discussion

6.1 Characterization of Sample Properties

The amorphous state of the as-cast and the mechanically loaded samples is con�rmed by

XRD-scans. The broad halo observed in the spectra in �g. 4.1 arises from the long-range

disorder, which is not in�uenced by LAOS-measurements as illustrated by the comparability

in the behavior of samples i to v and samples vi to vii.

The quanti�cation of the contributing elements of the cast metallic glass is con�rmed by

EDX-measurements on a broad range of samples and yields within the limits of the accuracy

of the method the expected composition of Pd40Ni40P20.

The calorimetric analysis con�rms these results, as DSC-scans show a distinct glass tran-

sition. The onset of the glass transition T
DSC
g , the onset of �rst crystallization Tx1, and

the width of the regime of the supercooled liquid �T are in perfect agreement to results by

Kahl et al. [66]. The di�erence in the speci�c heat for the glass and the supercooled liquid

�c
s�l
p is 81% of the value measured by Wilde et al. [151] and 10% higher than the value

measured by Hu et al [56] and thus re�ects the expected calorimetric behavior for metallic

glass Pd40Ni40P20 samples with respect to literature data.

Temperature scans according to DMA-measurements yield a glass transition temperature T
P
g

at 598�2�K. It is determined by the position of the loss peak of the modulus, which coin-

cides within the limits of accuracy with the value for T
P
g measured by Schröter et al. [125]

using torsional rheology. A comparison of the shear modulus measured at 320K with values

extracted at high frequencies by the rheological measurements show the expected agreement

within the limits of data accuracy. Values reported on the basis of ultrasonic measurements

[66, 79] yield a shear modulus which is higher by a factor of about 1:6 in comparison to the

values extracted by mechanical excitation for both torsional and bending geometry.

The good agreement between the results of the experimental characterization of the metallic

glass Pd40Ni40P20 samples used for LAOS-experiments in this thesis and comparable data

reported in literature con�rms the achievement of the required quality and properties of the

samples.

6.2 Qualitative Response Behavior based on Lissajous-Figures

In order to give a qualitative evaluation of the characteristic mechanical behavior in de-

pendence on the stress amplitude �0, the temperature T , and the evolution with time t,

Lissajous-plots are described in section 5.1. They provide the relation of complex stress �
�

and complex strain "
�
for one period, thus the amplitude of the stress ¶��¶ is also referred

to as the intra-periodic stress, which is equivalent to �c as declared in section 3.7.

87
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Fig. 5.1 depicts the in�uence of the stress amplitude �0 on the sample response at con-

stant temperature.

For the smallest stress amplitude, the Lissajous-�gure shows a linear form which is typically

connected to a purely elastic response behavior within the limits of resolution.

With increasing stress amplitude a loss contribution evolves, which is clearly identi�ed by

the elliptical shape of the stress-strain-data. The area within the ellipsis is equal to the

energy dissipated during the period, which increases with increasing stress and re�ects the

intensifying viscoelastic character of the material's response [92]. Losses can be attributed

to the activation of relaxation processes, which are obviously induced by the applied stress

as reported in literature [92, 157].

For even higher stress amplitudes the shape becomes nonlinear. At small intra-periodic

stresses the slope of the stress-strain-loop changes towards lower values. In the region of

the minima and maxima of the sine wave, the value of the intra-periodic stress is close to

the stress amplitude of the experiment (�c � �0). Here, the slope of the stress-strain-data

is equal to the value observed under lowest excitations, and is thus regarded as independent

of the stress amplitude.

Fig. 5.2 gives an example for the e�ect of the temperature T on the shape of the Lissajous-

�gure. It demonstrates that the elliptic form and thus the loss in the material intensi�es,

corresponding to an increasing activation of relaxation phenomena with temperature. The

nonlinearity becomes more prominent as the temperature increases, similar to the e�ect of

increasing stress amplitude on the Lissajous-�gures.

The evolution of the Lissajous �gures with time under excitation at constant temperature

and stress amplitude is represented by �g. 5.3. It becomes evident that the stress-strain-signal

changes signi�cantly with time, while the Lissajous-�gures seem to become more nonlinear.

The impression of a more intense nonlinearity for chronologically following Lissajous-�gures

is due to the evolving change of the slope in the region of small intra-periodic stresses, where

�c $$ �0. The slope at higher intra-periodic stresses remains constant.

6.3 Nonlinear Response Behavior based on Fourier-Analysis

As presented in section 5.3, quantitative results on the nonlinearity of the sample response

and thus of the compliance � are gained by the analysis of the Fourier-amplitudes and phase

shifts at fundamental and higher harmonic frequencies.

In �gure 5.5 an overview on the harmonic contributions in strain amplitude according

to the Fourier-analysis is given. These results con�rm the qualitative picture gained from

the Lissajous-plots as nonlinear contributions of the Fourier-amplitudes are observed at suf-

�ciently high stress amplitudes, while the signal remains linear for small stresses during initial

low �eld.

During initial low �eld excitation, the higher harmonic contributions do not exceed the noise

level, which is assumed as 3 � 10
�4

% for the strain response. The fundamental frequency

fully dominates the response behavior in a linear way. This is in accordance to results ob-

tained by dielectric spectroscopy (DES)-measurements [147, 116, 118, 84].

In the case of emerging nonlinearity under high �eld excitation, the highest response ampli-

tudes are observed at �rst and third harmonic frequency. Even order contributions do occur

with small absolute values and are attributed to a misalignment of the neutral position (see

appendix for further information).

Higher order contributions as the �fth harmonic exhibit amplitude values above the noise

level for a number of measurements. It allows for a qualitative analysis which is presented in

the appendix, as the data does not provide a sound range of stresses and temperatures. Still,
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as expected, the absolute value of the nonlinear coe�cient of the �fth harmonic increases

with increasing temperature [2].

The second low �eld excitation exhibits a highly time-dependent nonlinear contribution at

the �rst harmonic frequency. Higher harmonic contributions do not occur, as these are still

dependent on the stress amplitude �0. This is exempli�ed by �"©�0�3!, which is equal to

�3�
2

0 in eq. 3.14 and does not exceed the noise level for small stress amplitudes.

As depicted in �g. 5.6 and 5.11a, the nonlinear storage and loss response of the �rst

harmonic frequency typically shows a KWW-type increase during high �eld and a decreasing

KWW-behavior under second low �eld. KWW-�ts in both regimes exhibit good agreement

with the experimental data, if a KWW-exponent of 0:65 is applied in the �tting process.

Three parameters are extracted from the KWW-�ts, which are the instantaneous amplitude

AKWW , the continuous amplitude BKWW , and the timescale of the response �KWW (cf.

section 3.6.3).

The sum of instantaneous and continuous KWW-amplitude, AKWW � BKWW , yields the

steady state value under a given stress excitation. In �g. 5.6 and 5.11 it is evident that this

ideal plateau is not achieved by the experimental data. Instead of an ideal saturation to steady

state, the amplitude continuously increases. This behavior re�ects the �ow-contribution of

the material, based on its viscoelastic character, which is enhanced by the application of high

stress at elevated temperature. The �ow contribution mildly a�ects the extracted timescale

�rec under high �eld, resulting in a tendency towards longer timescales.

The in�uence of the irreversible deformation also becomes evident by the steady state plateau

at second low �eld, which is above the initial low �eld value for many measurements. This

is reasonable, if plastic events are triggered during high �eld excitation. Plastic response be-

havior is connected to irreversible rearrangements within the sample (cf. section 2.5) which

in�uence the sample geometry and thereby per de�nition the modulus. Even for very small

changes in sample geometry a correction of the geometry factor is necessary to achieve the

material's intrinsic modulus. Thus it has to be taken into account that the change in modulus

is to a certain degree due to the change of the sample's geometry. It is important to ensure

that the geometry-dependent change in modulus does not dominate the change induced by

the LAOS-experiment during high �eld excitation. Thus, only those measurements are in-

cluded in the Fourier-analysis for which the di�erence between initial low �eld and second

low �eld modulus is smaller than the sample-to-sample �uctuation of the low-�eld modulus,

which is about 10% as measured by temperature-scans (cf. �g. 5.4).

The di�erence in the behavior observed for high �eld and second low �eld response regarding

the achievement of a steady state gives information on the degree of activation of plastic

events. The occurrence of irreversible, i.e. plastic events under high-�eld excitation is evi-

dent as described above. This is not the case during second low �eld, as the plateau is for

most cases indeed re�ected by a constant value of the nonlinear response contribution. The

compared stress amplitudes belong to the same measurement and the applied temperature

is the same. Thus, it is the higher stress amplitude that induces plastic deformation. The

response under low stress amplitude both for initial and second low �eld seems thus to be

connected to elastic response behavior, while for higher stress amplitude it shows a behavior

that is characteristic for an anelastic sample response.

In case of measurements at low temperature (�g. 5.11b), the loss contribution shows

a decreasing evolution of the KWW-amplitude. It re�ects the persistent aging of the sample

during both initial low �eld and high �eld. That the origin of the decreasing response is due

to a change of sample geometry is excluded, as the corresponding storage signal does not

show the decrease in the response signal. The annealing prior to the mechanical experiment

and also the duration of the initial low �eld part itself is not su�ciently long to bring the

sample to steady state. This behavior stresses the fact that the sample response observed
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for measurements clearly below the glass transition temperature must be regarded as not

fully re�ecting quasi-equilibrium behavior, as the sample is still within the aging process.

The change in compliance within the stress-strain-loop is re�ected by the interplay of �rst

and third order contributions in the strain response from a geometrical point of view, as

depicted in �g. 6.1. Here, the linear and nonlinear contributions occurring under high �eld

excitation are scaled to another as they are measured during a stress amplitude of 54MPa

at a temperature of 565K (cf. �g.5.5). The blue line corresponds to the sine that would

be expected if the sample were responding perfectly linear. The dashed red line corresponds

to the contribution at fundamental frequency, thus its amplitude is higher than in the linear

case due to the additional nonlinear contribution � ln "1!. The red dotted line represents the

response at third harmonic frequency "3!. The overall strain response, which is the sum of

the dotted and the dashed lines, exhibits a distorted sine as depicted by the full red line. In

comparison to a pure sine wave it displays much steeper �anks in the vicinity of the in�ection

points, but also a much shallower progress around minima and maxima. Thus technically,

the �rst harmonic nonlinear contribution gives rise to the super-linear strain response, while

the third harmonic contribution re�ects the reduction of the nonlinear contribution to the

strain response at high intra-periodic stress, i.e. at �©2 and 3�©2 in �g. 6.1.

Figure 6.1 Scheme of the contributions resulting in the overall nonlinear strain response (solid red

line) for one period. The solid blue line depicts the linear contribution of strain response, the red

dashed line is due to both linear and nonlinear contribution at the �rst harmonic frequency, the red

dotted line is based on the contribution at the third harmonic. Amplitudes and phase-shifts re�ect

the relations of the measurement shown in �g. 5.5.

At the fundamental frequency, the nonlinear response amplitude increases with increasing

temperature and increasing stress amplitude (cf. �gures 5.7, 5.8, 5.12, and 5.13). This is

characterized by the �rst harmonic nonlinear coe�cients, which are plotted in �g. 5.9 and

5.14. They are deduced from the proportionality between nonlinear response amplitude and

squared stress amplitude (cf. eq. 3.22 and 3.23). In semi-logarithmic scaling the nonlinear

coe�cients show a linear increase with increasing temperature for storage and loss contribu-

tions at the fundamental frequency for both high �eld and second low �eld. The values di�er

within the limits of the errors extracted by linear �ts and express an increase of the nonlin-

ear contributions by one order of magnitude within a temperature window of 11�2�K. The
values for the ordinates are small for all coe�cients and are thus regarded as zero. This part
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of the analysis re�ects that the underlying process leading to nonlinear changes is identical

for storage and loss compliance. Moreover, this process occurs both under load during high

�eld and under second low �eld excitation when the system recovers.

While the nonlinear contribution at the �rst harmonic frequency leads to an additional ac-

cumulation of strain and thus an increase in compliance, the third harmonic nonlinear

coe�cient yields a decreasing e�ect. The absolute value of the third harmonic nonlinear

coe�cient shows an increase with temperature as well, even though it is not of the same

nature as for the fundamental frequency (cf. �g. 6.2). In case of the relative change in third

harmonic strain of Polymethylmethacrylate (PMMA) [44] a non-zero o�set y0 is observed as

well, which is in a comparable order of magnitude compared to the absolute values involved

in the �t on the metallic glass data.

Thus, the temperature dependence as well as the reducing e�ect on the compliance of the

third harmonic contribution is of comparable nature in case of LAOS-experiments. In dielec-

tric spectroscopy the third harmonic coe�cient has an opposed e�ect on the susceptibility,

as it enhances the response signal in the same way as the �rst harmonic contribution [84].

For this reason, the origin of the third harmonic might also be of a di�erent kind for DES

and DMA-experiments.

For DES-measurements, a connection of the third harmonic nonlinear coe�cient to the in-

tensity of particle-correlation is reported [16, 23, 84]. It results in the number of correlated

particles Ncorr which is extracted from the third harmonic nonlinear coe�cient �
�3�
3

, which

disposes a hump in dependence on measurement frequency. The knowledge necessary to

obtain the number of correlated particles is the amplitude of the nonlinear coe�cient at the

maximum of the hump, or at a constant spectral distance to it. The extraction of the num-

ber of correlated particles and a comparison to literature data on correlation length scales

measured by other methods [104, 127, 120] would give an estimate on the applicability of the

model by Biroli and Bouchaud [16] on LAOS-data. The LAOS-experiments are performed

at �xed frequency, thus no further spectral information is available than the knowledge of

�
�3�
3

at a frequency of 1Hz. Thus, a quantitative value for Ncorr is not extracted by the

LAOS-measurements. However, comparison to the spectral evolution of the third harmonic

nonlinear coe�cient for glycerol from DES-measurements yields the same trend [8], i.e. an

increase in �
�3�
3

with increasing temperature. The occurring resonance of the DMA-machine

at frequencies slightly higher than 1Hz restricts the frequency domain signi�cantly. To do so

a dynamical mechanical analyzer is required, which generates reliable stress and strain data

over a frequency regime of 2 to 3 order of magnitudes, even for materials with a relatively

high modulus in the GPa regime as the case for metallic glasses. The DMA 8000 is designed

for the analysis of polymers, ideally covering materials of a modulus between 106Pa and

1016Pa [105].

A comparison of nonlinear coe�cients extracted for �rst and third harmonic frequency

is shown in �g. 6.2. Even though the e�ect of �rst and third harmonic coe�cient is of

opposite e�ect, the nonlinear coe�cients exhibit absolute values, which are roughly in a

comparable order of magnitude. This observation is similar to the relation between nonlinear

coe�cients extracted from DES-experiments [8, 148], e.g. for glycerol. The increase of the

nonlinear coe�cients at fundamental frequency re�ects the dominating dependence of the

compliance on the temperature T and the stress amplitude �0.

The similarity between the e�ect induced by an increase in stress amplitude and an increase

in temperature is in some cases discussed in terms of a change in �ctive temperature [38].

The change �Tf for the stressed case is induced by the external �eld as assumed by the

Box-model [117] and applied for results from dielectric spectroscopy, for which the thermal

energy is much larger than the energies induced by the electric �eld [117, 148, 113, 57].

If an amorphous system is excited by an external �eld at a given frequency f , certain con-
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Figure 6.2 Relative nonlinear coe�cients for �rst harmonic storage and loss, and third harmonic

complex contribution plotted against temperature T .

�gurational modes couple to the exciting signal and gain energy. If these con�gurational

modes couple only weakly to modes in its vicinity (spectrally or locally), and show a rather

weak link to vibrational modes, energy will be accumulated by this mode. It takes a longer

time to relax the energy to the phonon bath or to neighboring modes than to absorb energy

from the external �eld. The accumulated energy a�ects the excited mode in the sense of

an extra energy, described by an increase in �ctive temperature. This increase leads to a

change in the characteristic sample response, which changes towards the response which is

typically expected at the temperature T ��Tf . The time-dependent behavior is re�ected by

the timescale �rec that is needed to achieve a steady state between energy absorption and

recovery. However, this interpretation should be regarded with care if applied on metallic

glasses, as model calculations for Pd40Ni40P20 do not yield satisfying agreement between ex-

perimental and modeled data [114]. As the energies transferred in the mechanically excited

system are large compared to kBT , the assumptions made by the box-model might not hold.

In the PEL, the di�erence in the e�ect of temperature and stress becomes evident. An

increase in temperature leads to more intense �uctuations as indicated in �g. 6.3 from [101]

by the green arrow. The excitation by a mechanical �eld yields a directional tilt of the PEL,

as depicted by the red line and arrows. It is very di�erent from the e�ect of temperature,

which acts on a random basis, i.e. non-directional. This becomes even more intense, if the

mechanically induced energy becomes large compared to the thermal energy of the system.

In the MD-simulation performed by Yu et al. [157] the e�ects of temperature and mechanical

excitation amplitude are investigated, which are also reported by [126, 50].

This description can be used for the interpretation of the response behavior. Due to the

applied �eld, barriers in the PEL can be overcome, which are too high to be surmounted by

thermally induced hopping in the unstrained or only mildly strained case. If the stress ampli-

tude is su�ciently high, it is connected to such an intense tilt of the PEL that the system

is not only able to change between inherent states but also passes into other metabasins

[157, 126, 50]. These transitions are identi�ed with an irreversible change within the mi-

crostructure, which is assumed to occur due to the activation of STZs (cf. section 2.5,

�g. 2.13). The quadrupolar elastic matrices surrounding the plastic core of STZs can trigger

further STZs resulting in a cooperative rearrangement of irreversible nature. This process is

connected to a breakdown of elasticity as described by the EIP-motif [77].
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Figure 6.3 Scheme of the di�erent e�ects of temperature T and mechanical excitation (here referred

to as �) from [101].

The intense tilting of the PEL also shows an e�ect on the modulus of the material. By the

tilting of the potential the basins are changed to a less intense curvature, resulting in a lower

modulus [161, 52, 63]. The e�ect of the applied stress on the modulus and thus on the

compliance is quanti�ed by the evolving nonlinearity at fundamental frequency.

The PEL provides a possible explanation for the di�erent e�ects of �rst and third harmonic

contribution on the compliance. It is connected to the in�uence of the sinusoidal form of

the excitation signal and the connected strain rate. A reduction in nonlinear strain contri-

bution corresponds to a lower compliance, i.e. a higher modulus. The modulus is connected

to the curvature of the minimum in the PEL that the system inherits. As the strain rate

ceases around �c � �0, also the tilt of the PEL comes to rest and the system has time to

relax within the metabasin the system is currently trapped in. The curvature at deeper re-

gions of a metabasin is assumed to be higher, thus the modulus of these states is higher, too.

Both temperature and stress are capable of driving the system towards its less rigid state

[157, 126, 50]. If the temperature is increased su�ciently, the accompanied transition is

called the glass transition [38]. If the excitation to this transition is of mechanical nature, it

is referred to as the mechanical yielding transition [108, 52, 61]. Stress and temperature

accompany each other, thus at elevated temperatures less stress is needed to drive the sys-

tem to the yielding transition than the case at low temperature [50, 157].

In the experimental realization of the LAOS-approach, the material is mechanically excited

at temperatures slightly below Tg and thereby driven towards yielding. The maximum strain

of the experiments are within 0:02% and 0:13%. Thus even the strain response to the

highest stress amplitudes applied is by an order of magnitude lower than the universal yield

strain according to the CSM, which is 

CSM
c � 2% [64]. On the basis of static stress-

strain-curves (cf. section 4.4) which are extracted at temperatures typically applied in the

LAOS-measurements, a similar conclusion can be drawn, as depicted in �g. 4.4. Still, the vis-

coelastic behavior, which is connected to irreversible rearrangements, is one of the indicators

for the approach of yielding. A comparison of the nonlinear response at high and low �eld

excitation clearly shows a di�erence in the response behavior. While the response is highly

in�uenced by irreversible response behavior under high �eld excitation, the low �eld response

shows characteristics of elastic behavior. This approach is directly depicted in �g. 5.4, which

shows a comparison of the storage compliance deduced from LAOS-measurements and the

storage compliance determined by low-�eld temperature scans. The low �eld compliance of

the LAOS-experiments is in comparable order to the results from temperature scans. The

high �eld compliance in contrast shows clearly rather enhanced values, that are rather com-

parable to compliance data at temperatures above the onset of the glass transition T
on
g . A

connection of the increase in �ctive temperature by �Tf due to a mechanical excitation lacks

on the quantitative scale as described before. Still, a connection between the compliance un-
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der high-�eld excitation and the compliance at elevated temperature is clearly demonstrated

by the data. Thus, the response to high stress amplitudes is connected to a shift towards

the anelastic response regime on a qualitative basis.

Another indication for the connection of the high-�eld response to irreversible relaxation phe-

nomena and thus the approach of the yielding transition is found in the recovery timescale

�rec , which re�ects the evolution of nonlinearity. The timescale obtained by KWW-analysis

describes how quick the steady state is approached during high �eld excitation and second

low �eld excitation [58, 118]. It is a measure for the timescale describing the evolution of

the nonlinearity. In DES-experiments this timescale is termed the timescale of structural

recovery �rec [118]. The timescales extracted from the storage compliance show very similar

values for high �eld and second low �eld as expected (cf. �g. 5.10).

The analysis performed on the loss compliance shows larger KWW-timescales under second

low �eld than under high �eld excitation (�g. 5.15). For both storage and loss contribution

matching timescales for high �eld and second low �eld are expected [155, 10]. The reason

for the deviation re�ects the uncertainties due to the measurement and analysis technique.

To facilitate the comparison of the time-dependent behavior at both �rst and third harmonic

frequency, the timescales extracted from data measured during high �eld excitation are plot-

ted against temperature in �g. 6.4. The timescale extracted from storage compliance at the

fundamental frequency �
hf
�¬;1! (solid squares) is rather constant with temperature. Both the

timescale of loss compliance �
hf
�¬¬;1! (open squares) and of the compliance at third harmonic

frequency �
hf
�;3! (solid stars) show an increase with decreasing temperature. The accuracy

of the measurement does not allow for a reliable di�erentiation between the trends of the

three di�erent recovery timescales. Thus the overall behavior of the recovery timescale is

assumed to be re�ected by the blue dashed line in �g. 6.4, which is a guide to the eye.

Figure 6.4 Temperature-dependent timescales for �rst harmonic storage and loss compliance, �
hf

�¬;1!

and �
hf

�¬¬;1!, and third harmonic complex compliance �
hf
�;3! under high �eld excitation as in �gures 5.10,

5.15 and 5.19 depicted by symbols. Literature data on the structural relaxation timescale �� [151]

correspond to green symbols connected by lines. The blue dashed line serves as a guide to the eye

for the general trend of the measured recovery timescales with temperature.
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The overall trend of the extracted timescales for �rst harmonic loss and third harmonic

complex compliance show an increase in � with decreasing temperature. A comparison to

literature data on the timescale of structural relaxation �� [151] shows, that the change

with temperature is comparable, while the data shows on average an o�set of one order of

magnitude towards higher timescales for all investigated temperatures. Even if the trend

of the recovery timescale does not exhibit a perfect match with the structural relaxation

timescale, the data shows that the evolution of the nonlinearity is closely connected to ��
and thus to the occurrence of irreversible rearrangements. It does not re�ect the timescale

of the applied frequency �f � �2�f ��1 of the measurement, which is about 160ms [58, 118].

The fact that the extracted timescale is connected to the timescale of structural relaxation of

the material rather than to the timescale of the excitation frequency stands in contradiction

to the assumption of the box-model (cf. section 2.7.1). As the model assumes a negligible

exchange between di�erent relaxation modes, the only timescale that should play a role in

the recovery of energy is the intrinsic timescale of the excited mode with �i � �2�f ��1 under
the assumption that the calorimetric coupling is corresponding to �i . The overall relaxation

time characterizes the recovery of the accumulated energy and re�ects the average relaxation

timescale of an ensemble of con�gurational relaxations, i.e. the matrix response or at least the

average response of a large number of individual relaxations. This gives clear evidence, that

either spectrally or spatially long-range interactions between relaxations play a dominant role.

As the metallic glass Pd40Ni40P20 is regarded as a structural glass former, which is directly

exposed to a mechanical �eld in the LAOS-experiment, the assumption of the excitation of

structural rearrangements is the logical consequence. The long-range interaction is thus to

be assumed on the spatial scale, e.g. via the long-range Eshelby stress �eld of occurring STZs

[42, 41]. This is di�erent for experiments by means of DES, as the electric �eld couples to

the dipolar moment of molecules, which oscillates in a damped mode with the exciting �eld.

To which extent the dipole couples to the backbone of the molecule is not always clear even

though a close coupling is observed for a number of materials [119]. Neither is known if it is

possible to trigger rearrangements in terms of avalanche dynamics in DES-experiments.

6.4 Response Behavior based on the Incremental-Analysis

The de�nition of intervals as described in section 3 allows for a thorough analysis of the

dependence of the response on the applied parameters of the measurement. The incremen-

tal analysis is an analytical method individually developed for the evaluation of the LAOS-

experiments. It is based on the concept of avalanche dynamics theory according to the

EIP-motif [77] and similar �ndings [88, 32, 142]. If avalanche dynamics dominate the re-

sponse behavior, the incremental analysis will result in power-law behavior for the distributions

of the interval response. If for example noise were the dominating factor in the response data,

the extracted distributions would exhibit a Gaussian form, and thus the absence of power-law

behavior is the expected result.

According to [140] the size of avalanches increases with the applied stress. Thus, the closer

the system is pushed towards yielding, the more intense the plastic contribution to the sample

response becomes. This �nally leads to system spanning events in form of permanent shear

bands, which occur in the plastic regime of the stress-strain-curve at stresses clearly above

the yielding transition [49]. The events dominating the response of the LAOS-experiments

are assumed to be due to avalanches as observed strain values are far below the critical yield

strain [64]. If these events would occur temporally and spatially separated, the signature

is assumed to be comparable to the EIP-motif [77, 32]. It consists of a segment of linear

response exhibiting the modulus or compliance observed at low temperatures and low �elds,

and a segment due to the plastic event. In a strain-controlled experiment, which is the basis

of the depicted EIP-motif in �g. 2.31, the plastic event is measurable as a drop in stress. The

drop intensity and duration are highly dependent on the strain rate and show in�nitesimal
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small durations in the athermal limit [142]. In case of a stress-controlled tensile experiment

the instability is expected to occur as a jump in strain. In case of a single cantilever bending

experiment, simulation data depicting the EIP-motif are not at hand, thus it is speculative

if the instability is de�nitively of increasing strain, or if a drop in strain is similarly possible,

as the bending geometry results in a dilated and a compressed zone simultaneously [154].

The sample response regarding the EIP-motif might not be as intuitive as the case for a

tensile experiment. Moreover, it assumes that only one avalanche occurs at a time. Due to

the elevated temperature of the performed LAOS-measurements and the sample dimensions,

which include a huge number of particles, such a temporal separation of avalanches is not a

realistic assumption.

The incremental analysis of the data results in positive and negative intervals which are an-

alyzed regarding averaged values of interval strain and interval duration as shown in section

5.4.2. On the basis of interval strain data, distributions are discussed regarding similarities to

critical behavior [106, 150, 131], which is typical for avalanche-dominated material response.

The dependence on temperature T , stress amplitude �0, and intra-periodic stress �c is in-

vestigated, as well as the in�uence of the strain rate _".

Figure 6.5 Normalized strain rate _"norm and normalized averaged interval strain $ ���itv l�
�
i j %

norm

c

plotted against the normalized intra-periodic stress �c for a stress amplitude of �0 � 60MPa at

constant temperature T � 563K.

The averaged interval strain $ ���itv l��i j % strongly varies with the applied stress. On the

scale of the intra-periodic stress �c the averaged interval strain decreases, while it increases

with increasing stress amplitude �0. Normalization of the averaged strain data performed

according to eq. 5.1 and a rescaling of the x-axis by division by �0 leads to the collapse of the

data onto a mastercurve (cf. �g. 5.23). If the normalized strain rate as described in section

5.4.1 and plotted in �g. 5.20b is compared with the mastercurve of the averaged interval

strain, a strong similarity in the evolution on the intra-periodic scale is observed as depicted

in �g. 6.5. Triangles correspond to the normalized averaged interval strain for positive and

negative intervals, while the asterisk symbols depict the evolution of normalized strain rate.

All three normalized quantities show a matching evolution with �c©�0. Furthermore, plotting

the normalization factors of the averaged interval strain for positive and negative intervals

against the normalization factor of the strain rate, a linear relation is obtained as shown

in �g. 6.6. Thereby, both the evolution with intra-periodic stress �c and the increase with

increasing stress amplitude �0 can be attributed to a dominating dependence on the strain

rate _". This observation is in accordance to data reported in literature [54]. It results in an



6.4. INCREMENTAL RESPONSE BEHAVIOR 97

increase of the averaged interval strains with growing strain rate. The amount of change

with increasing strain rate is of the same intensity for positive and negative intervals. Thus,

with increasing strain rate the absolute values of averaged interval strain for positive intervals

increase, while the absolute values for negative intervals decrease.

Figure 6.6 Normalization factor of the averaged interval strain plotted against the normalization

factor of the strain rate for a stress amplitude of �0 � 60MPa at constant temperature T � 563K.

The normalized average interval duration �titv l shows a comparable evolution on the intra-

periodic scale as the case for averaged interval strain values. This behavior is depicted in

�g. 6.7a, for both positive and negative intervals. The dependence on the strain rate is

dominant for this quantity as well, both for the evolution within a period and with changing

stress amplitude. In case of interval duration, the averaged values decrease with increasing

strain rate for both positive and negative intervals. This relation is plotted in �g. 6.7b, which

shows the normalizing factors for averaged interval durations against the strain rate.

(a) (b)

Figure 6.7 (a) normalized strain rate _"norm and normalized averaged interval duration $

��titv l�
�
i j %

norm

c plotted against normalized intra-periodic stress �c . (b) normalization factor of the

averaged interval duration plotted against the normalization factor of the strain rate. Both plots are

shown for a stress amplitude of �0 � 60MPa at constant temperature T � 563K.
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The distributions of strain intervals occurring at �c & 2©3 �0 show qualitatively the same

form for both positive and negative intervals (cf �g. 5.28). Three characteristics are ob-

served for all distributions based on interval strain data. First, the power-law behavior that

is prominent for low interval strains. Second, a hump occurring in the second half of the

distributions. Third, the cut o� which concludes the distributions.

The cut-o� terminates the distributions at an absolute strain value of 17:8�8� � 10
�3

%,

independent of the stress amplitude for both positive and negative intervals. In the plastic

regime, the value of the cut-o� is identi�ed to be of the size of a system-spanning event

[74]. In the elastic and anelastic response regime system-spanning events are not expected to

occur, thus it is reasonable that the cut-o� occurs at strain values smaller than the system's

smallest dimension, which corresponds to about 10
�2

% strain.

The hump is a temperature- and stress-dependent feature of the distribution. Its maximum

at low stress amplitudes coincides with the temperature-speci�c average interval strain (cf.

�g. 5.28). The hump is reported in literature as well, connected to strain rates su�ciently

high to overdrive weaker, i.e. smaller events, resulting in a triggered occurrence of larger

events [150, 33, 135]. If this explanation is applicable to the LAOS-data has to be tested,

for example by measurements over a broad range of strain rates. With increasing stress

amplitude, i.e. increasing strain rate (see �g. 5.21a) the hump exhibits a certain shift. It is

observed as a shifting towards higher strain values for positive intervals as depicted in �g. 6.8,

while it shifts towards lower strain values for negative intervals. This re�ects qualitatively

the behavior of the averaged interval strain, which is strongly in�uenced by the strain rate as

well.

For the smallest observed values of interval strain between 10
�4

% and 10
�3

% a linear depen-

dence between logarithmic probability and logarithmic interval strain is observed. This range

corresponds to displacements between 40 nm and 400 nm. According to the manufacturer's

handbook [105] the spatial resolution of the dynamical mechanical analyzer is of 1 nm and

thus well below the acquired interval strain data. The power-law regime exhibits an exponent

of about �0:8 for both positive and negative intervals, which is independent of tempera-

ture, applied stress, and the type of intervals. Many simulations focusing on the extraction

of power-law exponents in amorphous systems re�ect strain-driven systems in the plastic

regime [77, 32, 88]. The analysis of a stress-driven system under rheological or sinusoidal

excitation within the elastic regime is not reported as far as the literature research reveals

that was conducted in connection to this thesis. Thus, a literature value based on simulations

is not at hand for comparison, even though a variety of di�erent power-laws for stress drop

statistics, energy distributions, and other parameters are published [88, 81, 142, 134, 74, 54].

Results extracted from molecular dynamics simulation [77, 81] indicate, that the exponents

observed for elastic and plastic response behavior are comparable or even identical. This

observation is also reported in case of Barkhausen noise experiments [140]. The �ndings

regarding the exponent extracted from the interval strain distributions are in accordance with

the exponent extracted by mechanical analysis on metallic glasses by Krisponeit et al. [74]

from waiting time distributions. An analysis of the exponent's dependence on the strain rate

con�rms this comparability, as the strain rates connected to an exponent of �0:8 are low

and thus suitable to the rates reported in this work [54].

As observed for the measurement at 553K at a stress amplitude of about 60MPa, in the

distribution of negative intervals (cf. �g. 5.30b) the much less pronounced hump yields a

distribution that exhibits power-law behavior over the complete range of observed interval

strain, while the distribution of positive intervals is of characteristic shape (cf. �g 5.30a). As

this temperature is connected to persistent aging as observed in the nonlinear contribution

at �rst harmonic frequency of the loss compliance (cf. �g. 5.11b), it is possible that the

more pronounced power-law behavior is in connection to the aging procedure. However, the

low �eld data and data of other measurements reject a simple connection to aging, as these

do not show the absence of the hump in the distribution.
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Figure 6.8 Zoom of the hump of the interval strain distributions for positive intervals as shown in

�g. 5.28 for various stress amplitude �0 at constant temperature T � 563K. The arrow depicts

schematically the observed shift of the hump with increasing stress amplitude �0, i.e. increasing strain

rate _".

The position of the hump is temperature and stress dependent, but it is not suppressed by

these parameters in the investigated parameter regimes. Thus the origin for the hump is not

identi�ed, even though it is obvious that some parameter, that is triggered in the LAOS-

experiment or the preparation procedure, must be highly connected to the suppression of the

hump in the interval strain distribution.

Two possible routes of interpretation of the interval data are described and discussed

in the following paragraphs. As only one of these routes is logically favorable, arguments are

given that re�ect the conclusion why other options of data interpretation are discarded.

Individual Events

A possible interpretation of the data is the direct comparison of intervals to the EIP-motif.

Positive intervals correspond to the linear, i.e. elastic part of the motif, while negative

intervals are due to plastic events in the material [32]. Then every maximum in �g. 3.6

corresponds to an instability point as depicted in the EIP-motif, and the minima mark the

end of a plastic event, after which the elastic response dominates again [77].

Several points mark this description as a misleading interpretation of the data. First of all,

the EIP-motif as depicted in �g. 2.31 is extracted under the condition of strain control.

Thus, the stress is the only free parameter, which naturally shows a strong decrease if the

sample undergoes plastic deformation and thereby releases a certain amount of energy. The

LAOS-experiment on the contrary is a stress-controlled experiment. The strain is the free

variable in the system which is expected to undergo a certain change in case of a plastic

response event. Whether this change is positive or negative is not necessarily self-evident

due to the simultaneous existence of a dilated and a compressed zone in a sample under

single cantilever bending conditions.

If one type of intervals were assumed as linear and the other as corresponding in ways of

a plastic response, the one representing the elastic behavior is expected to have a positive

value. Moreover, it should exhibit a constant interval strain at least on a small intra-periodic

stress segment, or at least a more narrow distribution of interval strain. This behavior is not
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observed in case of the interval data, as it shows very similar behavior for both positive and

negative intervals in case of averaged interval strain and distributions of interval strain. Both

show a very similar distribution including the power-law regime.

The interval slope itself should show a distinct value throughout the whole stress regime for

one type of intervals as it should re�ect the inverse elastic modulus of the material in terms

of a constant value in the order of the low �eld compliance (cf. �g. 2.30). However, both

types of intervals have a similar type of compliance behavior as shown in the appendix.

For these reasons the direct interpretation of the data in terms of a pure EIP-motif is not

applicable. The deviation between the response behavior and the characteristic EIP-motif

is reasonable, as the LAOS-experiments are performed at elevated temperatures close to

the glass transition. Irreversible relaxations play a dominant role during high �eld excitation,

which are induced both due to the elevated temperature and stress. Due to the sample

size, the response behavior is reasonably a superposition of both elastic and plastic response

behavior. This suggests a more realistic interpretation of the data in terms of temporally and

spatially overlapping rearranging events.

Overlapping Events

This route of interpretation assumes a temporal and spatial overlap of the occurring plastic

events. This overlap leads to a response behavior that is generally more compliant than the

elastic response, as the plastic response is superimposed on it. This scenario is very similar

to the situation depicted in �g. 2.32, in which the elastic response is assumed as a base-line

voltage [140]. The plastic response is due to small peaks in voltage in case of single events

as observed in A), which evolve to avalanches in the response behavior due to increasing rate

as depicted in B) and C).

The connection to the interval-based analysis performed and presented in section 5.4 is found

in the sub-events of such an avalanche of plastic events as observed in �g. 2.32 C). Due

to the fact that these sub-events are based on superposition of individual events of EIP-

motif type, they are directly coupled to the intensity of plastic response. The power-law

response in avalanche-dominated systems is assumed to be scale invariant, or at least close

to scale-invariance [131]. The distribution of these sub-events or intervals should yield the

characteristic form of a power law, as the case if the strain intensities of the cascades of

plastic events are analyzed [140]. As the distributions on positive and negative events show,

this is indeed the case, con�rming this interpretation.

However, the behavior of the interval duration is somewhat unexpected in comparison to

the reported behavior, which shows under increasing rate an increase of the duration for both

individual plastic events like the EIP-motif [141, 77] and avalanches [140]. The fact that the

duration is closely coupled to the strain rate as depicted in �g. 6.5, gives evidence that it is

connected to the intrinsic plastic response of the material. Thus, it gives an indication that

the intervals as de�ned for the incremental analysis in section 3.7 are not to be identi�ed

with individual plastic events, as the EIP-motif suggests. Neither do they re�ect the full

length of avalanches, which arise from the linear baseline as in �g. 2.32 B) and C). They

refer to subsets of plastic processes, which re�ect the scale invariant behavior typical for

avalanche dominated systems [131]. As the number of individual processes contributing to

these subsets is not known, a comparison on the duration of single events can not be given.
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6.5 Comparison and Classi�cation of Results from Nonlinear and

Incremental Analysis

In comparison, the nonlinear approach and the incremental approach for data analysis in case

of LAOS-experiments yield very di�erent results on the onset of plastic processes.

The nonlinear analysis provides evidence for a promoted nonlinearity only under high �elds,

while the sample response shows only a linear contribution under low �eld excitation. The

proposed interpretation of linear and nonlinear behavior as the absence of rearranging events

in the linear case and an activation of plastic behavior in the nonlinear case, however, is chal-

lenged by evidence by the incremental analysis that reveals an activation of plastic events

for both high and low �elds. This becomes evident by the power-law behavior in strain

distributions extracted by incremental analysis, which is observed for all stress amplitudes

investigated. This power-law observation indicates a connection of the measured strain to

avalanches due to STZs as observed in simulations [88, 32, 89, 137], colloidal experiments

[122, 20, 19], as well as mechanical analysis [74, 54]. Thus, the regime of the stress-strain-

curve which is often referred to as linear or elastic in the Hookean sense is not purely elastic

at all. It is connected to the appearance of STZs. These are attributed to local rearrange-

ments of plastic character, exhibiting a broad variation in the size of the triggered events due

to the correlation of STZs via their elastic Eshelby �eld.

The enhanced strain response is re�ected by the nonlinear contribution at fundamental fre-

quency in case of the nonlinear analysis. This contribution yields a super-linear behavior and

is depicted by the nonlinear analysis as an additional strain response to the linear response ob-

served under low �eld excitation. The nonlinear contribution at the third harmonic frequency

in contrast has a sub-linear e�ect on the compliance, i.e. reducing the compliance (e.g.

observed under high intra-periodic stresses in �g. 5.1). The opposing e�ect of the nonlinear

contribution at �rst and third harmonic frequency are both connected to the strain rate. In

case of the �rst harmonic nonlinear contribution the e�ect is connected to an increase in

strain rate, pushing the system further towards yielding. The other e�ect can be attributed

to a dominating in�uence of a decrease in strain rate on the intra-periodic timescale, re-

�ected in the nonlinear contributions of the third harmonic frequency. The connection of

strain intervals to the strain rate is similarly observed in case of interval averages (�g. 6.5),

con�rming the interpretation regarding the third harmonic frequency. The strain rate has a

strong in�uence on the averaged interval data at high intra-periodic stresses, exactly where

the third harmonic frequency shows the strongest e�ect on the intra-periodic stress scale.

An important question is, how the di�erence in low and high �eld response for the nonlinear

analysis can be interpreted in connection to the results of the incremental analysis. The latter

one shows a di�erence in the average interval strain which is connected to the strain rate via

the stress amplitude. The magnitude of the averaged values is directly comparable to the

linear and nonlinear response behavior of the nonlinear approach. However, the distributions

of both low �eld and high �eld excitation show a power-law behavior, that indicates that for

both excitation amplitudes the same response process is occurring. Even though the global

response behavior does not directly re�ect the connection to microstructural processes, the

incremental approach clearly does as shown by the interval strain distributions. The response

behavior is a result of the microscopic rearrangements termed as STZs, which even occur in

case of low �eld excitation, i.e. low strain rate. It is connected to a response that appears

to be elastic on the global scale, but is not on the local scale.

The comparison of the nonlinear and the incremental analysis and their results indicates a

stronger sensitivity of the incremental analysis regarding the detection of plastic events. It

becomes clear, that the extracted nonlinearity of the system is rather due to the global eval-

uation technique and not due to an intrinsic nonlinear character of compliance or modulus

itself. It evolves from the averaging of the sample response over the range of one period
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by the period-by-period Fourier-analysis. It smoothens the response over the whole period

neglecting its erratic character. Still, one of the advantages of the nonlinear analysis is

the determination of the recovery timescale, which shows a connection to the structural

relaxation time of the metallic glass. This connection of the overall sample response to the

VFT-relation is a clear indicator for activated primary relaxation. This observation indicates

that the applied high �eld excitation is su�cient to push the system towards the so-called

anelastic part of the stress-strain-curve.

Even though the nonlinear analysis does not resolve the irreversible rearrangements occur-

ring in the metallic glass samples to the same extent as the incremental analysis, it is a

powerful tool at temperatures above the glass transition temperature in case of dielectric

measurements. Here, the interval response is assumed to become less pronounced due to

the enhanced superposition of avalanches. This intense avalanche-behavior eventually results

in a more or less smooth data evolution, resulting in homogeneous deformation. It should

highly depend on the data acquisition rate, to which extent intervals or avalanches can be

resolved in this temperature regime. A smooth data evolution at these elevated temperatures

is measured in case of dielectric experiments, avalanche-dominated behavior is not observed.

The parallels of the results of nonlinear and incremental analysis re�ect the general applica-

bility of both methods. These are for example the enhanced strain response with increasing

stress amplitude and increasing temperature, and the strain-rate dependence at high intra-

periodic stresses. Still, the incremental approach disposes a higher sensitivity towards the

occurrence of STZs, even in the so-called elastic part of the stress-strain-curve.



6.6. OUTLOOK 103

6.6 Outlook

A method for the incremental analysis of mechanical response data yielded by single cantilever

bending experiments is successfully developed, which reveals the plastic response behavior

with high sensitivity. However, this method could be extended regarding the evolution of

distributions with intra-period stress and with time. The distributions shown in this thesis

contain all intervals occurring in steady state periods. As long as the distributions include a

su�cient amount of intervals to guarantee a sound statistical basis, the data can be subdi-

vided. This way distributions can be extracted that depict the evolution with experimental

time or which extract the change of the distribution with intra-periodic stress. Possibly, a

better understanding of the hump could be gained, which might show a di�erent appearance

for data sub-sets connected to high strain rates.

Furthermore the interplay between stress amplitude and frequency has a strong in�uence on

the values of strain rate. Its dominating in�uence on the sample response can be analyzed

on a wider range by an extension of the applied frequency regime.

To learn about the occurrence of relaxation processes in other materials, further metallic

glasses and polymers would be interesting candidates for evaluation. Data acquired for the

nonlinear analysis of PMMA from the PhD-thesis by S. Finkhäuser is available for incremental

analysis [44]. The master thesis by C. Garve even includes a comparison of the nonlinear and

incremental analysis on metallic glass Pd77:5Cu6:0Si16:5 samples [47].

Also, an extension of the regime of the experimental parameters is desired. These are the

temperature T , stress amplitude �0, and frequency f . At very low temperatures a change

of the response behavior is expected, as the intensity of avalanche-behavior should subside.

This is possibly resulting in the observation of avalanches and sequences of linear behavior,

as depicted in �g. 2.32 B) and also by the EIP-motif.

Apart from an extended parameter range, the type of excitation could be changed from sinu-

soidal to a saw-tooth excitation. The in�uence of strain rate on the intra-periodic stress scale

would be avoided as the strain rate is constant, resulting in a simpler experimental situation

in case of the incremental analysis. The nonlinear analysis could be performed still, as the

saw-tooth excitation corresponds to a superposition of odd-harmonic frequencies. Still, the

data evaluation becomes more complicated, as the response signal regarding the expected

response frequencies overlaps with the spectrum of excitation frequencies.

In case of the nonlinear analysis, measurements at further frequencies might reveal the evo-

lution of the number of correlated particles. Materials with lower modulus might be more

applicable than metallic glasses as these generate a strong resonance at higher frequencies

due to their relatively high modulus in experiments with the DMA 8000. An adjustment of

the sample geometry by further reduction of the sample width and thickness might improve

the resonance issues as well. This would also suit the idea of an excitation with higher stress

amplitudes without implications by nonlinear contributions of the machinery.

In conclusion, the mechanical analysis on the basis of LAOS-measurements contributes to

the understanding of the response behavior of metallic glasses as it reveals the existence of

avalanche dynamics in the so-called elastic or linear response regime of the stress-strain-curve.

Still, open questions especially in connection to the origin of the hump in the distribution of

interval strain remain. By further development of the experimental approach as elaborated

above, the investigation of this phenomenon could be pursued by the proposed incremental

analysis.



104 CHAPTER 6. DISCUSSION





106 CHAPTER 6. DISCUSSION



Acknowledgment

First of all I want to thank Prof. Konrad Samwer, who gave me the opportunity to develop

my thesis under his supervision. He fully supported me from the very �rst moment, when

I entered his o�ce to apply for a PhD-position in his group. He o�ered his knowledge and

experience to learn about the �eld of amorphous matter, and to explore own ideas and in-

terpretations. He often discussed with me and gave his opinion on numerous questions and

ways of interpretation. I am very grateful that he accepted me as his student, as his scienti�c

guidance in�uenced me and helps me not only in regard to my thesis, but also for my future

scienti�c development.

During my thesis I was allowed to gain experience on several national and international con-

ferences and got the freedom to grow on the challenges that were o�ered to me. Especially

the projects at Arizona State University in the United States of America with Prof. Ranko

Richert, and the project at the Weizmann Institute of Science in Israel with Prof. Itamar

Procaccia learned me a lot, both from the physics point of view, and in terms of personal

experiences. Thus, I want to say a special thanks to Ranko and Itamar, who impressed me

a lot personally and scienti�cally, each in their very individual ways.

Furthermore, I want to thank Prof. Hans-Ulrich Krebs who agreed on being the second

supervisor of my thesis, and to Prof. Cynthia Volkert, who willingly accepted on being the

second referee for the evaluation of my thesis.

Prof. Dr. Vasile Mosneaga, Prof. Dr. Michael Seibt, Dr. Richard Vink, and Dr. Claus

Heussinger are appreciated members of my thesis committee and I want to thank all of them

for their straightforward attitude when it came to the question if they would evaluate my

thesis.

Another important acknowledgment goes to the �nancial support by the DFG by the Re-

search Unit 1394 on 'Nonlinear Response and Probe Vitri�cation'. Prof. Matthias Fuchs

and Marianne Griesser are acknowledged as they supported my application and helped me

with many questions regarding the funding for the projects in the US and Israel by the MIN-

program. I am very lucky that I can say that I have never been in danger of running out of

�nancial support, and that I got so extensive support for traveling expanses.

I really appreciate the amiable atmosphere at the I. Physics Department and the very pleasant

interactions with its members. In the glass group we always had a good time at the institute,

and I will keep many precious memories on the times we spent on conferences together.

Long discussions on avalanche theory and the important things in life with Alexandra will

be especially missed, when our ways will �nally split. At this point I also want to say thank

you to my o�ce mates. Büchse, who always had some good advise when I was struggling

with my data. Ste�, who has a similarly giggly way as I have when it comes to the point of

mental depletion. Clemens, who is reliable and helpful when help is really needed. I am very

happy that he was insistent to start his master thesis in the group of Prof. Samwer.

When it came to the handling of experimental setups and the preparation of samples, es-

pecially Carsten Mahn, Uta Filippich, Katrin Gehrke, and Dennis Kohl gave their intense

support. Due to their comforting and cooperative way, I was never in doubt about the ful�ll-

107



108 CHAPTER 6. DISCUSSION

ment of experimental tasks. At this point I also want to mention the appreciated sharing of

a bedroom in Klosters with Uta, despite all the threats on nightly background noises. Who

knows if I would have had that much fun on my snowboard in the very �rst year, if she hadn't

pulled me along all those cat tracks.

I also want to thank the workshop of the I. Physics department, and the central workshop

for their help, which was always given when needed.

I also want to say special thanks to the girls of my Volleyball team who always provided

me with excellent distraction when work was stressful and didn't want to get out of my head

by itself. And for sure, I will stay tuned on the latest unicorn trends. I also enjoyed the

days I went for running with Volker and Johanna, that gave me a good balance and which

eventually changed to co�ee-pepp-talks. My friend Babsa is gratefully mentioned for her

support by squash sessions, wine, and encouraging words.

Very special thanks go to my family, who supported me and strengthened me throughout my

entire studies. Their conviction that I would accomplish, whatever aim I set to myself, made

me believing it too. The loving words by my mother, the logical approach of problems by my

father, the re�ections and sympathy by my sister, paintings with cats in capes by my nieces,

and the pride and fondness by my grandparents.

I want to express my deepest gratitude towards Tobi, who gave me incredible support over

the past years. He has to endure all the struggles I go through and makes me laugh when I

really don't feel like it, but need it the most. You always give me the help and support I ask

for, and I owe you for allowing me to focus on my work and to realize myself. Ich danke Dir.



Appendix A

Calibration of the DMA 8000

In this chapter the principles of temperature, force, and spring sti�ness calibration are de-

scribed. Moreover the in�uence of the thermal expansion of the movable axis of the DMA

is quantitatively discussed regarding its in�uence on LAOS-measurements.

The temperature calibration of the DMA 8000 is performed by temperature scans on Indium

and Lead, separately, by determination of the onset of melting. Therefore, small amounts

of the material are placed into a material's pocket and the overall modulus of pocket and

calibration material is measured. This calibration should be renewed every quarter of a year

or at least every year.

The calibration of force amplitude is necessary to determine the voltage that is needed to

apply a speci�c force to the sample. For calibration, a balance weight of known mass is used

in vertical head orientation, the position of the drive shaft measured by the LVDT is used

to determine the force necessary to re-balance the movable axis with the additional weight.

This calibration should be performed every six month or at least once a year.

Another important quantity for determination of correct force values is the spring sti�ness

and damping of the force motor. According to a Perkin Elmer the force motor contains a

system of eight springs. These springs and the force motor itself dispose a certain sti�ness,

which becomes larger with increasing displacement of the movable axis from its zero position.

This calibration is useful to determine the acting forces due to spring sti�ness to estimate

the displacement value for which an impact of the spring sti�ness on the experiment becomes

signi�cant. This calibration should be performed on similar intervals as the force amplitude

calibration.

For the acquisition of data presented in this thesis the same temperature calibration was

applied to all experiments. Force amplitude and spring sti�ness calibration was used on

temperature scans, a correction during LAOS-experiments is not applicable. Therefore, as-

sumptions on the impact of external forces, e.g. due to the spring sti�ness and damping

of the machine are made. Force and displacement amplitudes during LAOS-experiments are

held within a range of negligible impact based on these calculations.

The calibration for spring sti�ness and damping gives a relation between displacement am-

plitude k and counter-acting forces F by the force motor, see �g. A.1. The exact relation is

given by a �t with a polynomial function

Ftot � S0 � k � S1 � k
2
� S2 � k

3
� S3 � k

4
� S4 � k

5
� S5 � k

6
� S6 � k

7
; (A.1)

with the linear part of the force Fl in � S0 � k .

The absolute values of the counter-acting force due to spring sti�ness and damping are given

in �g. A.1a, both for the total force Ftot and the linear part Fl in. For displacements achieved

in the LAOS-experiments, which are at 45 µm at maximum, the counter acting forces of the

machine are in the order of maximal 0:097N corresponding to 3:9% to 6:5% of the force

applied during the experiment depending on temperature. In �g. A.1b the nonlinear part of

the counter-acting force relative to its linear part Fl in is plotted, which is of interest as the
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nonlinearity of the counter-acting force might result in a nonlinear excitation signal, even

though the technically applied force is linear. The impact of the nonlinearity of the counter-

acting force Ftot depends on the displacements achieved during experiment, thus the amount

of nonlinearity is in the order of 0:15%. This results in a relative nonlinearity in force of

9:75 � 10
�5

at maximum relative to the applied force, which is two orders of magnitude

lower than the relative value of the highest harmonic contribution of the Fourier-transformed

LAOS-data. Thus it should not show a signi�cant impact on the results of the analysis.

(a) Total (black) and linear (green) part of

counter-acting force F plotted against displace-

ment k .

(b) Relative nonlinear part of counter-acting

force F plotted against displacement k .

Figure A.1 Counter-acting force due to spring sti�ness and damping F

An aspect which shows an in�uence on the displacement o�set is the thermal expansion

of the movable axis. As the zero-force calibration is performed at ambient temperature, it

does not take into account the change in length due to the heating of the sample chamber.

Under the assumption that the temperature of the movable axis equilibrates at a comparable

temperature as the sample, a temperature di�erence of at least 250K has to be taken into

account. For a movable axis with a length of roughly 10 cm made of Titanium with a linear

expansion coe�cient of 8:6 � 10
�6

K
�1

[53] the change in axis length can be calculated by

[30]

�L � � L �T; (A.2)

which yields a change of roughly 215 µm or even more if the temperature dependence of the

linear expansion coe�cient � is taken into account. Experimentally, a change in the static

displacement of 65 to 85 µm is found, which is lower than the value estimated due to thermal

expansion. This result implies that the e�ect of thermal expansion plays a signi�cant role for

the o�set position of the movable axis. Even if a more accurate positioning of the movable

axis during the mounting of the sample were applied, the expansion with temperature would

still a�ect the accuracy of LAOS-measurements in terms of a changing o�set position. A

change in the o�set during the experiment could result in an arti�cial phase shift between

di�erent harmonics, and the forces implied by the o�set might even a�ect the nonlinear

behavior of the material. By su�cient equilibration at elevated temperature, a change in the

o�set due to thermal expansion of the movable axis is negligible, however, the absolute value

of the o�set remains.



Appendix B

Geometry Factor

An important point is the estimation of the geometry factor b, which is the relation between

force F and displacement k . As the sample is clamped on both sides, both bending and

stretching contribution have to be taken into account, if large de�ections are assumed [128].

This leads to a relation between force and displacement which reads:

F � ��
2
	4 EWH

L3
0

� k �H2

3
�
k
2

4
� ; (B.1)

with Young's modulus E, width W , thickness H, and initial length L0. If the bending term is

much larger than the stretching term, H
2

3
%%

k
2

4
, the relation between force and displacement

can be assumed as linear. For maximum values in displacement k of 45 µm and a typical

sample thickness of H �1mm the relation holds with:

H
2

k2
4

3
�

�1mm�2�45 µm�2 43 � 660 %% 1

Thus, a linear relation can be assumed and the validity of the description used for calculation

of stress and strain values is given, as the nonlinear stretching term is by more than two

orders of magnitude smaller than the linear bending term in case of the highest resulting

strain amplitude.
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Sinusoidal Excitation Including O�set

In case an o�set due to clamping, thermal expansion of the movable axis, or misalignment

of the system occurs, the o�set itself might in�ict nonlinear contributions at odd as well as

even frequencies. To test for in�uences of the always existing o�set, the dependence of the

displacement signal on the these contributions needs to be evaluated. These contributions

evolve as follows due to an additional o�set �st in stress:

r� � �0 � sin �!t� � �st (C.1)

With eq. 3.16 this yields:

r�©�0 � r��1�
0

�st
�0

� r��3�
0;a

�
3

st

�0
�
3

2
r��3�
0;b�st�0 � r��5�

0;a

�
5

st

�0
� 5 r��5�

0;b�
3

st�0 �
3

8
r��5�
0;c�st�

3

0

� � r��1�
�
3

4
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1

�
2
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�
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(C.2)

If terms of orders higher than three are neglected the expression is reduced to:

r�©�0 � r��1�
0

�st
�0

� r��3�
0;a

�
3

st

�0
�
3

2
r��3�
0;b�st�0

� � r��1�
�
3

4
r��3�
1

�
2

0 � 3 r��3�
1;a�

2

st
 � sin �!t�
�
3

2
r��3�
2

�0�st cos �2!t�
�
1

4
r��3�
3

�
2

0 sin �3!t�

(C.3)

If it is possible to show that terms of 5th order don't have measurable impact on the inter-

pretation of the results, the impact of the o�set might be tested by plotting of the second

harmonic amplitude divided by the maximum stress amplitude �0 against the stress o�set

�st . If a linear dependence on �st can be excluded, the stress o�set should not have an

impact on the analysis of the results of the experiment.
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Fig. C.1 depicts the linear dependence of the second harmonic frequency contribution on

the static stress �st as stated in eq. C.3. It is negligible for temperatures of 566K or less,

while for the data measured at a temperature of 567K a linear dependence is observed in

�g. C.1. Thus, measurements at temperatures closer to the glass transition should be care-

fully analyzed towards the in�uence of the static o�set, which also results in a contribution at

fundamental frequency. Only if this contribution is comparably small, the nonlinear analysis

yields reliable nonlinear coe�cients at the fundamental frequency.

Figure C.1 Second harmonic strain amplitude divided by squared stress amplitude �"©�
2

0�2! plotted

against static stress �st for di�erent temperatures.



Appendix D

Fifth Harmonic Frequency Response

Figure D.1 Relative nonlinear coe�cient �
�5�
1

©�
�1�

plotted in logarithmic scaling against temperature

T .

Few measurements show a �fth harmonic contribution, which is the basis for the analysis

of the nonlinear coe�cient as shown in �g. D.1. As very few measurements contribute to

the extraction of the coe�cient, it is reliable, but is rather giving an example on the trend

observed for this quantity, which is increasing with increasing temperature. The value of the

�fth harmonic relative nonlinear coe�cient is about three orders smaller than the relative

nonlinear coe�cients extracted for the �rst and third harmonic frequency.
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MatLab-Routines for Incremental Analysis

E.1 De�nition of Increments

The code presented in this section is based on the stress and strain data in the unitsMPa and

%, which are given in the text �les 'data-StrainPercent-StressMPa.txt'. The prae�x 'data'

speci�es the measurement which is to be evaluated. The text �le contains two columns of

1000 � 3600 � 3 = 1:08 � 10
6
rows each, the �rst column contains the stress data and the

second the strain data with an accuracy of 1000 data points per period. The code generated

increments, which are the basis for the extraction of intervals, as described in section 3.7

1 %============================================
2 % I n i t i a l i z e System
3 %============================================
4

5 Pe r i o d . Length = 1000 ; % Number o f d a t a p o i n t s p e r p e r i o d
6 f = 0 . 0 0 1 ; %i n kHz
7

8 NN=z e r o s (2* Pe r i o d .N, 1 ) ;
9 PAin= z e r o s (2* Pe r i o d .N, 1 ) ;

10 NAin= z e r o s (2* Pe r i o d .N, 1 ) ;
11 PDin= z e r o s (2* Pe r i o d .N, 1 ) ;
12 NDin= z e r o s (2* Pe r i o d .N, 1 ) ;
13

14 %============================================
15 % Load S t r e s s and S t r a i n Data
16 %============================================
17 f i l e p a t h =[ ' . / ' , f o l d e r ] ;
18 f i l e n am e =[ data , '�S t r a i nP e r c e n t �StressMPa . t x t ' ] ;
19 f i l e =[ f i l e p a t h , f i l e n am e ] ;
20 f i d = fopen ( f i l e , ' r ' ) ;
21 i f ( f i d <0)
22 f p r i n t f ( [ f i l e n ame , ' f i l e not p r e s e n t , e x i t i n g . . . \ n ' ] ) ;
23 r e t u r n ;
24 end
25 f c l o s e ( f i d ) ;
26 t emp_f i l e= l o a d ( f i l e ) ;
27 O r i g i n a l . StressMPa=t emp_f i l e ( 1 : P e r i o d .N* Pe r i o d . Length , 2 ) ;
28 O r i g i n a l . S t r a i n P e r c e n t = t emp_f i l e ( 1 : P e r i o d .N* Pe r i o d . Length , 1 ) ;
29 c l e a r f i l e n am e f i l e f i d t emp_f i l e ;
30

31 %============================================
32 % P a r t i t i o n i n g o f S t r e s s and S t r a i n Data
33 %============================================
34 f o r p =1: Pe r i o d .N�1
35

36 %=======================================
37 % F i t S i n e to S t r a i n
38 %=======================================
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39 x = 1 : 1 : 2 0 0 0 ; %i n ms
40 y = O r i g i n a l . S t r a i n P e r c e n t (1+(p�1)* Pe r i o d . Length :2000+( p�1)* Pe r i o d .

Length ) ;
41 yu = max ( y ) ;
42 y l = min ( y ) ;
43 y r = ( yu� y l ) ; %Range o f ' y '
44 ym = mean ( y ) ;
45 f un = @( r ) r (1 ) . * ( s i n (2* p i * f *x '+ r (2 ) ) )+ r (3 ) � y ;
46 x0 = [ y r /2 ,0 ,ym ] ;
47 r = l s q n o n l i n ( fun , x0 ) ;
48 F i t . r1 ( p ) = r (1 ) ;
49 F i t . r2 ( p ) = r (2 ) ;
50 F i t . r3 ( p ) = r (3 ) ;
51 F i t . f i t r = F i t . r1 ( p ) *( s i n (2* p i * f * x+F i t . r2 ( p ) ) )+F i t . r3 ( p ) ;
52 c l e a r yu y l y r ym fun r x0 x y
53

54 %=======================================
55 % P a r t i t i o n i n g
56 %=======================================
57 NN( p )= f i n d ( F i t . f i t r ( 1 , 1 : P e r i o d . Length )==min ( F i t . f i t r ( 1 , 1 : P e r i o d .

Length ) ) ) ; %d e f i n e s minimum of each p e r i o d
58

59 i f NN( p ) >= Pe r i o d . Length *3/4+1
60 PAin ( p )=NN( p )+Pe r i o d . Length/4�Pe r i o d . Length ; %beg i n p o s i t i v e

a s c e n d i n g p a r t o f the p e r i o d
61 e l s e
62 PAin ( p )=NN( p )+Pe r i o d . Length /4 ; %beg i n p o s i t i v e a s c e n d i n g p a r t o f

the p e r i o d
63 end
64 Pe r i o d . Po sAs cS t r a i n ( : , p ) = O r i g i n a l . S t r a i n P e r c e n t ( PAin ( p ) +(p�1)*

Pe r i o d . Length : PAin ( p )+Pe r i o d . Length /4�1+(p�1)* Pe r i o d . Length , 1 )�
O r i g i n a l . S t r a i n P e r c e n t ( PAin ( p ) +(p�1)* Pe r i o d . Length , 1 ) ; %um Of f s e t
k o r r i g i e r t i n j e d e r P e r i o d e

65 Pe r i o d . Po sAscS t r e s s ( : , p ) = O r i g i n a l . StressMPa ( PAin ( p ) +(p�1)* Pe r i o d .
Length : PAin ( p )+Pe r i o d . Length /4�1+(p�1)* Pe r i o d . Length , 1 ) ;

66

67 i f NN( p ) >= Pe r i o d . Length /2+1
68 PDin ( p )=NN( p )+Pe r i o d . Length/2�Pe r i o d . Length ; %beg i n p o s i t i v e

d e s c e n d i n g p a r t o f the p e r i o d
69 e l s e
70 PDin ( p )=NN( p )+Pe r i o d . Length /2 ; %beg i n p o s i t i v e d e s c e n d i n g p a r t o f

the p e r i o d
71 end
72 Pe r i o d . Po sDe s cS t r a i n ( : , p ) = O r i g i n a l . S t r a i n P e r c e n t ( PDin ( p ) +(p�1)*

Pe r i o d . Length : PDin ( p )+Pe r i o d . Length /4�1+(p�1)* Pe r i o d . Length , 1 )�
O r i g i n a l . S t r a i n P e r c e n t ( PAin ( p ) +(p�1)* Pe r i o d . Length , 1 ) ; %um Of f s e t
k o r r i g i e r t i n j e d e r P e r i o d e

73 Pe r i o d . PosDescS t r e s s ( : , p ) = O r i g i n a l . StressMPa ( PDin ( p ) +(p�1)* Pe r i o d .
Length : PDin ( p )+Pe r i o d . Length /4�1+(p�1)* Pe r i o d . Length , 1 ) ;

74

75 i f NN( p ) >= Pe r i o d . Length *1/4+1
76 NDin ( p )=NN( p )+Pe r i o d . Length *3/4� Pe r i o d . Length ; %beg i n n e g a t i v e

d e s c e n d i n g p a r t o f the p e r i o d
77 e l s e
78 NDin ( p )=NN( p )+Pe r i o d . Length *3/4 ; %beg i n n e g a t i v e d e s c e n d i n g p a r t

o f the p e r i o d
79 end
80 Pe r i o d . NegDescSt ra i n ( : , p ) = O r i g i n a l . S t r a i n P e r c e n t ( NDin ( p ) +(p�1)*

Pe r i o d . Length : NDin ( p )+Pe r i o d . Length /4�1+(p�1)* Pe r i o d . Length , 1 )�
O r i g i n a l . S t r a i n P e r c e n t ( PAin ( p ) +(p�1)* Pe r i o d . Length , 1 ) ; %um Of f s e t
k o r r i g i e r t i n j e d e r P e r i o d e

81 Pe r i o d . NegDescSt r e s s ( : , p ) = O r i g i n a l . StressMPa (NDin ( p ) +(p�1)* Pe r i o d .
Length : NDin ( p )+Pe r i o d . Length /4�1+(p�1)* Pe r i o d . Length , 1 ) ;

82

83 NAin ( p )=NN( p ) ; %beg i n n e g a t i v e a s c e n d i n g p a r t o f the p e r i o d
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84 Pe r i o d . NegAscS t r a i n ( : , p ) = O r i g i n a l . S t r a i n P e r c e n t ( NAin ( p ) +(p�1)*
Pe r i o d . Length : NAin ( p )+Pe r i o d . Length /4�1+(p�1)* Pe r i o d . Length , 1 )�
O r i g i n a l . S t r a i n P e r c e n t ( PAin ( p ) +(p�1)* Pe r i o d . Length , 1 ) ; %um Of f s e t
k o r r i g i e r t i n j e d e r P e r i o d e

85 Pe r i o d . NegAscSt r e s s ( : , p ) = O r i g i n a l . StressMPa ( NAin ( p ) +(p�1)* Pe r i o d .
Length : NAin ( p )+Pe r i o d . Length /4�1+(p�1)* Pe r i o d . Length , 1 ) ;

86 end
87 c l e a r p
88

89 %============================================
90 % Save Pe r i o d Data
91 %============================================
92 f i l e n am e =[ ' Pe r i od � ' , data , ' . mat ' ] ;
93 f i l e =[ f i l e p a t h , f i l e n am e ] ;
94 s a v e ( f i l e , ' P e r i o d ' )
95 c l e a r p f i l e n am e f i l e
96

97 %============================================
98 % D e f i n i t i o n o f I n c r em e n t a l Q u a n t i t i e s
99 %============================================

100 f o r p =1: Pe r i o d .N�1
101 f o r i n c r =1 : ( Pe r i o d . Length /4�1)
102 I n c r . Po sAs cS t r a i n ( i n c r , p ) = Pe r i o d . Po sAs cS t r a i n ( i n c r +1 , p ) �

Pe r i o d . Po sAs cS t r a i n ( i n c r , p ) ;
103 I n c r . Po sAscS t r e s s ( i n c r , p ) = Pe r i o d . Po sAscS t r e s s ( i n c r +1 , p ) �

Pe r i o d . Po sAscS t r e s s ( i n c r , p ) ;
104 i f I n c r . Po sAs cS t r a i n ( i n c r , p )==0
105 I n c r . PosAscMu ( i n c r , p ) =0;
106 e l s e
107 I n c r . PosAscMu ( i n c r , p ) = I n c r . Po sAscS t r e s s ( i n c r , p ) / I n c r .

Po sAs cS t r a i n ( i n c r , p ) /10 ; %i n GPa
108 end
109 i f I n c r . Po sAscS t r e s s ( i n c r , p )==0
110 I n c r . PosAscChi ( i n c r , p ) =0;
111 I n c r . PosAscC ( i n c r , p ) =0;
112 e l s e
113 I n c r . PosAscChi ( i n c r , p ) = I n c r . Po sAs cS t r a i n ( i n c r , p ) / I n c r .

Po sAscS t r e s s ( i n c r , p ) *10 ; %i n (GPa) ^(�1)
114 I n c r . PosAscC ( i n c r , p )= I n c r . Po sAs cS t r a i n ( i n c r , p ) /mean ( Pe r i o d .

Po sAscS t r e s s ( i n c r : i n c r +1 , p ) ) *10 ; %i n (GPa) ^(�1)
115 end
116 I n c r . Po sDes cS t r a i n ( i n c r , p ) = Pe r i o d . Po sDe s cS t r a i n ( i n c r +1 , p ) �

Pe r i o d . Po sDe s cS t r a i n ( i n c r , p ) ;
117 I n c r . Po sDescS t r e s s ( i n c r , p ) = Pe r i o d . PosDescS t r e s s ( i n c r +1 , p ) �

Pe r i o d . PosDescS t r e s s ( i n c r , p ) ;
118 i f I n c r . Po sDe s cS t r a i n ( i n c r , p )==0
119 I n c r . PosDescMu ( i n c r , p ) =0;
120 e l s e
121 I n c r . PosDescMu ( i n c r , p ) = I n c r . Po sDescS t r e s s ( i n c r , p ) / I n c r .

Po sDe s cS t r a i n ( i n c r , p ) /10 ; %i n GPa
122 end
123 i f I n c r . Po sDescS t r e s s ( i n c r , p )==0
124 I n c r . PosDescChi ( i n c r , p ) =0;
125 I n c r . PosDescC ( i n c r , p ) =0;
126 e l s e
127 I n c r . PosDescChi ( i n c r , p ) = I n c r . Po sDe s cS t r a i n ( i n c r , p ) / I n c r .

Po sDescS t r e s s ( i n c r , p ) *10 ; %i n (GPa) ^(�1)
128 I n c r . PosDescC ( i n c r , p ) = I n c r . Po sDe s cS t r a i n ( i n c r , p ) /mean (

Pe r i o d . PosDescS t r e s s ( i n c r : i n c r +1 , p ) ) *10 ; %i n (GPa) ^(�1)
129 end
130 I n c r . NegDescSt ra i n ( i n c r , p ) = Pe r i o d . NegDescSt ra i n ( i n c r +1 , p ) �

Pe r i o d . NegDescSt ra i n ( i n c r , p ) ;
131 I n c r . NegDescSt r e s s ( i n c r , p ) = Pe r i o d . NegDescSt r e s s ( i n c r +1 , p ) �

Pe r i o d . NegDescSt r e s s ( i n c r , p ) ;
132 i f I n c r . NegDescSt r a i n ( i n c r , p )==0
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133 I n c r . NegDescMu ( i n c r , p ) =0;
134 e l s e
135 I n c r . NegDescMu ( i n c r , p ) = I n c r . NegDescSt r e s s ( i n c r , p ) / I n c r .

NegDescSt ra i n ( i n c r , p ) /10 ; %i n GPa
136 end
137 i f I n c r . NegDescSt r e s s ( i n c r , p )==0
138 I n c r . NegDescChi ( i n c r , p ) =0;
139 I n c r . NegDescC ( i n c r , p ) =0;
140 e l s e
141 I n c r . NegDescChi ( i n c r , p ) = I n c r . NegDescSt ra i n ( i n c r , p ) / I n c r .

NegDescSt r e s s ( i n c r , p ) *10 ; %i n (GPa) ^(�1)
142 I n c r . NegDescC ( i n c r , p ) = I n c r . NegDescSt ra i n ( i n c r , p ) /mean (

Pe r i o d . NegDescSt r e s s ( i n c r : i n c r +1 , p ) ) *10 ; %i n (GPa) ^(�1)
143 end
144 I n c r . NegAscSt r a i n ( i n c r , p ) = Pe r i o d . NegAscSt r a i n ( i n c r +1 , p ) �

Pe r i o d . NegAscS t r a i n ( i n c r , p ) ;
145 I n c r . NegAscSt r e s s ( i n c r , p ) = Pe r i o d . NegAscSt r e s s ( i n c r +1 , p ) �

Pe r i o d . NegAscSt r e s s ( i n c r , p ) ;
146 i f I n c r . NegAscSt r a i n ( i n c r , p )==0
147 I n c r . NegAscMu ( i n c r , p ) =0;
148 e l s e
149 I n c r . NegAscMu ( i n c r , p ) = I n c r . NegAscSt r e s s ( i n c r , p ) / I n c r .

NegAscSt r a i n ( i n c r , p ) /10 ; %i n GPa
150 end
151 i f I n c r . NegAscSt r e s s ( i n c r , p )==0
152 I n c r . NegAscChi ( i n c r , p ) =0;
153 I n c r . NegAscC ( i n c r , p ) =0;
154 e l s e
155 I n c r . NegAscChi ( i n c r , p ) = I n c r . NegAscSt r a i n ( i n c r , p ) / I n c r .

NegAscSt r e s s ( i n c r , p ) *10 ; %i n (GPa) ^(�1)
156 I n c r . NegAscChi ( i n c r , p ) = I n c r . NegAscSt r a i n ( i n c r , p ) /mean (

Pe r i o d . NegAscSt r e s s ( i n c r : i n c r +1 , p ) ) *10 ; %i n (GPa) ^(�1)
157 end
158 end
159 end
160 c l e a r p i n c r
161

162 %============================================
163 % Save I n c r em e n t a l Data
164 %============================================
165 f i l e n am e =[ ' I n c r � ' , data , ' . mat ' ] ;
166 f i l e =[ f i l e p a t h , f i l e n am e ] ;
167 s a v e ( f i l e , ' I n c r ' )
168 c l e a r p f i l e n am e f i l e

E.2 De�nition of Intervals

The following code is based on the Matlab-�les including 'Period' and 'Incr' data, which are

generated by the code given in section E.1 (De�nition of Increments). It de�nes positive and

negative intervals according to the de�nition in section 3.7.

1 %=======================================
2 % De f i n e I n t e r v a l s O r i g i n a l Data
3 %=======================================
4 f o r p =1: Pe r i o d .N�1
5 %PosAscS t r a i n :
6 Pe r i o d . Po sAscS t r a i n Imax (1 , p ) =1; %e r s t e s Maximum
7 l 1 =2;
8 l 2 =1;
9 f o r k =1: Pe r i o d . Length /4�1

10 i f I n c r . Po sAs cS t r a i n ( k , p ) > 0
11 Pe r i o d . Po sA s cS t r a i n Im i n ( l2 , p )=k ; %e r s t e s Minimum
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12 i f P e r i o d . Po sA s cS t r a i n Im i n ( l2 , p )==Pe r i o d . Po sAscS t r a i n Imax ( l1
�1 ,p )

13 Pe r i o d . Po sA s cS t r a i n Im i n ( l2 , p ) = 0 ;
14 Pe r i o d . Po sAscS t r a i n Imax ( l1 �1 ,p )=k +1;
15 c o n t i n u e ;
16 end
17 l 2 = l 2 +1;
18 Pe r i o d . Po sAscS t r a i n Imax ( l1 , p )=k +1;
19 l 1 = l 1 +1;
20 end
21 end
22 i f l 2 == 1
23 Pe r i o d . Po sA s cS t r a i n Im i n ( l2 , p )= l e n g t h ( Pe r i o d . Po sAs cS t r a i n ( : , p ) ) ;
24 end
25 Pe r i o d . P o s A s c S t r a i n I t v l ( p , 1 ) = nnz ( Pe r i o d . Po sA s cS t r a i n Im i n ( : , p ) ) ;
26 c l e a r l 1 l 2 k
27

28 f o r i t v l =1: nnz ( Pe r i o d . Po sAscS t r a i n Imax ( : , p ) )�1 % f o r each i n t e r v a l
29 I t v l . PosAscStra inPMean ( i t v l , p ) = mean ( Pe r i o d . Po sAs cS t r a i n ( Pe r i o d .

Po sA s cS t r a i n Im i n ( i t v l , p ) : P e r i o d . Po sAscS t r a i n Imax ( i t v l +1 , p ) , p )
) ; % M i t t e l w e r t des I n t e r v a l l s ( Dehnung )

30 I t v l . P o s A s c S t r a i n P I n i t i a l ( i t v l , p ) = Pe r i o d . Po sAs cS t r a i n ( Pe r i o d .
Po sA s cS t r a i n Im i n ( i t v l , p ) , p ) ; % Anfangswe r t des I n t e r v a l l s (
Dehnung )

31 I t v l . Po sAscS t r a i nPDe l t a ( i t v l , p )=Pe r i o d . Po sAs cS t r a i n ( Pe r i o d .
Po sAscS t r a i n Imax ( i t v l +1 , p ) , p )�Pe r i o d . Po sAs cS t r a i n ( Pe r i o d .
Po sA s cS t r a i n Im i n ( i t v l , p ) , p ) ; % I n t e r v a l l ( Dehnung )

32 I t v l . Po sAscS t r a i nPDe l t a2 ( i t v l , p ) = sum( I n c r . Po sAs cS t r a i n ( Pe r i o d .
Po sA s cS t r a i n Im i n ( i t v l , p ) : P e r i o d . Po sAscS t r a i n Imax ( i t v l +1 , p ) �1 ,
p ) ) ;

33 I t v l . PosAscSt ra i nPLength ( i t v l , p ) = Pe r i o d . Po sAscS t r a i n Imax ( i t v l
+1 , p )�Pe r i o d . Po sA s cS t r a i n Im i n ( i t v l , p ) ; % Datenpunkte des
I n t e r v a l l s

34 I t v l . PosAscSt r a i nPMeanSt r e s s ( i t v l , p ) = mean ( Pe r i o d . Po sAscS t r e s s (
Pe r i o d . Po sA s cS t r a i n Im i n ( i t v l , p ) : P e r i o d . Po sAscS t r a i n Imax ( i t v l
+1 , p ) , p ) ) ; % M i t t e l w e r t des I n t e r v a l l s ( Spannung )

35 I t v l . P o s A s c S t r a i n P I n i t i a l S t r e s s ( i t v l , p ) = Pe r i o d . Po sAscS t r e s s (
Pe r i o d . Po sA s cS t r a i n Im i n ( i t v l , p ) , p ) ; % Anfangswe r t des
I n t e r v a l l s ( Spannung )

36 I t v l . P o sA s cS t r a i nPDe l t a S t r e s s ( i t v l , p )=Pe r i o d . Po sAscS t r e s s ( Pe r i o d .
Po sAscS t r a i n Imax ( i t v l +1 , p ) , p )�Pe r i o d . Po sAscS t r e s s ( Pe r i o d .
Po sA s cS t r a i n Im i n ( i t v l , p ) , p ) ; % I n t e r v a l l ( Spannung )

37 I t v l . PosAscStra inNMean ( i t v l , p ) = mean ( Pe r i o d . Po sAs cS t r a i n ( Pe r i o d .
Po sAscS t r a i n Imax ( i t v l , p ) : P e r i o d . Po sA s cS t r a i n Im i n ( i t v l , p ) , p ) ) ;

38 I t v l . P o s A s c S t r a i n N I n i t i a l ( i t v l , p ) = Pe r i o d . Po sAs cS t r a i n ( Pe r i o d .
Po sAscS t r a i n Imax ( i t v l , p ) , p ) ;

39 I t v l . Po sAscS t r a i nNDe l t a ( i t v l , p ) = Pe r i o d . Po sAs cS t r a i n ( Pe r i o d .
Po sA s cS t r a i n Im i n ( i t v l , p ) , p )�Pe r i o d . Po sAs cS t r a i n ( Pe r i o d .
Po sAscS t r a i n Imax ( i t v l , p ) , p ) ;

40 I t v l . Po sAscS t r a i nNDe l t a2 ( i t v l , p ) = sum( I n c r . Po sAs cS t r a i n ( Pe r i o d .
Po sAscS t r a i n Imax ( i t v l , p ) : P e r i o d . Po sA s cS t r a i n Im i n ( i t v l , p ) �1 ,p )
) ;

41 I t v l . PosAscSt ra i nNLength ( i t v l , p ) = Pe r i o d . Po sA s cS t r a i n Im i n ( i t v l , p
)�Pe r i o d . Po sAscS t r a i n Imax ( i t v l , p ) ;

42 I t v l . PosAscSt ra i nNMeanSt r e s s ( i t v l , p ) = mean ( Pe r i o d . Po sAscS t r e s s (
Pe r i o d . Po sAscS t r a i n Imax ( i t v l , p ) : P e r i o d . Po sA s cS t r a i n Im i n ( i t v l ,
p ) , p ) ) ;

43 I t v l . P o s A s c S t r a i n N I n i t i a l S t r e s s ( i t v l , p ) = Pe r i o d . Po sAscS t r e s s (
Pe r i o d . Po sAscS t r a i n Imax ( i t v l , p ) , p ) ;

44 I t v l . P o sA s cS t r a i nNDe l t a S t r e s s ( i t v l , p ) = Pe r i o d . Po sAscS t r e s s (
Pe r i o d . Po sA s cS t r a i n Im i n ( i t v l , p ) , p )�Pe r i o d . Po sAscS t r e s s ( Pe r i o d
. Po sAscS t r a i n Imax ( i t v l , p ) , p ) ;

45 I t v l . Po sAscS t r a i nPCh i ( i t v l , p ) = ( I t v l . Po sAscS t r a i nPDe l t a ( i t v l , p ) /
I t v l . P o sA s cS t r a i nPDe l t a S t r e s s ( i t v l , p ) ) *10 ;

46 i f i s i n f ( I t v l . Po sAscS t r a i nPCh i ( i t v l , p ) )==1
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47 I t v l . Po sAscS t r a i nPCh i ( i t v l , p ) = NaN ;
48 end
49 I t v l . PosAscSt ra i nNCh i ( i t v l , p ) = ( I t v l . Po sAscS t r a i nNDe l t a ( i t v l , p ) /

I t v l . P o sA s cS t r a i nNDe l t a S t r e s s ( i t v l , p ) ) *10 ;
50 i f i s i n f ( I t v l . PosAscSt r a i nNCh i ( i t v l , p ) )==1
51 I t v l . PosAscSt ra i nNCh i ( i t v l , p ) = NaN ;
52 end
53 I t v l . P o sA s cS t r a i nPCh i I n c r ( i t v l , p ) = mean ( I n c r . PosAscChi (

Pe r i o d . Po sA s cS t r a i n Im i n ( i t v l , p ) : P e r i o d . Po sAscS t r a i n Imax (
i t v l +1 , p ) �1 ,p ) ) ;

54 I t v l . P o sA s cS t r a i nNCh i I n c r ( i t v l , p ) = mean ( I n c r . PosAscChi (
Pe r i o d . Po sAscS t r a i n Imax ( i t v l , p ) : P e r i o d . Po sA s cS t r a i n Im i n (
i t v l , p ) �1 ,p ) ) ;

55 I t v l . PosAscStra inPMu ( i t v l , p ) = I t v l . P o sA s cS t r a i nPDe l t a S t r e s s ( i t v l
, p ) / I t v l . Po sAscS t r a i nPDe l t a ( i t v l , p ) /10 ;

56 I t v l . PosAscStra inNMu ( i t v l , p ) = I t v l . P o sA s cS t r a i nNDe l t a S t r e s s ( i t v l
, p ) / I t v l . Po sAscS t r a i nNDe l t a ( i t v l , p ) /10 ;

57 end
58 end
59

60 %=======================================
61 % Save I t v l �Data
62 %=======================================
63 f i l e p a t h =[ ' . / ' , f o l d e r ] ;
64 f i l e n am e =[ ' Pe r i od � ' , data , ' . mat ' ] ;
65 f i l e =[ f i l e p a t h , f i l e n am e ] ;
66 d e l e t e ( f i l e ) ;
67 s a v e ( f i l e , ' P e r i o d ' )
68 c l e a r f i l e n am e f i l e
69

70 f i l e n am e =[ ' I t v l S t r a i n � ' , data , ' . mat ' ] ;
71 f i l e =[ f i l e p a t h , f i l e n am e ] ;
72 s a v e ( f i l e , ' I t v l ' )
73 c l e a r f i l e n am e f i l e

E.3 Subdivision to Stress-Windows

The following code is based on the Matlab-�les including 'Period' and 'Itvl' data, which are

generated by the code given in section E.2 (De�nition of Intervals). It subdivides the interval

data into stress windows of widths cw , which is set to 2MPa for the presented analysis on

averaged interval data.

1 %=======================================
2 % A l t e r a t i o n
3 %=======================================
4 cw=2; % Window Width i n MPa
5 %���������� PosAs cS t r a i n ��������������%
6 f o r p =1: Pe r i o d .N�1
7 f o r c = 1 : c e i l (max (max ( I t v l . PosAscSt r a i nPMeanSt r e s s ( : , : ) ) ) /cw)+1
8 Pe r i o d . Ndp ( c , p ) = 0 ;
9 i f c == c e i l (max (max ( I t v l . PosAscSt r a i nPMeanSt r e s s ( : , : ) ) ) /cw)+1

10 Pe r i o d . Ndp ( c , p ) = Pe r i o d . Length /4 ;
11 b r eak ;
12 end
13 f o r c i = 1 : Pe r i o d . Length /4
14 i f P e r i o d . Po sAscS t r e s s ( c i , p ) >(cw*( c�1) ) && Pe r i o d .

Po sAscS t r e s s ( c i , p ) <=(cw*c )
15 Pe r i o d . Ndp ( c , p ) = Pe r i o d . Ndp ( c , p ) + 1 ;
16 end
17 end
18 i f P e r i o d . Ndp ( c , p ) == 0
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19 Pe r i o d . S t r e s sR a t e ( c , p ) = NaN ;
20 e l s e
21 Pe r i o d . S t r e s sR a t e ( c , p ) = cw/ Pe r i o d . Ndp ( c , p ) ; % i n MPa pro ms
22 end
23 end
24 end
25 c l e a r p c c i
26 %�������������� PosAscP ���������������%
27 CwDeltaEps .P=z e r o s ( Pe r i o d .N�1 ,100 , c e i l (max (max ( I t v l .

PosAscSt r a i nPMeanSt r e s s ( : , : ) ) ) /cw) ) ;
28 CwDeltaS ig .P=z e r o s ( Pe r i o d .N�1 ,100 , c e i l (max (max ( I t v l .

PosAscSt r a i nPMeanSt r e s s ( : , : ) ) ) /cw) ) ;
29 CwDeltaChi . P= z e r o s ( Pe r i o d .N�1 ,100 , c e i l (max (max ( I t v l .

PosAscSt r a i nPMeanSt r e s s ( : , : ) ) ) /cw) ) ;
30 CwDeltaLength .P=z e r o s ( Pe r i o d .N�1 ,100 , c e i l (max (max ( I t v l .

PosAscSt r a i nPMeanSt r e s s ( : , : ) ) ) /cw) ) ;
31 f o r p =1: Pe r i o d .N�1
32 f o r c = 1 : c e i l (max (max ( I t v l . PosAscSt r a i nPMeanSt r e s s ( : , : ) ) ) /cw)%+1
33 h=1;
34 g=1;
35 f =1;
36 f o r cx = 1 : nnz ( I t v l . PosAscSt ra i nPLength ( : , p ) )
37 i f I t v l . PosAscSt r a i nPMeanSt r e s s ( cx , p ) >(cw*( c�1) ) && I t v l .

PosAscSt r a i nPMeanSt r e s s ( cx , p ) <=(cw*c ) % uebe r be s t immtes
Sp annung s f e n s t e r

38 CwDeltaEps .P( p , h , c )= I t v l . Po sAscS t r a i nPDe l t a ( cx , p ) ;
39 h=h+1;
40 CwDeltaS ig .P( p , g , c )= I t v l . P o sA s cS t r a i nPDe l t a S t r e s s ( cx , p ) ;
41 g=g+1;
42 CwDeltaChi . P( p , f , c )= I t v l . Po sAscS t r a i nPDe l t a ( cx , p ) / I t v l .

P o sA s cS t r a i nPDe l t a S t r e s s ( cx , p ) *10 ;
43 CwDeltaLength .P( p , f , c )= I t v l . PosAscSt ra i nNLength ( cx , p ) ;
44 f = f +1;
45 end
46 end
47 end
48 end
49 c l e a r cx h g c p f
50

51 A=CwDeltaEps .P ;
52 LF=A( 1 : 3 5 9 9 , : , : ) ;
53 HF=A( 4 8 0 1 : 7 1 9 9 , : , : ) ;
54 CwDeltaEps . PelmLF=z e r o s ( ( Pe r i o d .N/2�1) *100 ,1) ;
55 CwDeltaEps . PelmHF=z e r o s ( ( Pe r i o d .N/2*2/3�1) *100 ,1) ;
56 f o r c =1: c e i l (max (max ( I t v l . PosAscSt ra i nPMeanSt r e s s ( : , : ) ) ) /cw)
57 e l m l f =LF (3599*100*( c�1) +1:3599*100* c ) ;
58 e l m l f = e l m l f ( e lm l f >0) ;
59 SUMLF( c )=sum( e l m l f ) ;
60 ANZLF( c )=nnz ( e l m l f ) ;
61 MEANLF( c )=SUMLF( c ) /ANZLF( c ) ;
62 STDLF( c ) =1/(ANZLF( c ) �1)*sum ( ( e lm l f �MEANLF( c ) ) .^2) ;
63 e lmh f=HF(2399*100*( c�1) +1:2399*100* c ) ;
64 e lmh f=e lmh f ( e lmhf >0) ;
65 SUMHF( c )=sum( e lmh f ) ;
66 ANZHF( c )=nnz ( e lmh f ) ;
67 MEANHF( c )=SUMHF( c ) /ANZHF( c ) ;
68 STDHF( c ) =1/(ANZHF( c ) �1)*sum ( ( e lmhf�MEANHF( c ) ) .^2) ;
69 e l m l f =[ e lm l f , z e r o s (1 ,359900� l e n g t h ( e l m l f ) ) ] ;
70 CwDeltaEps . PelmLF = [ CwDeltaEps . PelmLF e lm l f ' ] ;
71 e lmh f =[ e lmhf , z e r o s (1 ,239900� l e n g t h ( e lmh f ) ) ] ;
72 CwDeltaEps . PelmHF = [ CwDeltaEps . PelmHF e lmhf ' ] ;
73 CwDeltaEps . PLF( c , 1 ) = SUMLF( c ) ;
74 CwDeltaEps . PLF( c , 2 ) = ANZLF( c ) ;
75 CwDeltaEps . PLF( c , 3 ) = MEANLF( c ) ;
76 CwDeltaEps . PLF( c , 4 ) = STDLF( c ) ;
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77 CwDeltaEps .PHF( c , 1 ) = SUMHF( c ) ;
78 CwDeltaEps .PHF( c , 2 ) = ANZHF( c ) ;
79 CwDeltaEps .PHF( c , 3 ) = MEANHF( c ) ;
80 CwDeltaEps .PHF( c , 4 ) = STDHF( c ) ;
81 c l e a r e lmh f e l m l f
82 end
83 c l e a r A SUMLF ANZLF MEANLF STDLF SUMHF ANZHF MEANHF STDHF c LF HF
84

85 B=CwDeltaS ig .P ;
86 LF=B( 1 : 3 5 9 9 , : , : ) ;
87 HF=B( 4 8 0 1 : 7 1 9 9 , : , : ) ;
88 CwDeltaS ig . PelmLF=z e r o s ( ( Pe r i o d .N/2�1) *100 ,1) ;
89 CwDeltaS ig . PelmHF=z e r o s ( ( Pe r i o d .N/2*2/3�1) *100 ,1) ;
90 f o r c =1: c e i l (max (max ( I t v l . PosAscSt ra i nPMeanSt r e s s ( : , : ) ) ) /cw)
91 e l m l f =LF (3599*100*( c�1) +1:3599*100* c ) ;
92 e l m l f = e l m l f ( e lm l f >0) ;
93 SUMLF( c )=sum( e l m l f ) ;
94 ANZLF( c )=nnz ( e l m l f ) ; %s t a t t l e n g t h ( )
95 MEANLF( c )=SUMLF( c ) /ANZLF( c ) ;
96 STDLF( c ) =1/(ANZLF( c ) �1)*sum ( ( e lm l f �MEANLF( c ) ) .^2) ;
97 e lmh f=HF(2399*100*( c�1) +1:2399*100* c ) ;
98 e lmh f=e lmh f ( e lmhf >0) ;
99 SUMHF( c )=sum( e lmh f ) ;

100 ANZHF( c )=nnz ( e lmh f ) ; %s t a t t l e n g t h ( )
101 MEANHF( c )=SUMHF( c ) /ANZHF( c ) ;
102 STDHF( c ) =1/(ANZHF( c ) �1)*sum ( ( e lmhf�MEANHF( c ) ) .^2) ;
103 e l m l f =[ e lm l f , z e r o s (1 ,359900� l e n g t h ( e l m l f ) ) ] ;
104 CwDeltaS ig . PelmLF = [ CwDel taS ig . PelmLF e lm l f ' ] ;
105 e lmh f =[ e lmhf , z e r o s (1 ,239900� l e n g t h ( e lmh f ) ) ] ;
106 CwDeltaS ig . PelmHF = [ CwDel taS ig . PelmHF e lmhf ' ] ;
107 CwDeltaS ig . PLF( c , 1 ) = SUMLF( c ) ;
108 CwDeltaS ig . PLF( c , 2 ) = ANZLF( c ) ;
109 CwDeltaS ig . PLF( c , 3 ) = MEANLF( c ) ;
110 CwDeltaS ig . PLF( c , 4 ) = STDLF( c ) ;
111 CwDeltaS ig .PHF( c , 1 ) = SUMHF( c ) ;
112 CwDeltaS ig .PHF( c , 2 ) = ANZHF( c ) ;
113 CwDeltaS ig .PHF( c , 3 ) = MEANHF( c ) ;
114 CwDeltaS ig .PHF( c , 4 ) = STDHF( c ) ;
115 c l e a r e lmh f e l m l f
116 end
117 c l e a r B SUMLF ANZLF MEANLF STDLF SUMHF ANZHF MEANHF STDHF c LF HF
118

119 C=CwDeltaChi . P ;
120 LF=C( 1 : 3 5 9 9 , : , : ) ;
121 HF=C( 4 8 0 1 : 7 1 9 9 , : , : ) ;
122 CwDeltaChi . PelmLF=z e r o s ( ( Pe r i o d .N/2�1) *100 ,1) ;
123 CwDeltaChi . PelmHF=z e r o s ( ( Pe r i o d .N/2*2/3�1) *100 ,1) ;
124 f o r c =1: c e i l (max (max ( I t v l . PosAscSt ra i nPMeanSt r e s s ( : , : ) ) ) /cw)
125 e l m l f =LF (3599*100*( c�1) +1:3599*100* c ) ;
126 e l m l f = e l m l f ( e lm l f >0) ;
127 SUMLF( c )=sum( e l m l f ( i s f i n i t e ( e l m l f ) ) ) ;
128 ANZLF( c )=nnz ( e l m l f ( i s f i n i t e ( e l m l f ) ) ) ;
129 MEANLF( c )=SUMLF( c ) /ANZLF( c ) ;
130 STDLF( c ) =1/(ANZLF( c ) �1)*sum ( ( e l m l f ( i s f i n i t e ( e l m l f ) )�MEANLF( c ) ) .^2) ;
131 e lmh f=HF(2399*100*( c�1) +1:2399*100* c ) ;
132 e lmh f=e lmh f ( e lmhf >0) ;
133 SUMHF( c )=sum( e lmh f ( i s f i n i t e ( e lmh f ) ) ) ;
134 ANZHF( c )=nnz ( e lmh f ( i s f i n i t e ( e lmh f ) ) ) ;
135 MEANHF( c )=SUMHF( c ) /ANZHF( c ) ;
136 STDHF( c ) =1/(ANZHF( c ) �1)*sum ( ( e lmh f ( i s f i n i t e ( e lmh f ) )�MEANHF( c ) ) .^2) ;
137 e l m l f =[ e lm l f , z e r o s (1 ,359900� l e n g t h ( e l m l f ) ) ] ;
138 CwDeltaChi . PelmLF = [ CwDeltaChi . PelmLF e lm l f ' ] ;
139 e lmh f =[ e lmhf , z e r o s (1 ,239900� l e n g t h ( e lmh f ) ) ] ;
140 CwDeltaChi . PelmHF = [ CwDeltaChi . PelmHF e lmhf ' ] ;
141 CwDeltaChi . PLF( c , 1 ) = SUMLF( c ) ;
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142 CwDeltaChi . PLF( c , 2 ) = ANZLF( c ) ;
143 CwDeltaChi . PLF( c , 3 ) = MEANLF( c ) ;
144 CwDeltaChi . PLF( c , 4 ) = STDLF( c ) ;
145 CwDeltaChi . PHF( c , 1 ) = SUMHF( c ) ;
146 CwDeltaChi . PHF( c , 2 ) = ANZHF( c ) ;
147 CwDeltaChi . PHF( c , 3 ) = MEANHF( c ) ;
148 CwDeltaChi . PHF( c , 4 ) = STDHF( c ) ;
149 % c l e a r e lmh f e l m l f
150 end
151 c l e a r C SUMLF ANZLF MEANLF STDLF SUMHF ANZHF MEANHF STDHF c LF HF
152

153 D=CwDeltaLength .P ;
154 LF=D( 1 : 3 5 9 9 , : , : ) ;
155 HF=D( 4 8 0 1 : 7 1 9 9 , : , : ) ;
156 CwDeltaLength . PelmLF=z e r o s ( ( Pe r i o d .N/2�1) *100 ,1) ;
157 CwDeltaLength . PelmHF=z e r o s ( ( Pe r i o d .N/2*2/3�1) *100 ,1) ;
158 f o r c =1: c e i l (max (max ( I t v l . PosAscSt ra i nPMeanSt r e s s ( : , : ) ) ) /cw)
159 e l m l f =LF (3599*100*( c�1) +1:3599*100* c ) ;
160 e l m l f = e l m l f ( e lm l f >0) ;
161 SUMLF( c )=sum( e l m l f ) ;
162 ANZLF( c )= l e n g t h ( e l m l f ) ;
163 MEANLF( c )=SUMLF( c ) /ANZLF( c ) ;
164 STDLF( c ) =1/(ANZLF( c ) �1)*sum ( ( e lm l f �MEANLF( c ) ) .^2) ;
165 e lmh f=HF(2399*100*( c�1) +1:2399*100* c ) ;
166 e lmh f=e lmh f ( e lmhf >0) ;
167 SUMHF( c )=sum( e lmh f ) ;
168 ANZHF( c )= l e n g t h ( e lmh f ) ;
169 MEANHF( c )=SUMHF( c ) /ANZHF( c ) ;
170 STDHF( c ) =1/(ANZHF( c ) �1)*sum ( ( e lmhf�MEANHF( c ) ) .^2) ;
171 e l m l f =[ e lm l f , z e r o s (1 ,359900� l e n g t h ( e l m l f ) ) ] ;
172 CwDeltaLength . PelmLF = [ CwDeltaLength . PelmLF e lm l f ' ] ;
173 e lmh f =[ e lmhf , z e r o s (1 ,239900� l e n g t h ( e lmh f ) ) ] ;
174 CwDeltaLength . PelmHF = [ CwDeltaLength . PelmHF e lmhf ' ] ;
175 CwDeltaLength . PLF( c , 1 ) = SUMLF( c ) ;
176 CwDeltaLength . PLF( c , 2 ) = ANZLF( c ) ;
177 CwDeltaLength . PLF( c , 3 ) = MEANLF( c ) ;
178 CwDeltaLength . PLF( c , 4 ) = STDLF( c ) ;
179 CwDeltaLength .PHF( c , 1 ) = SUMHF( c ) ;
180 CwDeltaLength .PHF( c , 2 ) = ANZHF( c ) ;
181 CwDeltaLength .PHF( c , 3 ) = MEANHF( c ) ;
182 CwDeltaLength .PHF( c , 4 ) = STDHF( c ) ;
183 end
184 c l e a r D SUMLF ANZLF MEANLF STDLF SUMHF ANZHF MEANHF STDHF c LF HF
185 %�������������� PosAscN ���������������%
186 CwDeltaEps .N=z e r o s ( Pe r i o d .N�1 ,100 , c e i l (max (max ( I t v l .

PosAscSt ra i nNMeanSt r e s s ( : , : ) ) ) /cw) ) ;
187 CwDeltaS ig .N=z e r o s ( Pe r i o d .N�1 ,100 , c e i l (max (max ( I t v l .

PosAscSt ra i nNMeanSt r e s s ( : , : ) ) ) /cw) ) ;
188 CwDeltaChi .N=z e r o s ( Pe r i o d .N�1 ,100 , c e i l (max (max ( I t v l .

PosAscSt r a i nPMeanSt r e s s ( : , : ) ) ) /cw) ) ;
189 CwDeltaLength .N=z e r o s ( Pe r i o d .N�1 ,100 , c e i l (max (max ( I t v l .

PosAscSt r a i nPMeanSt r e s s ( : , : ) ) ) /cw) ) ;
190 f o r p =1: Pe r i o d .N�1
191 f o r c = 1 : c e i l (max (max ( I t v l . PosAscSt ra i nNMeanSt r e s s ( : , : ) ) ) /cw)%+1
192 h=1;
193 g=1;
194 f =1;
195 f o r cx = 1 : nnz ( I t v l . PosAscSt ra i nNLength ( : , p ) )
196 i f I t v l . PosAscSt ra i nNMeanSt r e s s ( cx , p ) >(cw*( c�1) ) && I t v l .

PosAscSt ra i nNMeanSt r e s s ( cx , p ) <=(cw*c )
197 CwDeltaEps .N( p , h , c )= I t v l . Po sAscS t r a i nNDe l t a ( cx , p ) ;
198 h=h+1;
199 CwDeltaS ig .N(p , g , c )= I t v l . P o sA s cS t r a i nNDe l t aS t r e s s ( cx , p ) ;
200 g=g+1;
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201 CwDeltaChi .N( p , f , c )= I t v l . Po sAscS t r a i nNDe l t a ( cx , p ) / I t v l .
P o sA s cS t r a i nNDe l t aS t r e s s ( cx , p ) *10 ;

202 CwDeltaLength .N(p , f , c )= I t v l . PosAscSt ra i nNLength ( cx , p ) ;
203 f = f +1;
204 end
205 end
206 end
207 end
208 c l e a r h g c cx p f
209

210 A=CwDeltaEps .N ;
211 LF=A( 1 : 3 5 9 9 , : , : ) ;
212 HF=A( 4 8 0 1 : 7 1 9 9 , : , : ) ;
213 CwDeltaEps . NelmLF=z e r o s ( ( Pe r i o d .N/2�1) *100 ,1) ;
214 CwDeltaEps . NelmHF=z e r o s ( ( Pe r i o d .N/2*2/3�1) *100 ,1) ;
215 f o r c =1: c e i l (max (max ( I t v l . PosAscSt ra i nPMeanSt r e s s ( : , : ) ) ) /cw)
216 e l m l f =LF (3599*100*( c�1) +1:3599*100* c ) ;
217 e l m l f = e l m l f ( e lm l f <0) ;
218 SUMLF( c )=sum( e l m l f ) ;
219 ANZLF( c )=nnz ( e l m l f ) ;
220 MEANLF( c )=SUMLF( c ) /ANZLF( c ) ;
221 STDLF( c ) =1/(ANZLF( c ) �1)*sum ( ( e lm l f �MEANLF( c ) ) .^2) ;
222 e lmh f=HF(2399*100*( c�1) +1:2399*100* c ) ;
223 e lmh f=e lmh f ( e lmhf <0) ;
224 SUMHF( c )=sum( e lmh f ) ;
225 ANZHF( c )=nnz ( e lmh f ) ;
226 MEANHF( c )=SUMHF( c ) /ANZHF( c ) ;
227 STDHF( c ) =1/(ANZHF( c ) �1)*sum ( ( e lmhf�MEANHF( c ) ) .^2) ;
228 e l m l f =[ e lm l f , z e r o s (1 ,359900� l e n g t h ( e l m l f ) ) ] ;
229 CwDeltaEps . NelmLF = [ CwDeltaEps . NelmLF e lm l f ' ] ;
230 e lmh f =[ e lmhf , z e r o s (1 ,239900� l e n g t h ( e lmh f ) ) ] ;
231 CwDeltaEps . NelmHF = [ CwDeltaEps . NelmHF e lmhf ' ] ;
232 CwDeltaEps . NLF( c , 1 ) = SUMLF( c ) ;
233 CwDeltaEps . NLF( c , 2 ) = ANZLF( c ) ;
234 CwDeltaEps . NLF( c , 3 ) = MEANLF( c ) ;
235 CwDeltaEps . NLF( c , 4 ) = STDLF( c ) ;
236 CwDeltaEps .NHF( c , 1 ) = SUMHF( c ) ;
237 CwDeltaEps .NHF( c , 2 ) = ANZHF( c ) ;
238 CwDeltaEps .NHF( c , 3 ) = MEANHF( c ) ;
239 CwDeltaEps .NHF( c , 4 ) = STDHF( c ) ;
240 c l e a r e lmh f e l m l f
241 end
242 c l e a r A SUMLF ANZLF MEANLF STDLF SUMHF ANZHF MEANHF STDHF c LF HF
243

244 B=CwDeltaS ig .N ;
245 LF=B( 1 : 3 5 9 9 , : , : ) ;
246 HF=B( 4 8 0 1 : 7 1 9 9 , : , : ) ;
247 CwDeltaS ig . NelmLF=z e r o s ( ( Pe r i o d .N/2�1) *100 ,1) ;
248 CwDeltaS ig . NelmHF=z e r o s ( ( Pe r i o d .N/2*2/3�1) *100 ,1) ;
249 f o r c =1: c e i l (max (max ( I t v l . PosAscSt ra i nPMeanSt r e s s ( : , : ) ) ) /cw)
250 e l m l f =LF (3599*100*( c�1) +1:3599*100* c ) ;
251 e l m l f = e l m l f ( e lm l f >0) ;
252 SUMLF( c )=sum( e l m l f ) ;
253 ANZLF( c )=nnz ( e l m l f ) ;
254 MEANLF( c )=SUMLF( c ) /ANZLF( c ) ;
255 STDLF( c ) =1/(ANZLF( c ) �1)*sum ( ( e lm l f �MEANLF( c ) ) .^2) ;
256 e lmh f=HF(2399*100*( c�1) +1:2399*100* c ) ;
257 e lmh f=e lmh f ( e lmhf >0) ;
258 SUMHF( c )=sum( e lmh f ) ;
259 ANZHF( c )=nnz ( e lmh f ) ;
260 MEANHF( c )=SUMHF( c ) /ANZHF( c ) ;
261 STDHF( c ) =1/(ANZHF( c ) �1)*sum ( ( e lmhf�MEANHF( c ) ) .^2) ;
262 e l m l f =[ e lm l f , z e r o s (1 ,359900� l e n g t h ( e l m l f ) ) ] ;
263 CwDeltaS ig . NelmLF = [ CwDel taS ig . NelmLF e lm l f ' ] ;
264 e lmh f =[ e lmhf , z e r o s (1 ,239900� l e n g t h ( e lmh f ) ) ] ;
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265 CwDeltaS ig . NelmHF = [ CwDel taS ig . NelmHF e lmhf ' ] ;
266 CwDeltaS ig . NLF( c , 1 ) = SUMLF( c ) ;
267 CwDeltaS ig . NLF( c , 2 ) = ANZLF( c ) ;
268 CwDeltaS ig . NLF( c , 3 ) = MEANLF( c ) ;
269 CwDeltaS ig . NLF( c , 4 ) = STDLF( c ) ;
270 CwDeltaS ig .NHF( c , 1 ) = SUMHF( c ) ;
271 CwDeltaS ig .NHF( c , 2 ) = ANZHF( c ) ;
272 CwDeltaS ig .NHF( c , 3 ) = MEANHF( c ) ;
273 CwDeltaS ig .NHF( c , 4 ) = STDHF( c ) ;
274 c l e a r e lmh f e l m l f
275 end
276 c l e a r B SUMLF ANZLF MEANLF STDLF SUMHF ANZHF MEANHF STDHF c LF HF
277

278 C=CwDeltaChi .N ;
279 LF=C( 1 : 3 5 9 9 , : , : ) ;
280 HF=C( 4 8 0 1 : 7 1 9 9 , : , : ) ;
281 CwDeltaChi . NelmLF=z e r o s ( ( Pe r i o d .N/2�1) *100 ,1) ;
282 CwDeltaChi . NelmHF=z e r o s ( ( Pe r i o d .N/2*2/3�1) *100 ,1) ;
283 f o r c =1: c e i l (max (max ( I t v l . PosAscSt ra i nPMeanSt r e s s ( : , : ) ) ) /cw)
284 e l m l f =LF (3599*100*( c�1) +1:3599*100* c ) ;
285 e l m l f = e l m l f ( e lm l f <0) ;
286 SUMLF( c )=sum( e l m l f ( i s f i n i t e ( e l m l f ) ) ) ;
287 ANZLF( c )=nnz ( e l m l f ( i s f i n i t e ( e l m l f ) ) ) ;
288 MEANLF( c )=SUMLF( c ) /ANZLF( c ) ;
289 STDLF( c ) =1/(ANZLF( c ) �1)*sum ( ( e l m l f ( i s f i n i t e ( e l m l f ) )�MEANLF( c ) ) .^2) ;
290 e lmh f=HF(2399*100*( c�1) +1:2399*100* c ) ;
291 e lmh f=e lmh f ( e lmhf <0) ;
292 SUMHF( c )=sum( e lmh f ( i s f i n i t e ( e lmh f ) ) ) ;
293 ANZHF( c )=nnz ( e lmh f ( i s f i n i t e ( e lmh f ) ) ) ;
294 MEANHF( c )=SUMHF( c ) /ANZHF( c ) ;
295 STDHF( c ) =1/(ANZHF( c ) �1)*sum ( ( e lmh f ( i s f i n i t e ( e lmh f ) )�MEANHF( c ) ) .^2) ;
296 e l m l f =[ e lm l f , z e r o s (1 ,359900� l e n g t h ( e l m l f ) ) ] ;
297 CwDeltaChi . NelmLF = [ CwDeltaChi . NelmLF e lm l f ' ] ;
298 e lmh f =[ e lmhf , z e r o s (1 ,239900� l e n g t h ( e lmh f ) ) ] ;
299 CwDeltaChi . NelmHF = [ CwDeltaChi . NelmHF e lmhf ' ] ;
300 CwDeltaChi . NLF( c , 1 ) = SUMLF( c ) ;
301 CwDeltaChi . NLF( c , 2 ) = ANZLF( c ) ;
302 CwDeltaChi . NLF( c , 3 ) = MEANLF( c ) ;
303 CwDeltaChi . NLF( c , 4 ) = STDLF( c ) ;
304 CwDeltaChi .NHF( c , 1 ) = SUMHF( c ) ;
305 CwDeltaChi .NHF( c , 2 ) = ANZHF( c ) ;
306 CwDeltaChi .NHF( c , 3 ) = MEANHF( c ) ;
307 CwDeltaChi .NHF( c , 4 ) = STDHF( c ) ;
308 end
309 c l e a r C SUMLF ANZLF MEANLF STDLF SUMHF ANZHF MEANHF STDHF c LF HF
310

311 D=CwDeltaLength .N ;
312 LF=D( 1 : 3 5 9 9 , : , : ) ;
313 HF=D( 4 8 0 1 : 7 1 9 9 , : , : ) ;
314 CwDeltaLength . NelmLF=z e r o s ( ( Pe r i o d .N/2�1) *100 ,1) ;
315 CwDeltaLength . NelmHF=z e r o s ( ( Pe r i o d .N/2*2/3�1) *100 ,1) ;
316 f o r c =1: c e i l (max (max ( I t v l . PosAscSt ra i nPMeanSt r e s s ( : , : ) ) ) /cw)
317 e l m l f =LF (3599*100*( c�1) +1:3599*100* c ) ;
318 e l m l f = e l m l f ( e lm l f >0) ;
319 SUMLF( c )=sum( e l m l f ) ;
320 ANZLF( c )=nnz ( e l m l f ) ;
321 MEANLF( c )=SUMLF( c ) /ANZLF( c ) ;
322 STDLF( c ) =1/(ANZLF( c ) �1)*sum ( ( e lm l f �MEANLF( c ) ) .^2) ;
323 e lmh f=HF(2399*100*( c�1) +1:2399*100* c ) ;
324 e lmh f=e lmh f ( e lmhf >0) ;
325 SUMHF( c )=sum( e lmh f ) ;
326 ANZHF( c )=nnz ( e lmh f ) ;
327 MEANHF( c )=SUMHF( c ) /ANZHF( c ) ;
328 STDHF( c ) =1/(ANZHF( c ) �1)*sum ( ( e lmhf�MEANHF( c ) ) .^2) ;
329 e l m l f =[ e lm l f , z e r o s (1 ,359900� l e n g t h ( e l m l f ) ) ] ;
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330 CwDeltaLength . NelmLF = [ CwDeltaLength . NelmLF e lm l f ' ] ;
331 e lmh f =[ e lmhf , z e r o s (1 ,239900� l e n g t h ( e lmh f ) ) ] ;
332 CwDeltaLength . NelmHF = [ CwDeltaLength . NelmHF elmhf ' ] ;
333 CwDeltaLength . NLF( c , 1 ) = SUMLF( c ) ;
334 CwDeltaLength . NLF( c , 2 ) = ANZLF( c ) ;
335 CwDeltaLength . NLF( c , 3 ) = MEANLF( c ) ;
336 CwDeltaLength . NLF( c , 4 ) = STDLF( c ) ;
337 CwDeltaLength .NHF( c , 1 ) = SUMHF( c ) ;
338 CwDeltaLength .NHF( c , 2 ) = ANZHF( c ) ;
339 CwDeltaLength .NHF( c , 3 ) = MEANHF( c ) ;
340 CwDeltaLength .NHF( c , 4 ) = STDHF( c ) ;
341 end
342 c l e a r D SUMLF ANZLF MEANLF STDLF SUMHF ANZHF MEANHF STDHF c LF HF
343

344

345 %�������������� PosAscPN ���������������%
346 CwDeltaEps .PN=z e r o s ( Pe r i o d .N�1 ,100 , c e i l (max (max ( I t v l .

PosAscSt ra i nNMeanSt r e s s ( : , : ) ) ) /cw) ) ;
347 CwDeltaChi .PN=z e r o s ( Pe r i o d .N�1 ,100 , c e i l (max (max ( I t v l .

PosAscSt ra i nNMeanSt r e s s ( : , : ) ) ) /cw) ) ;
348 CwDeltaOmega .PN=z e r o s ( Pe r i o d .N�1 ,100 , c e i l (max (max ( I t v l .

PosAscSt ra i nNMeanSt r e s s ( : , : ) ) ) /cw) ) ;
349 CwDeltaLength .PN=z e r o s ( Pe r i o d .N�1 ,100 , c e i l (max (max ( I t v l .

PosAscSt ra i nNMeanSt r e s s ( : , : ) ) ) /cw) ) ;
350 PosAscPNChi= z e r o s ( Pe r i o d . Length /4 , Pe r i o d .N�1) ;
351 PosAscPNStra in= z e r o s ( Pe r i o d . Length /4 , Pe r i o d .N�1) ;
352 PosAscPNMeanStress= z e r o s ( Pe r i o d . Length /4 , Pe r i o d .N�1) ;
353 f o r p =1: Pe r i o d .N�1
354 % l =1;
355 i f I t v l . PosAscSt ra i nNMeanSt r e s s (1 , p ) < I t v l . PosAscSt ra i nPMeanSt r e s s

(1 , p )
356 f o r i =1 : 2 : nnz ( I t v l . PosAscSt ra i nNLength ( : , p ) )
357 PosAscPNChi ( i , p ) =( I t v l . Po sAscS t r a i nNDe l t a ( i , p )+ I t v l .

Po sAscS t r a i nPDe l t a ( i , p ) ) /( I t v l . P o sA s cS t r a i nNDe l t a S t r e s s ( i
, p )+ I t v l . P o sA s cS t r a i nPDe l t a S t r e s s ( i , p ) ) *10 ;

358 PosAscPNStra in ( i , p ) = I t v l . Po sAscS t r a i nNDe l t a ( i , p )+ I t v l .
Po sAscS t r a i nPDe l t a ( i , p ) ;

359 PosAscPNMeanStress ( i , p ) = ( I t v l . PosAscSt ra i nNMeanSt r e s s ( i , p )+
I t v l . PosAscSt r a i nPMeanSt r e s s ( i , p ) ) /2 ;

360 PosAscPNLength ( i , p ) = ( I t v l . PosAscSt ra i nNLength ( i , p )+ I t v l .
PosAscSt ra i nPLength ( i , p ) ) ;

361 i f i s f i n i t e ( PosAscPNChi ( i , p ) ) == 0
362 PosAscPNChi ( i , p ) = 0 ;
363 e l s e i f PosAscPNChi ( i , p ) > 100000
364 PosAscPNChi ( i , p ) = 0 ;
365 end
366 i f ( i +1) <= nnz ( I t v l . PosAscSt ra i nPLength ( : , p ) )
367 PosAscPNChi ( i +1 , p ) =( I t v l . Po sAscS t r a i nNDe l t a ( i +1 , p )+ I t v l .

Po sAscS t r a i nPDe l t a ( i , p ) ) /( I t v l .
P o sA s cS t r a i nNDe l t aS t r e s s ( i +1 , p )+ I t v l .
P o sA s cS t r a i nPDe l t a S t r e s s ( i , p ) ) *10 ;

368 PosAscPNStra in ( i +1 , p ) = I t v l . Po sAscS t r a i nNDe l t a ( i +1 , p )+
I t v l . Po sAscS t r a i nPDe l t a ( i , p ) ;

369 PosAscPNMeanStress ( i +1 , p ) = ( I t v l . PosAscSt ra i nNMeanSt r e s s
( i +1 , p )+ I t v l . PosAscSt r a i nPMeanSt r e s s ( i , p ) ) /2 ;

370 PosAscPNLength ( i +1 , p ) = ( I t v l . PosAscSt ra i nNLength ( i +1 , p )+
I t v l . PosAscSt ra i nPLength ( i , p ) ) ;

371 i f i s f i n i t e ( PosAscPNChi ( i +1 , p ) ) == 0
372 PosAscPNChi ( i +1 , p ) = 0 ;
373 e l s e i f PosAscPNChi ( i +1 , p ) > 100000
374 PosAscPNChi ( i +1 , p ) = 0 ;
375 end
376 end
377 end
378 e l s e
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379 f o r i =1 : 2 : nnz ( I t v l . PosAscSt ra i nNLength ( : , p ) )
380 PosAscPNChi ( i , p ) =( I t v l . Po sAscS t r a i nNDe l t a ( i , p )+ I t v l .

Po sAscS t r a i nPDe l t a ( i , p ) ) /( I t v l . P o sA s cS t r a i nNDe l t a S t r e s s ( i
, p )+ I t v l . P o sA s cS t r a i nPDe l t a S t r e s s ( i , p ) ) *10 ;

381 PosAscPNStra in ( i , p ) = I t v l . Po sAscS t r a i nNDe l t a ( i , p )+ I t v l .
Po sAscS t r a i nPDe l t a ( i , p ) ;

382 PosAscPNMeanStress ( i , p ) = ( I t v l . PosAscSt ra i nNMeanSt r e s s ( i , p )+
I t v l . PosAscSt r a i nPMeanSt r e s s ( i , p ) ) /2 ;

383 PosAscPNLength ( i , p ) = ( I t v l . PosAscSt ra i nNLength ( i , p )+ I t v l .
PosAscSt ra i nPLength ( i , p ) ) ;

384 i f i s f i n i t e ( PosAscPNChi ( i , p ) ) == 0
385 PosAscPNChi ( i , p ) = 0 ;
386 e l s e i f PosAscPNChi ( i , p ) > 100000
387 PosAscPNChi ( i , p ) = 0 ;
388 end
389 i f ( i +1) <= nnz ( I t v l . PosAscSt ra i nNLength ( : , p ) )
390 PosAscPNChi ( i +1 , p ) =( I t v l . Po sAscS t r a i nNDe l t a ( i , p )+ I t v l .

Po sAscS t r a i nPDe l t a ( i +1 , p ) ) /( I t v l .
P o sA s cS t r a i nNDe l t aS t r e s s ( i , p )+ I t v l .
P o sA s cS t r a i nPDe l t a S t r e s s ( i +1 , p ) ) *10 ;

391 PosAscPNStra in ( i +1 , p ) = I t v l . Po sAscS t r a i nNDe l t a ( i , p )+ I t v l
. Po sAscS t r a i nPDe l t a ( i +1 , p ) ;

392 PosAscPNMeanStress ( i +1 , p ) = ( I t v l . PosAscSt ra i nNMeanSt r e s s
( i , p )+ I t v l . PosAscSt ra i nPMeanSt r e s s ( i +1 , p ) ) /2 ;

393 PosAscPNLength ( i +1 , p ) = ( I t v l . PosAscSt ra i nNLength ( i , p )+
I t v l . PosAscSt ra i nPLength ( i +1 , p ) ) ;

394 i f i s f i n i t e ( PosAscPNChi ( i +1 , p ) ) == 0
395 PosAscPNChi ( i +1 , p ) = 0 ;
396 e l s e i f PosAscPNChi ( i +1 , p ) > 100000
397 PosAscPNChi ( i +1 , p ) = 0 ;
398 end
399 end
400 end
401 end
402 f o r c = 1 : c e i l (max (max ( I t v l . PosAscSt ra i nNMeanSt r e s s ( : , : ) ) ) /cw)
403 h=1;
404 g=1;
405 f =1;
406 f o r cx = 1 : nnz ( I t v l . PosAscSt ra i nNLength ( : , p ) )
407 i f PosAscPNMeanStress ( cx , p ) >(cw*( c�1) ) && PosAscPNMeanStress (

cx , p ) <=(cw*c )
408 CwDeltaEps .PN(p , h , c )= PosAscPNStra in ( cx , p ) ;
409 h=h+1;
410 CwDeltaChi .PN(p , g , c )= PosAscPNChi ( cx , p ) ;
411 g=g+1;
412 CwDeltaOmega .PN(p , f , c )= p i /PosAscPNLength ( cx , p ) ;
413 CwDeltaLength .PN(p , f , c )=PosAscPNLength ( cx , p ) ;
414 f = f +1;
415 end
416 end
417 end
418 end
419 c l e a r l g h cx c p
420

421 A=CwDeltaEps .PN;
422 LF=A( 1 : Pe r i o d .N/2 �1 , : , : ) ;
423 HF=A( Pe r i o d .N/2+ Pe r i o d .N/6+1: Pe r i o d .N� 1 , : , : ) ; %ab 4801 b i s 7199
424 CwDeltaEps . PNPelmLF=z e r o s ( ( Pe r i o d .N/2�1) *100 ,1) ; %3599 p e r i o d s
425 CwDeltaEps . PNPelmHF=z e r o s ( ( Pe r i o d .N/2*2/3�1) *100 ,1) ; %2399 p e r i o d s
426 f o r c =1: c e i l (max (max ( I t v l . PosAscSt ra i nPMeanSt r e s s ( : , : ) ) ) /cw)
427 e l m l f =LF (3599*100*( c�1) +1:3599*100* c ) ;
428 e l m l f = e l m l f ( e lm l f >0) ;
429 SUMLF( c )=sum( e l m l f ) ;
430 ANZLF( c )=nnz ( e l m l f ) ;
431 MEANLF( c )=SUMLF( c ) /ANZLF( c ) ;
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432 STDLF( c ) =1/(ANZLF( c ) �1)*sum ( ( e lm l f �MEANLF( c ) ) .^2) ;
433 e lmh f=HF(2399*100*( c�1) +1:2399*100* c ) ;
434 e lmh f=e lmh f ( e lmhf >0) ;
435 SUMHF( c )=sum( e lmh f ) ;
436 ANZHF( c )=nnz ( e lmh f ) ;
437 MEANHF( c )=SUMHF( c ) /ANZHF( c ) ;
438 STDHF( c ) =1/(ANZHF( c ) �1)*sum ( ( e lmhf�MEANHF( c ) ) .^2) ;
439 e l m l f =[ e lm l f , z e r o s (1 ,359900� l e n g t h ( e l m l f ) ) ] ;
440 CwDeltaEps . PNPelmLF = [ CwDeltaEps . PNPelmLF e lm l f ' ] ;
441 e lmh f =[ e lmhf , z e r o s (1 ,239900� l e n g t h ( e lmh f ) ) ] ;
442 CwDeltaEps . PNPelmHF = [ CwDeltaEps . PNPelmHF e lmhf ' ] ;
443 CwDeltaEps . PNPLF( c , 1 ) = SUMLF( c ) ;
444 CwDeltaEps . PNPLF( c , 2 ) = ANZLF( c ) ;
445 CwDeltaEps . PNPLF( c , 3 ) = MEANLF( c ) ;
446 CwDeltaEps . PNPLF( c , 4 ) = STDLF( c ) ;
447 CwDeltaEps .PNPHF( c , 1 ) = SUMHF( c ) ;
448 CwDeltaEps .PNPHF( c , 2 ) = ANZHF( c ) ;
449 CwDeltaEps .PNPHF( c , 3 ) = MEANHF( c ) ;
450 CwDeltaEps .PNPHF( c , 4 ) = STDHF( c ) ;
451 c l e a r e lmh f e l m l f
452 end
453 c l e a r SUMLF ANZLF MEANLF STDLF SUMHF ANZHF MEANHF STDHF c
454 CwDeltaEps . PNNelmLF=z e r o s ( ( Pe r i o d .N/2�1) *100 ,1) ;
455 CwDeltaEps . PNNelmHF=z e r o s ( ( Pe r i o d .N/2*2/3�1) *100 ,1) ;
456 f o r c =1: c e i l (max (max ( I t v l . PosAscSt ra i nPMeanSt r e s s ( : , : ) ) ) /cw)
457 e l m l f =LF (3599*100*( c�1) +1:3599*100* c ) ;
458 e l m l f = e l m l f ( e lm l f <0) ;
459 SUMLF( c )=sum( e l m l f ) ;
460 ANZLF( c )=nnz ( e l m l f ) ;
461 MEANLF( c )=SUMLF( c ) /ANZLF( c ) ;
462 STDLF( c ) =1/(ANZLF( c ) �1)*sum ( ( e lm l f �MEANLF( c ) ) .^2) ;
463 e lmh f=HF(2399*100*( c�1) +1:2399*100* c ) ;
464 e lmh f=e lmh f ( e lmhf <0) ;
465 SUMHF( c )=sum( e lmh f ) ;
466 ANZHF( c )=nnz ( e lmh f ) ;
467 MEANHF( c )=SUMHF( c ) /ANZHF( c ) ;
468 STDHF( c ) =1/(ANZHF( c ) �1)*sum ( ( e lmhf�MEANHF( c ) ) .^2) ;
469 e l m l f =[ e lm l f , z e r o s (1 ,359900� l e n g t h ( e l m l f ) ) ] ;
470 CwDeltaEps . PNNelmLF = [ CwDeltaEps . PNNelmLF e lm l f ' ] ;
471 e lmh f =[ e lmhf , z e r o s (1 ,239900� l e n g t h ( e lmh f ) ) ] ;
472 CwDeltaEps . PNNelmHF = [ CwDeltaEps . PNNelmHF e lmhf ' ] ;
473 CwDeltaEps .PNNLF( c , 1 ) = SUMLF( c ) ;
474 CwDeltaEps .PNNLF( c , 2 ) = ANZLF( c ) ;
475 CwDeltaEps .PNNLF( c , 3 ) = MEANLF( c ) ;
476 CwDeltaEps .PNNLF( c , 4 ) = STDLF( c ) ;
477 CwDeltaEps .PNNHF( c , 1 ) = SUMHF( c ) ;
478 CwDeltaEps .PNNHF( c , 2 ) = ANZHF( c ) ;
479 CwDeltaEps .PNNHF( c , 3 ) = MEANHF( c ) ;
480 CwDeltaEps .PNNHF( c , 4 ) = STDHF( c ) ;
481 c l e a r e lmh f e l m l f
482 end
483 c l e a r A SUMLF ANZLF MEANLF STDLF SUMHF ANZHF MEANHF STDHF c LF HF
484

485 B=CwDeltaChi .PN;
486 LF=B( 1 : 3 5 9 9 , : , : ) ;
487 HF=B( 4 8 0 1 : 7 1 9 9 , : , : ) ;
488 CwDeltaChi . PNelmLF=z e r o s ( ( Pe r i o d .N/2�1) *100 ,1) ;
489 CwDeltaChi . PNelmHF=z e r o s ( ( Pe r i o d .N/2*2/3�1) *100 ,1) ;
490 f o r c =1: c e i l (max (max ( I t v l . PosAscSt ra i nPMeanSt r e s s ( : , : ) ) ) /cw)
491 e l m l f =LF (3599*100*( c�1) +1:3599*100* c ) ;
492 e l m l f = e l m l f ( e l m l f ~=0) ;
493 SUMLF( c )=sum( e l m l f ) ;
494 ANZLF( c )=nnz ( e l m l f ) ;
495 MEANLF( c )=SUMLF( c ) /ANZLF( c ) ;
496 STDLF( c ) =1/(ANZLF( c ) �1)*sum ( ( e lm l f �MEANLF( c ) ) .^2) ;
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497 e lmh f=HF(2399*100*( c�1) +1:2399*100* c ) ;
498 e lmh f=e lmh f ( e lmh f ~=0) ;
499 SUMHF( c )=sum( e lmh f ) ;
500 ANZHF( c )=nnz ( e lmh f ) ;
501 MEANHF( c )=SUMHF( c ) /ANZHF( c ) ;
502 STDHF( c ) =1/(ANZHF( c ) �1)*sum ( ( e lmhf�MEANHF( c ) ) .^2) ;
503 e l m l f =[ e lm l f , z e r o s (1 ,359900� l e n g t h ( e l m l f ) ) ] ;
504 CwDeltaChi . PNelmLF = [ CwDeltaChi . PNelmLF e lm l f ' ] ;
505 e lmh f =[ e lmhf , z e r o s (1 ,239900� l e n g t h ( e lmh f ) ) ] ;
506 CwDeltaChi . PNelmHF = [ CwDeltaChi . PNelmHF e lmhf ' ] ;
507 CwDeltaChi . PNLF( c , 1 ) = SUMLF( c ) ;
508 CwDeltaChi . PNLF( c , 2 ) = ANZLF( c ) ;
509 CwDeltaChi . PNLF( c , 3 ) = MEANLF( c ) ;
510 CwDeltaChi . PNLF( c , 4 ) = STDLF( c ) ;
511 CwDeltaChi .PNHF( c , 1 ) = SUMHF( c ) ;
512 CwDeltaChi .PNHF( c , 2 ) = ANZHF( c ) ;
513 CwDeltaChi .PNHF( c , 3 ) = MEANHF( c ) ;
514 CwDeltaChi .PNHF( c , 4 ) = STDHF( c ) ;
515 c l e a r e lmh f e l m l f
516 end
517 c l e a r B SUMLF ANZLF MEANLF STDLF SUMHF ANZHF MEANHF STDHF c LF HF
518

519 C=CwDeltaOmega .PN;
520 LF=C( 1 : 3 5 9 9 , : , : ) ;
521 HF=C( 4 8 0 1 : 7 1 9 9 , : , : ) ;
522 CwDeltaOmega . PNelmLF=z e r o s ( ( Pe r i o d .N/2�1) *100 ,1) ;
523 CwDeltaOmega . PNelmHF=z e r o s ( ( Pe r i o d .N/2*2/3�1) *100 ,1) ;
524 f o r c =1: c e i l (max (max ( I t v l . PosAscSt ra i nPMeanSt r e s s ( : , : ) ) ) /cw)
525 e l m l f =LF (3599*100*( c�1) +1:3599*100* c ) ;
526 e l m l f = e l m l f ( i s f i n i t e ( e l m l f ) ) ;
527 e l m l f = e l m l f ( e l m l f ~=0) ;
528 e l m l f = e l m l f ( e lm l f <( p i /2) ) ;
529 SUMLF( c )=sum( e l m l f ) ;
530 ANZLF( c )=nnz ( e l m l f ) ;
531 MEANLF( c )=SUMLF( c ) /ANZLF( c ) ;
532 STDLF( c ) =1/(ANZLF( c ) �1)*sum ( ( e lm l f �MEANLF( c ) ) .^2) ;
533 e lmh f=HF(2399*100*( c�1) +1:2399*100* c ) ;
534 e lmh f=e lmh f ( i s f i n i t e ( e lmh f ) ) ;
535 e lmh f=e lmh f ( e lmh f ~=0) ;
536 e lmh f=e lmh f ( e lmhf <( p i /2) ) ;
537 SUMHF( c )=sum( e lmh f ) ;
538 ANZHF( c )=nnz ( e lmh f ) ;
539 MEANHF( c )=SUMHF( c ) /ANZHF( c ) ;
540 STDHF( c ) =1/(ANZHF( c ) �1)*sum ( ( e lmhf�MEANHF( c ) ) .^2) ;
541 e l m l f =[ e lm l f , z e r o s (1 ,359900� l e n g t h ( e l m l f ) ) ] ;
542 CwDeltaOmega . PNelmLF = [ CwDeltaOmega . PNelmLF e lm l f ' ] ;
543 e lmh f =[ e lmhf , z e r o s (1 ,239900� l e n g t h ( e lmh f ) ) ] ;
544 CwDeltaOmega . PNelmHF = [ CwDeltaOmega . PNelmHF e lmhf ' ] ;
545 CwDeltaOmega . PNLF( c , 1 ) = SUMLF( c ) ;
546 CwDeltaOmega . PNLF( c , 2 ) = ANZLF( c ) ;
547 CwDeltaOmega . PNLF( c , 3 ) = MEANLF( c ) ;
548 CwDeltaOmega . PNLF( c , 4 ) = STDLF( c ) ;
549 CwDeltaOmega .PNHF( c , 1 ) = SUMHF( c ) ;
550 CwDeltaOmega .PNHF( c , 2 ) = ANZHF( c ) ;
551 CwDeltaOmega .PNHF( c , 3 ) = MEANHF( c ) ;
552 CwDeltaOmega .PNHF( c , 4 ) = STDHF( c ) ;
553 c l e a r e lmh f e l m l f
554 end
555 c l e a r C SUMLF ANZLF MEANLF STDLF SUMHF ANZHF MEANHF STDHF c LF HF
556

557 D=CwDeltaLength .PN;
558 LF=D( 1 : 3 5 9 9 , : , : ) ;
559 HF=D( 4 8 0 1 : 7 1 9 9 , : , : ) ;
560 CwDeltaLength . PNelmLF=z e r o s ( ( Pe r i o d .N/2�1) *100 ,1) ;
561 CwDeltaLength . PNelmHF=z e r o s ( ( Pe r i o d .N/2*2/3�1) *100 ,1) ;
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562 f o r c =1: c e i l (max (max ( I t v l . PosAscSt ra i nPMeanSt r e s s ( : , : ) ) ) /cw)
563 e l m l f =LF (3599*100*( c�1) +1:3599*100* c ) ;
564 e l m l f = e l m l f ( e lm l f >0) ;
565 SUMLF( c )=sum( e l m l f ) ;
566 ANZLF( c )=nnz ( e l m l f ) ;
567 MEANLF( c )=SUMLF( c ) /ANZLF( c ) ;
568 STDLF( c ) =1/(ANZLF( c ) �1)*sum ( ( e lm l f �MEANLF( c ) ) .^2) ;
569 e lmh f=HF(2399*100*( c�1) +1:2399*100* c ) ;
570 e lmh f=e lmh f ( e lmhf >0) ;
571 SUMHF( c )=sum( e lmh f ) ;
572 ANZHF( c )=nnz ( e lmh f ) ;
573 MEANHF( c )=SUMHF( c ) /ANZHF( c ) ;
574 STDHF( c ) =1/(ANZHF( c ) �1)*sum ( ( e lmhf�MEANHF( c ) ) .^2) ;
575 e l m l f =[ e lm l f , z e r o s (1 ,359900� l e n g t h ( e l m l f ) ) ] ;
576 CwDeltaLength . PNelmLF = [ CwDeltaLength . PNelmLF e lm l f ' ] ;
577 e lmh f =[ e lmhf , z e r o s (1 ,239900� l e n g t h ( e lmh f ) ) ] ;
578 CwDeltaLength . PNelmHF = [ CwDeltaLength . PNelmHF e lmhf ' ] ;
579 CwDeltaLength . PNLF( c , 1 ) = SUMLF( c ) ;
580 CwDeltaLength . PNLF( c , 2 ) = ANZLF( c ) ;
581 CwDeltaLength . PNLF( c , 3 ) = MEANLF( c ) ;
582 CwDeltaLength . PNLF( c , 4 ) = STDLF( c ) ;
583 CwDeltaLength .PNHF( c , 1 ) = SUMHF( c ) ;
584 CwDeltaLength .PNHF( c , 2 ) = ANZHF( c ) ;
585 CwDeltaLength .PNHF( c , 3 ) = MEANHF( c ) ;
586 CwDeltaLength .PNHF( c , 4 ) = STDHF( c ) ;
587 c l e a r e lmh f e l m l f
588 end
589 c l e a r D SUMLF ANZLF MEANLF STDLF SUMHF ANZHF MEANHF STDHF c LF HF

E.4 Extraction of Strain Interval Distributions

The following code is based on the subdivision of interval data, as generated by the code

given in section E.3 (Subdivision to Stress-Windows). It derives the distribution of interval

strain, which is presented in this thesis in terms of the distributions based on the �rst 2©3 of

each period.

1 h l o g . n b i n s=B in s ;
2 A=[ I n i t 1 . PelmLF ' , I n i t 1 . PelmHF ' ] ;
3 A=A( 1 : end ) ;
4 A l f = I n i t 1 . PelmLF ( 1 : end ) ;
5 Ahf= I n i t 1 . PelmHF ( 1 : end ) ;
6

7 h l o g . PosAscPmaxi = max (A(A>0) ) ;
8 h l o g . PosAscPmin i = min (A(A>1e�10) ) ;
9 c l e a r A

10

11 h l o g . v = l og10 ( h l o g . PosAscPmin i ) : ( l og10 ( h l o g . PosAscPmaxi )� l o g10 ( h l o g .
PosAscPmin i ) ) /( h l o g . nb i n s �1) : l og10 ( h l o g . PosAscPmaxi ) ; % l o g a r i t hm i c
r ange o f c e r t a i n l o g a r i t hm i c i n c r emen t s

12 h l o g . PosAscPw = 10.^( h l o g . v ' ) ; % de� l o g a r i t h m i t i z e d
13 f o r i =1: l e n g t h ( h l o g . PosAscPw ) % I n t e r v a l l b r e i t e n
14 i f i ==1
15 h l o g . PosAscPwidth ( i , 1 ) =h l o g . PosAscPw ( i +1)�h l o g . PosAscPw ( i ) ;
16 e l s e i f i == l e n g t h ( h l o g . PosAscPw )
17 h l o g . PosAscPwidth ( i , 1 ) =h l o g . PosAscPw ( i )�h l o g . PosAscPw ( i �1) ;
18 e l s e
19 h l o g . PosAscPwidth ( i , 1 ) = ( h l o g . PosAscPw ( i )�h l o g . PosAscPw ( i �1) )

/2+( h l o g . PosAscPw ( i +1)�h l o g . PosAscPw ( i ) ) /2 ;
20 end
21 end
22 h l o g . PosAscPwidthmax=max ( h l o g . PosAscPwidth ( : , 1 ) ) ;
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23 c l e a r p i h l o g . v
24 %LF :
25 [ h l o g . Po sAs cPcoun t s l f ( : , 1 ) , h l o g . P o sA s cP c e n t e r s l f ( : , 1 ) ]= h i s t ( A l f ( A l f >0) ,

h l o g . PosAscPw ) ;
26 c l e a r A l f
27 i f l e n g t h ( h l o g . Po sAs cPcoun t s l f ( : , 1 ) )==1
28 h l o g . Po sA s cP l o g c o un t s l f ( : , 1 ) =h l o g . PosAscPcoun t s l f ' . / h l o g . PosAscPwidth

( : , 1 ) ;
29 e l s e
30 h l o g . Po sA s cP l o g c o un t s l f ( : , 1 ) =h l o g . Po sAs cPcoun t s l f ( : , 1 ) . / h l o g .

PosAscPwidth ( : , 1 ) ;
31 end
32 c l e a r p n nz b
33 %HF :
34 [ h l o g . PosAscPcountsh f ( : , 1 ) , h l o g . Po sAscPcen t e r s h f ( : , 1 ) ]= h i s t ( Ahf ( Ahf >0) ,

h l o g . PosAscPw ) ;
35 c l e a r Ahf
36 i f l e n g t h ( h l o g . PosAscPcountsh f ( : , 1 ) )==1
37 h l o g . Po sAscP l ogcoun t sh f ( : , 1 ) =h l o g . PosAscPcountsh f ' . / h l o g . PosAscPwidth

( : , 1 ) ;
38 e l s e
39 h l o g . Po sAscP l ogcoun t sh f ( : , 1 ) =h l o g . PosAscPcountsh f ( : , 1 ) . / h l o g .

PosAscPwidth ( : , 1 ) ;
40 end
41 c l e a r p n nz b
42

43 f o r b =1: h l o g . n b i n s % sum o f coun t s who le h f o r l f
44 h l o g . PosAscPsumlogcounts ( b , 1 ) = sum( h l o g . Po sA s cP l o g c o un t s l f ( b , 1 ) ) ; %

low f i e l d
45 h l o g . PosAscPsumlogcounts ( b , 2 ) = sum( h l o g . PosAscP l ogcoun t sh f ( b , 1 ) ) ; %

h i g h f i e l d
46 end
47 c l e a r b
48 h l o g . PosAscP logno rm l f (1 )=sum( h l o g . PosAscPsumlogcounts ( : , 1 ) ) ; %t o t a l

amount o f coun t s l f
49 h l o g . PosAscPlognormhf (1 )=sum( h l o g . PosAscPsumlogcounts ( : , 2 ) ) ; %t o t a l

amount o f coun t s h f
50

51 nzh f =1;
52 n z l f =1;
53 f o r b =1: h l o g . n b i n s % n o rm a l i z a t i o n to t o t a l amount o f counts , d e l e t i o n o f

z e r o e n t r i e s , l o g a r i t hm o f v a l u e s
54 i f h l o g . PosAscPsumlogcounts ( b , 2 ) >0 % a l l e n u l l �E i n t r a e g e l o e s c h e n und

d a b e i i n l og10 umrechnen
55 h l o g . PosAscPx ( nzhf , 1 ) = l og10 ( h l o g . Po sAscPcen t e r s h f ( b , 1 ) ) ;
56 h l o g . PosAscPy ( nzhf , 1 ) = l og10 ( h l o g . PosAscPsumlogcounts ( b , 2 ) /( h l o g .

PosAscPlognormhf (1 ) ) ) ;
57 nzh f=nzh f +1;
58 end
59 i f h l o g . PosAscPsumlogcounts ( b , 1 ) >0 % a l l e n u l l �E i n t r a e g e l o e s c h e n und

d a b e i i n l og10 umrechnen
60 h l o g . PosAscPx ( n z l f , 2 ) = l og10 ( h l o g . P o sA s cP c e n t e r s l f ( b , 1 ) ) ;
61 h l o g . PosAscPy ( n z l f , 2 ) = l og10 ( h l o g . PosAscPsumlogcounts ( b , 1 ) /( h l o g .

PosAscP logno rm l f (1 ) ) ) ;
62 n z l f = n z l f +1;
63 end
64 end
65 c l e a r n zh f n z l f b
66 Hi s tLengthP=h l og ;
67 f i l e n am e =[ ' I t v l M t f ' , data , ' . mat ' ] ;
68 f i l e p a t h =[ ' . / ' , f o l d e r ] ;
69 f i l e =[ f i l e p a t h , f i l e n am e ] ;
70 s a v e ( f i l e , ' H i s tLengthP ' , '�append ' )



Appendix F

In�uence of Data Point Density

The interval data is analyzed regarding dependencies on parameters like the stress amplitude

�0, the strain rate _", and the data point density �DP . Upon these quantities, the data point

density is not de�ned by intrinsic material response or the excitation itself, but is due to

the subdivision of the data into stress-windows, similar to a binning. It can be deduced by

equation F.1 and is de�ned as the number of data points within a certain stress window

��c � �f � �i of the positive ascending part of the sine. Due to the sinusoidal form of the

stress excitation �c � �0 � sin�!T �, the number of data points per stress window, which is

equal to the duration �tc in ms, increases with the value of intra-periodic stress �c . Thus,

the data point density �dp increases with intra-periodic stress �c as well.

�dp �
�tc
ttot

� �2�f ��1 � �arcsin ��f�0 	 � arcsin � �i�0 	� ©ttot (F.1)

If the arcus-sine is written in a series expansion and terms which are of squared or higher

order are neglected, the data point density can be written as:

�dp � �2�f ��1 � ��c�0
(F.2)

Figure F.1 Normalized averaged interval compliance $ ��itv l�
P
ij %

norm
in comparison the the normal-

ized data point density �DP plotted against the normalized intra-periodic stress �c©�0, as exempli�-

cation on positive strain intervals.

The interval strain �"itv l and the interval duration �titv l do not show a dependence on the
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data point density, but are rather dominated by the strain rate: In contrast, the in�uence of

�DP on the interval apparent compliance �itv l , the interval width ��itv l , and the number of

intervals Nitv l is dominant. This is shown in �g. F.1 to �g. F.3, and becomes evident by the

conformity in the intra-periodic evolution. Thus, these three interval quantities are excluded

from the discussion on a relation to avalanche behavior.

Figure F.2 Normalized averaged interval width $ ���itv l�
P
ij %

norm
in comparison the the normalized

data point density �DP plotted against the normalized intra-periodic stress �c©�0, as exempli�cation

on positive strain intervals.

Figure F.3 Normalized umber of intervals �Nitv l�c©�c�Nitv l�c in comparison the the normalized data

point density �DP plotted against the normalized intra-periodic stress �c©�0.



Appendix G

Distributions on ideal Sinusoidal Data

In order to learn about the in�uence of the global sinusoidal form of the data within each

period, the excitation signal which is of ideal sinusoidal form is analyzed according to its

increments and intervals. As this ideal sinusoidal data does not inherit any interval-like

behavior, the interval-de�nition is based on the strain evaluation. Thus, the evaluation of

the data in this manner generates an arti�cial distribution, which will give an estimate on

the in�uence of the sinusoidal form itself, but does not hold any information regarding the

physics of microstructural processes.

The limit of resolution in time is 1ms, the limit of stress-resolution is 0:01MPa. The data

resolution is identical for all evaluated sine waves, while the absolute amplitude �0 of the sine

wave is changed in a range from 700 to 7850 times the resolution limit.

(a) (b)

Figure G.1 (a) Distribution of increments in sinusoidal data for the full positive ascending part of the

sine, based on ��incr for various stress amplitudes �0. (b) Exponent � extracted from distributions

shown in (a) plotted against stress amplitude �0.
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In �gure G.1a the distribution of incremental sinusoidal data for the �rst quarter of a sine

wave (positive ascending part) is plotted both for initial low �eld (dashed lines) and high �eld

(continuous lines). It is clearly visible that an analysis of the full �rst quarter of the sine

yields a power-law distribution for small values of ��incr . Moreover it becomes evident that

with increasing amplitude of the sine a maximum at higher values of ��incr evolves in the

distribution. To extract the exponent leading to the powerlaw in double-logarithmic repre-

sentation, the data is linearly �tted in the range of the power-law behavior. The evolution

of the exponent is shown in �gure G.1b. It shows clearly that the slope of the �t approaches

the value �1 with increasing sine amplitude �0, which is coming along with an increasing

range of linearity in the double-logarithmic representation.

In �gure G.2 distributions are shown that do only include incremental data up to 2©3 of the

full amplitude, which reduces the evaluated data to one half of the number of increments

which is used for the evaluation presented in �g. G.1a. This shows clearly, that the power-law

behavior evolves from those increments at the maximum part of the sine wave, where the

slope of the sine ceases towards zero. Only for sinusoidal data with comparatively small

stress amplitudes, the slope in the early regime of the distributions is similar to the linear

regions in �g. G.1a, but the broad range of linearity in the log-log-representation is missing

here. Thus, by limiting the contributing data to the initial 2©3 of the positive ascending part

of the sine, the generation of power-law behavior by the sinusoidal form itself is suppressed.

Figure G.2 Distribution of increments in sinusoidal data for the initial 2©3 of the positive ascending

part of the sine, based on ��incr occurring within the �rst two thirds of the stress amplitude (i.e.

between stresses from 0 to 2©3 � �0) for various stress amplitudes �0.

As the strain data is evaluated interval-wise, it is reasonable to partition the sinusoidal data

into intervals to check for the in�uence of the routine on the form of the distribution. To

do so, stress data is evaluated with the interval partitioning gained by the evaluation of cor-

responding strain data. To give an example, distributions for interval partitioning according

to positive intervals in strain are shown in �g. G.3 for di�erent stress amplitudes.

While the distribution shifts towards higher values for the averaged stress intervals with

increasing stress amplitude �0, the distribution becomes roughly linear due to the interval-
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wise analysis. The slope in the double-logarithmic plots is about �2:50, and seems to be

stable for a broad range of stress amplitudes. The range within the histogram is limited to

roughly one order of magnitude. A power-law behavior exhibiting slopes comparable to values

observed in �g. G.1a is not arising in case of interval-based analysis of ideal sinusoidal data

originating from the initial 2©3 of the positive ascending part of the sine.

Figure G.3 Distribution of intervals in sinusoidal data, based on ��itv l occurring within the �rst two

thirds of the stress amplitude (i.e. between stresses from 0 to 2©3 � �0) for various stress amplitudes

�0.
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