17 research outputs found

    Feasibility of using a knowledge-based system concept for in-flight primary flight display research

    Get PDF
    A study was conducted to determine the feasibility of using knowledge-based systems architectures for inflight research of primary flight display information management issues. The feasibility relied on the ability to integrate knowledge-based systems with existing onboard aircraft systems. And, given the hardware and software platforms available, the feasibility also depended on the ability to use interpreted LISP software with the real time operation of the primary flight display. In addition to evaluating these feasibility issues, the study determined whether the software engineering advantages of knowledge-based systems found for this application in the earlier workstation study extended to the inflight research environment. To study these issues, two integrated knowledge-based systems were designed to control the primary flight display according to pre-existing specifications of an ongoing primary flight display information management research effort. These two systems were implemented to assess the feasibility and software engineering issues listed. Flight test results were successful in showing the feasibility of using knowledge-based systems inflight with actual aircraft data

    Knowledge-Based System for Flight Information Management

    Get PDF
    The use of knowledge-based system (KBS) architectures to manage information on the primary flight display (PFD) of commercial aircraft is described. The PFD information management strategy used tailored the information on the PFD to the tasks the pilot performed. The KBS design and implementation of the task-tailored PFD information management application is described. The knowledge acquisition and subsequent system design of a flight-phase-detection KBS is also described. The flight-phase output of this KBS was used as input to the task-tailored PFD information management KBS. The implementation and integration of this KBS with existing aircraft systems and the other KBS is described. The flight tests are examined of both KBS's, collectively called the Task-Tailored Flight Information Manager (TTFIM), which verified their implementation and integration, and validated the software engineering advantages of the KBS approach in an operational environment

    Knowledge-Based System for Flight Information Management

    Get PDF

    Traditional versus rule-based programming techniques: Application to the control of optional flight information

    Get PDF
    To the software design community, the concern over the costs associated with a program's execution time and implementation is great. It is always desirable, and sometimes imperative, that the proper programming technique is chosen which minimizes all costs for a given application or type of application. A study is described that compared cost-related factors associated with traditional programming techniques to rule-based programming techniques for a specific application. The results of this study favored the traditional approach regarding execution efficiency, but favored the rule-based approach regarding programmer productivity (implementation ease). Although this study examined a specific application, the results should be widely applicable

    Information management

    Get PDF
    Primary Flight Display (PFD) information management and cockpit display of information management research is presented in viewgraph form. The information management problem in the cockpit, information management burdens, the key characteristics of an information manager, the interface management system handling the flow of information and the dialogs between the system and the pilot, and overall system architecture are covered

    Aviation Safety Issues Database

    Get PDF
    The aviation safety issues database was instrumental in the refinement and substantiation of the National Aviation Safety Strategic Plan (NASSP). The issues database is a comprehensive set of issues from an extremely broad base of aviation functions, personnel, and vehicle categories, both nationally and internationally. Several aviation safety stakeholders such as the Commercial Aviation Safety Team (CAST) have already used the database. This broader interest was the genesis to making the database publically accessible and writing this report

    Cognitive models of pilot categorization and prioritization of flight-deck information

    Get PDF
    In the past decade, automated systems on modern commercial flight decks have increased dramatically. Pilots now regularly interact and share tasks with these systems. This interaction has led human factors research to direct more attention to the pilot's cognitive processing and mental model of the information flow occurring on the flight deck. The experiment reported herein investigated how pilots mentally represent and process information typically available during flight. Fifty-two commercial pilots participated in tasks that required them to provide similarity ratings for pairs of flight-deck information and to prioritize this information under two contextual conditions. Pilots processed the information along three cognitive dimensions. These dimensions included the flight function and the flight action that the information supported and how frequently pilots refer to the information. Pilots classified the information as aviation, navigation, communications, or systems administration information. Prioritization results indicated a high degree of consensus among pilots, while scaling results revealed two dimensions along which information is prioritized. Pilot cognitive workload for flight-deck tasks and the potential for using these findings to operationalize cognitive metrics are evaluated. Such measures may be useful additions for flight-deck human performance evaluation

    Managing Approach Plate Information Study (MAPLIST): An Information Requirements Analysis of Approach Chart Use

    Get PDF
    Adequately presenting all necessary information on an approach chart represents a challenge for cartographers. Since many tasks associated with using approach charts are cognitive (e.g., planning the approach and monitoring its progress), and since the characteristic of a successful interface is one that conforms to the users' mental models, understanding pilots' underlying models of approach chart information would greatly assist cartographers. To provide such information, a new methodology was developed for this study that enhances traditional information requirements analyses by combining psychometric scaling techniques with a simulation task to provide quantifiable links between pilots' cognitive representations of approach information and their use of approach information. Results of this study should augment previous information requirements analyses by identifying what information is acquired, when it is acquired, and what presentation concepts might facilitate its efficient use by better matching the pilots' cognitive model of the information. The primary finding in this study indicated that pilots mentally organize approach chart information into ten primary categories: communications, geography, validation, obstructions, navigation, missed approach, final items, other runways, visibility requirement, and navigation aids. These similarity categories were found to underlie the pilots' information acquisitions, other mental models, and higher level cognitive processes that are used to accomplish their approach and landing tasks

    Development of a Design Tool for Flow Rate Optimization in the Tata Swach Water Filter

    Get PDF
    When developing a first-generation product, an iterative approach often yields the shortest time-to-market. In order to optimize its performance, however, a fundamental understanding of the theory governing its operation becomes necessary. This paper details the optimization of the Tata Swach, a consumer water purifier produced for India. The primary objective of the work was to increase flow rate while considering other factors such as cost, manufacturability, and efficacy. A mathematical model of the flow characteristics through the filter was developed. Based on this model, a design tool was created to allow designers to predict flow behavior without prototyping, significantly reducing the necessity of iteration. Sensitivity analysis was used to identify simple ways to increase flow rate as well as potential weak points in the design. Finally, it was demonstrated that maximum flow rate can be increased by 50% by increasing the diameter of a flow-restricting feature while simultaneously increasing the length of the active purification zone. This can be accomplished without significantly affecting cost, manufacturability, and efficacy.MIT Tata Center for Technology and Desig

    NASA Systems Analysis and Concepts Directorate Mission and Trade Study Analysis

    Get PDF
    Mission analysis, as practiced by the NASA Langley Research Center's Systems Analysis and Concepts Directorate (SACD), consists of activities used to define, assess, and evaluate a wide spectrum of aerospace systems for given requirements. The missions for these systems encompass a broad range from aviation to space exploration. The customer, who is usually another NASA organization or another government agency, often predefines the mission. Once a mission is defined, the goals and objectives that the system will need to meet are delineated and quantified. A number of alternative systems are then typically developed and assessed relative to these goals and objectives. This is done in order to determine the most favorable design approaches for further refinement. Trade studies are performed in order to understand the impact of a requirement on each system and to select among competing design options. Items varied in trade studies typically include: design variables or design constraints; technology and subsystem options; and operational approaches. The results of trade studies are often used to refine the mission and system requirements. SACD studies have been integral to the decision processes of many organizations for decades. Many recent examples of SACD mission and trade study analyses illustrate their excellence and influence. The SACD-led, Agency-wide effort to analyze a broad range of future human lunar exploration scenarios for NASA s Exploration Systems Mission Directorate (ESMD) and the Mars airplane design study in support of the Aerial Regional-scale Environment Survey of Mars (ARES) mission are two such examples. This paper describes SACD's mission and trade study analysis activities in general and presents the lunar exploration and Mars airplane studies as examples of type of work performed by the SACD
    corecore