View metadata, citation and similar papers at core.ac.uk

=
brought to you by .{ CORE
provided by NASA Technical Reports Server

NASA Technical Memorandum 89161

TRADITIONAL VERSUS RULE-BASED PROGRAMMING
TECHNIQUES: APPLICATION TO THE CONTROL OF
OPTIONAL FLIGHT INFORMATION

WENDELL R. RICKS
KATHY H, ABBOTT

JULY 1987

(MASA-TH-89161) IRADITICNAL VEESUS N87-2¢€275
EULE-EASED PRCGEAFMING TECHMICUES:

AEPLICATION TG 1HE CCNTECL CF CFTIONAL

FLIGHT INFORBATICH (NASA) 15 ¢ Avail: Unclas

K1IS EC AO02/MF 01 CSCL 12A G3/59 00S%4120

NASAN

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665

https://core.ac.uk/display/42835337?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

SUMMARY

To the software design community, the concern over the costs associated
with a program's execution time and implementation is great. It is always
desirable, and sometimes imperative, that the proper programming technique is
chosen which minimizes all costs for a given application or type of
application.

This paper describes a study that compared the cost-related factors
associated with traditional programming techniques to rule-based programming
techniques for a specific application. The results of this study favored the
traditional approach regarding execution efficiency, but favored the rule-
based approach regarding programmer productivity (implementation ease).

Execution efficiency was measured by the number of steps required to
isolate hypotheses. A step was defined to be a condition test, function call,
or a fetch for information from another body of code. The separate
homogeneous rule-base and inference mechanisms of the rule-based program
required more steps in the isolation of hypotheses. The best case for the
rule-based program was approximately four times less efficient than the
traditional program.

The results for programmer productivity were based on the modification
ease, verification ease, and the ease of adding explanation capability to each
program. These measures were determined by a qualitative summation of the
required process for each measure. The separate homogeneous rule-base and
inference mechanisms of the rule-based program provided potential for improved
programmer productivity.

This study was based on a specific application. The application was both
complex and frequently modified, and therefore, tested key features of both
programming techniques. Although this study examined a specific application,
the results should be widely applicable.

INTRODUCTION

A program that generates correct results, but is too expensive with
respect to execution and implementation costs, is a failure (ref. 1). A
successful program is one designed to minimize the cost associated with the
execution and implementation while maintaining correct results. Since the
appropriate programming technique can reduce both execution and implementation
costs, decisions concerning the proper programming technique for a specific
application are most important. Usually, programmer preference is the factor
that determines which technique is used. Most of today's programmers are
trained to use traditional programming techniques, and therefore prefer
them. However, the successes of expert systems that use rule-based
programming techniques have heightened an awareness of a promising new
approach. In these efforts, programs which used rule-based programming
techniques were easily developed and modified; (ref. 2) thus suggesting that
rule-based techniques might serve as a basis for improved programmer
productivity in complex and rapidly changing applications.

This paper describes a study that compared rule-based versus traditional
techniques for developing a program, the function of which was to control the
presentation of optional flight information to the flight crew of an
aircraft. The presentation of this optimal flight information depended on
multiple combinations of several factors which included, (1) flight phase,
(2) control mode settings, (3) signal availability, and (4) switch settings.
Although this study examined execution efficiency and programmer productivity
based on a specific application, the tradeoffs identified should be widely
applicable.

APPROACH

Application.- To determine the tradeoffs between rule-based and
tradit%onal programming techniques, an application was necessary so that an
evaluation could be performed. A desirable application for this test would be
one that required complex decision logic and frequent changes during software
development.

An application that fit these requirements was part of a research effort
underway in the Flight Management Division at NASA Langley Research Center.
This research effort investigated concepts for information display in civil
transport cockpits. The flight information of this research effort included
both basic information (e.g., indicated airspeed), displayed at all times
during the aircraft's operation, and optional information (e.g., reference
altitude), displayed only under appropriate conditions.

Presentation of the optional flight information depended on multiple
combinations of the flight phase, control mode settings, availability of
signals, and switch settings. For example, the reference-altitude pointer was
optional information, and was displayed when the following conditions were
true: the flight phase was "climb," the control mode setting was "automatic
vertical path," the navigation path was "valid," and selector switch 2 was
llon . u

The rules that determined the display of optional flight information were
represented in a decision tree, which was traversed in a data-driven manner.
Figure 1 illustrates a portion of that decision tree. The organization of a
decision tree allowed common conditions to be grouped near the top of the
tree, which facilitated early pruning.

Implementation.- The decision tree for this application was implemented
in two programs, one using traditional programming techniques and the other
using rule-based programming techniques. Both programs performed the same
function, so the end user saw no difference between them. The program using
traditional techniques combined the rules and the control structure of the
decision tree in nested IF-THEN or IF-THEN-ELSE statements. Figure 2 shows an
excerpt from the program code.

The rule-based program, on the other hand, separated the rules from the
inference procedures (or inference engine) that manipulated them. Separation
of the rules from the inference engine yielded a rule base in which all the
rules had a homogeneous syntax.

The rule-based program used frames to organize the homogeneous rules in a
decision-tree-like structure (ref. 3). The hypotheses, which for this
application were the optional pieces of information, were located in the
terminal (or leaf) nodes. The conditions of the rules, which described the
conditions that must be true for optional information to be displayed, were
located in preceding nodes. The inference engine was a tree traversal
algorithm, directed by the successful execution of conditions.

RESULTS AND DISCUSSION

The two prototype programs were evaluated for execution efficiency and
implementation ease (programmer productivity). The criterion used to
determine the execution efficiency was the total number of steps required to
isolate hypotheses that were true. The criteria used to evaluate the
implementation ease were (1) ease of modification, (2) ease of verification,
and (3) ease of providing explanation capability.

Efficiency.- The objective of evaluating efficiency was to compare the
execution cost of each programming technique. It was desirable in this study
to obtain a machine-independent measure of execution cost. Therefore, the
efficiency of each program was measured by the total number of steps required
to isolate hypotheses.

The type of steps used for this measure were (1) function calls,
(2) fetches of information, and (3) condition tests. A function call was the
transfer of control to different sections of the program. A fetch was defined
as the retrieval of information, such as, retrieving rules from a rule base.
A condition test was a test for a logical relationship, such as, X > Y. The
number of steps were determined by tracing the inference process for different
hypotheses.

It was expected that the rule-based program would require more steps to
isolate true hypotheses than the traditional program, since the rule-based
program had to fetch the rules from the rule base and perform tests to
manipulate the tree. A single relationship between the number of steps
required for each program was expected (e.g., rule-based steps = 3 times
traditional steps). Thus, the objective of this measure was to determine the
relationship showing how much more efficient the traditional program was.
However, a single relationship among the number of steps was not found due to
the traditional program's ability to distinguish mutually exclusive conditions
while the rule-based implementation could not.

Mutually exclusive conditions are conditions which cannot be satisfied
simultaneously, such as, X = 2 and X = 3. Traditional programs handle
mutually exclusive conditions in an IF-THEN-ELSE statement, as shown below:

IF X = 2 Then do action for X = 2
ELSE If X =3 do action for X = 3

The advantage of this capability is that when X is equal to 2, the
program will not evaluate the condition X equal to 3. Rule-based programs
cannot distinguish sets of mutually-exclusive conditions from those which are
not. Therefore, a rule-based program would evaluate the condition for X
equal to 3, even after establishing that X was equal to 2.

When no mutually exclusive conditions were evaluated during the isolation
of a hypothesis, one relationship between the traditional implementation and
the rule-based implementation always resulted. Given J non-mutually exclusive
conditions to evaluate, the traditional program required J tests for a total
of J steps. The rule-based program required 2J tests, 2J+1 fetches, and 1
function call. Therefore, when no mutually exclusive conditions occurred, the
rule-based program always required a total of 4J+2 steps, or approximately 4
times the number of steps required by the traditional program.

However, when mutually exclusive conditions were evaluated, more than one
relationship resulted. For example, when there were mutually exclusive
conditions and the last condition in the set was true, the relationship
between the traditional and rule-based programs remained the same. That is,
it required a total of K steps for the traditional program and 4K+2 steps for
the rule-based program. However, when the first condition of the K mutually
exclusive conditions was true, the traditional program required only one
condition test. The rule-based program still required 4K+2 steps.

Adding the capability of efficiently handling mutually exclusive
conditions to the rule-based program would therefore, have been beneficial.
However, adding this capability to the rule-based program would have been
difficult and possibly detrimental to the homogeneity of the rule base. It
may have required marking mutually exclusive conditions, which would require
the inference engine to always test for them. Adding this capability to the
rule-based program would have actually decreased the efficiency by increasing
the number of steps required for all cases because of the additional tests.

Therefore, the traditional program was more efficient than the rule-based
program. In the best case for the rule-based program, the traditional program
was approximately 4 times more efficient. Table 1 provides a summary of the
efficiency results. However, one should consider other related information
before making a decision based on these results. The development of
high-speed symbolic processors may decrease the time needed to execute
rule-based programs. This may decrease the impact of the number of steps
required. There is also research being performed to develop tools that
convert rule-based programs to traditional code. These tools would enable a
programmer to obtain the execution efficiency of traditional programs in the
final product while using rule-based programming techniques for development.

Modification.- The objective of evaluating modifiability was to determine
the degree in which the programming techniques facilitated program
modifications. The program's efficiency after a modification was an equally
important factor of this criterion. This study determined the modifiability
criteria by a qualitative summation of the modification process required by
each program.

The traditional program was modified using the same method as employed
with the development of most software. Modification in the traditional
program required the programmer to search manually through the code and change
the code appropriately. In this study, the rules were organized in a
data-driven decision tree format. Therefore, all the conditions of a rule for
a given display were difficult to locate in the traditional code. Changing,
deleting, or adding a condition to a rule, or deleting or adding an entire
rule required a very complex search and potentially error-prone
manipulation. For example, adding the following rule:

if ATTITUDE-CWS = ENGAGED or VELOCITY-CWS = ENGAGED
and, if FLIGHT PHASE = CLIMB, CRUISE, or DESCENT
and, if NAVIGATION-PATH = VALID
and, if SWITCH5 = ON

then CROSS TRACK DEVIATION = ON,

would have required a very complex search, and the change would have been
subject to errors. It would not have been difficult to add a new IF-THEN
statement to accommodate the new rule. However, maintaining the efficiency of
the already existing rule structure required proper clustering of the
conditions in the new rule.

Clustering the above rule would have required a search of the outer-most
IF-THEN(-ELSE) statement of the existing code for common conditions with those
of the new rule. The programmer would have then placed the remaining
conditions of the new rule into an IF-THEN(-ELSE) statement at the location
where he found the last match. It is easy to understand how complex and error
prone a process like this can be, especially when the decision tree is large.

Determining the overall impact of modifications to the traditional
program was also difficult. Interactions among the new rule and the old rules
were hard to identify. Erroneous side effects were quite possible with each
modification to the rules. In the traditional program, it was the
responsibility of the person modifying the program to determine manually all
of the side effects. The difficulty was magnified when the number of rules
became larger and more complex.

Modifying the rule-based program was easier. This was because the
homogeneous rule base, being separate from the inference engine, allowed the
rule-based program to access the rules as data. This led to the development
of an interactive modification utility for the rule-based program. With this
utility, a programmer could add and delete rules interactively. This provided
an easier means of code modification than provided with traditional program
development. For example, the programmer would have been able to add the new
rule given above to the rule-based program by accessing the utility function
and providing the new rule in its entirety. The interaction for the above
example would be:

=> CHANGE-RULEBASE <cr>
For which display? => CROSS TRACK DEVIATION <cr>
(A)dd or (D)elete => A <cr>

Enter each condition of the new rule, followed by a carriage
return. Terminate rule entry with an "!."
=> ATTITUDE-CWS ENGAGED <cr>

ENGAGED OR VELOCITY-CWS =
= CRUISE OR

=> FLIGHT-PHASE = CLIMB OR FLIGHT-PHASE
FLIGHT-PHASE = DESCENT <cr>

=> NAVIGATION-PATH = VALID <cr>

=> SWITCH5 = ON <cr>
!

The utility function would have then searched the existing rule base and
automatically performed the clustering needed to maintain the efficiency of
the decision tree. To say there was no way to provide this interactive
modification capability to the traditional program would be false. However,
to provide this capability would be very difficult, since it would require a
program that could intelligently interpret the entire traditional programming
language used. On the other hand, the homogeneous nature of the rule base in
the rule-based program made the task easy.

There was still the issue of determining the effects of adding or
deleting rules to the rule-based program. In this study, utilities of the
rule-based program showed the rules in a textual format when prompted but not
the overall impact that a change had on the decision tree. One commercially
available program that has this capability is the Automated Reasoning Tool
(ART) developed by Inference Corporation. ART displays the clustering of the
rule base in a tree-style format, thus giving the developer a visual
representation of the impact of an addition or deletion of a rule on the
decision tree. This capability is not available with traditional programming
techniques.

Therefore, rule-based techniques provided the potential for easier
modification with less chance of error. Adding and deleting rules from the
traditional code required a programmer to manually perform the tasks that the
utility functions of the rule-based program did automatically. Even when a
change was completed to the traditional program, there were no automated tools
for assessing the impact and side effects. Table 2 provides a summary of the
modification results.

Verification.- The objective of software verification is to measure such
values as the completeness, accuracy, reliability, and performance of the
software. The two major approaches to verification are mathematical
verification and verification by software testing. This section will briefly
discuss the differences in the two verification approaches and how these
approaches differ when applied to traditional and rule-based programs. As
with modifiability, this study determined the verifiability by a subjective
assessment of the verification process.

In mathematical verification, a formal mathematical proof must insure
that the program meets the desired functional and reliability requirements.
One way of accomplishing this is to mathematically define the criteria for
correct functioning of the program and then prove the program satisfies these
criteria (ref. 4). The criteria for a program are usually written as
specifications in a natural language. However, when performing mathematical
verification, the trend is to use mathematical notation for specifications.
This aids in generating more concise and precise specifications. The task of
verifying the program is then simplified by proving that a program conforms to
its specifications (ref. 5).

Simplifying the specifications can reduce the task of mathematically
defining a program's specifications, as the traditional program SIFT does
(ref. 4). SIFT formulates its program specifications into a hierarchy. Each
consecutive tier of the hierarchy has an easier-to-prove specification than
the preceding tier. Rule-based programs could also use this hierarchical

simplification process for the design of the specifications. Neither
programming technique was found to have any advantages over the other in the
program specifications stage.

The other approach to software verification is verification by software
testing. This is the process of comparing statements of intent
(specifications) with actuality (the program execution). Three categories
commonly used to check adherence to specifications are: static analysis,
dynamic analysis, and formal functional analysis (ref. 6). There are many
automated tools that integrate these testing methods and yield good results
when verifying traditional code (ref. 7).

For rule-based programs, the process of testing that the program is
accurate and reliable has two distinct components: (1) checking that the rule
base contains all necessary information, and (2) checking that the program can
interpret and apply this information correctly (ref. 8). During this process,
rule-based programs should be able to employ the testing methods used with
traditional code (e.g., static analysis, dynamic analysis, and formal
functional analysis). Again, neither programming technique was found to have
any advantages over the other in the application of software testing
techniques.

However, the separate, homogeneous rule base of rule-based programs may
be an advantage in other stages of verification. First, code simplification
is an important step in all forms of verification. The separation of the rule
base and the inference engine should ease the simplification task (ref. 9).
Also, it is already possible with rule-based systems to easily trace the
program's reasoning process, set up an interactive mechanism for reviewing and
correcting the program's conclusions, and to provide explanation
capabilities. The ability to easily add these capabilities to rule-based
programs could be helpful in developing automatic testing capabilities for
rule-based programs.

Other advantages in verifying rule-based programs may reside in the
ability to test the rules before the rule base or inference mechanism are
completed. When a rule-based program is being developed, the program builders
can run preliminary checks on the knowledge base before the full reasoning
mechanism is functioning, and without gathering actual data for test runs
(ref. 8). Testing during the knowledge acquisition should prove particularly
helpful when working with large rule bases.

In summary, simplification is a major concern in all verification
methods. Rule-based programs have separate rule bases and inference engines,
which could aid the simplification process. The separate, homogeneous rule
base could also be an advantage when developing testing tools and performing
preliminary tests. Table 3 provides a summary of the verification results.

Explanation.- Software's ability to explain its actions is a relatively
new capability, which originated in rule-based expert system programs. The
advantages of explanation capabilities in program development prompted its use
as an evaluation criteria. Explanation capabilities are particularly helpful
in program debugging and after program modification. Explanations are used
when debugging to determine why certain results occur. They also help

determine the effects of a rule modification to other rules in the rule
base. It is, therefore, important to have this capability and to be able to
implement it easily.

Traditional programming techniques embed the rules into the control
structure, which prevents the use of the rules for more than one purpose. To
provide explanation capability to the traditional program would have required
that the rules be repeated in different program statements. This also meant
that each time a modification of the decision tree was necessary, the
programmer would have to make the change at every occurrence of the rules.
Changing the rules would therefore be more complex, which potentially
increases the probability of error. An explanation capability was not
implemented in the traditional program of this study.

However, the ease of adding explanation features to the rule-based
program yielded two types of explanation capabilities. One type of
explanation was to show all the rules for a given hypothesis - command
SHOW-RULE. A user could give the command SHOW-RULE at any time to show all
the rules for a given hypothesis (i.e., optional display). For example:

=> SHOW-RULE <cr>
For which display? => CROSS TRACK DEVIATION DIGITS <cr>

would display all the rules that determined the display of cross track
deviation in digits.

The other explanation function implemented in the rule-based program was
the WHY function. A user could invoke the WHY function to inquire which rule
determined a current hypothesis. For example:

=> WHY <cr>
For which display? => CROSS TRACK DEVIATION DIGITS <cr>

would display the rule that caused cross track deviation in digits to be
displayed.

Explaining a (rule-based) program's actions can be as simple as stating
the corresponding rule, if the information in the rule adequately shows why
action was taken (ref. 10). Therefore, adding explanation capability to the
rule-based program was a much simpler task. This again was due to the
separate rule base and inference engine in the rule-based program. The
homogeneous rule base of the rule-based program made it possible to access the
rules and manipulate them as a data. This simplified and reduced the amount
of code needed. There remained only one representation of the rules, with
different control structures accessing the rules for explanations. Therefore,
modifications to the rules need only be done in one location, the rule base.

Adding explanation capabilities to the rule-based program, therefore, was
simpler than it would have been for the traditional program. This was due to
the difference between embedding and separating the inference mechanism and
rule base. Being able to access the rules of the rule-based program and
manipulate them as data simplified the code needed for the explanation
capability. The traditional program would have needed to repeat the rules,

once for the explanation and once for the reasoning itself. This would
increase the amount of code and potentially the difficulty of managing it.
See Table 4 for a summary of the explanation results.

CONCLUDING REMARKS

This paper described a study performed to compare traditional programming
techniques to rule-based techniques, given a specific application. The
application used for this study was controlling the display of optional flight
information in a civil transport cockpit. This application required complex
decision logic and a frequently modified rule base.

The traditional program was more efficient in execution than the
rule-based program. That is, the traditional program required fewer steps to
isolate a true hypothesis. The exact relationship in the number of steps
between the two programs differed depending on whether the set of conditions
tested consisted of mutually exclusive conditions or not. Overall, the
rule-based program typically required about four times as many steps as the
traditional program. However, high-speed symbolic processors and software
tools for converting rule-based programs to traditional code may reduce this
disadvantage.

The results show that rule-based programming techniques have the
potential for improving the productivity of the programmer or designer who
develops a system. In this study, modification of the rule-based program was
easier, more efficient, and less error-prone than the traditional program's.
The rule-based program's separate, homogeneous rule base and inference engine
could aid in the simplification and test-tool development needed during the
verification process. It was also easier to implement an explanation
capability in the rule-based program.

10.

10

REFERENCES

Schneiderman, B.: Software Psychology. Little, Brown, and Company
(Canada) Limited, 1980.

Doyle, J.: Expert Systems and the 'Myth' of Symbolic Reasoning. IEEE
Transactions On Software Engineering, Vol. SE-11, No. 11, November 1985,
pp. 1386-1390.

Winston, P.; and Horn, B.: LISP. Second edition. Addison-Wesley
Publishing Company, 1984.

Melliar-Smith, P. M.; Schwartz, R. L.; C.S. Laboratory; and C.S. and
Technology Division: Formal Specification and Mechanical Verification
of SIFT: A Fault-Tolerant Flight Control System. Technical Report CSL-
123, March 1981.

Wulf, W.; Shaw, M.; Hilfinger, P.; C.S. Dept. Carnegie-Mellon University;
and Flon C.S. Dept. University of Southern California: Fundamental
Structures of Computer Science. Addison-Wesley Publishing Company,
1981.

Taylor, R. N.: An Integrated Verification and Testing Environment.
SOFTWARE-Practice and Experience, Vol. 13, 1983, pp. 697-713.

Senn, E.; Ames, K.; and Smith, K.: Integrated Verification and Testing
System (IVTS) for HAL/S Programs. Presented at the (IEEE, ACM, NBS)
Softfair '83 Conference, Arlington, Virginia, July 26-28, 1983.

Suwa, M.; Scott, A.; and Shortliffe, E.: An Approach to Verifying
Completeness and Consistency in a Rule-Based Expert System. Dept. of
Computer Science, Stanford University, Stanford, California, Report No.
STAN-CS--82-922, June 1982.

Alvarez, R.: On Software Aspects of Strategic Defense Systems.
Communications of the ACM, April 1986, pp 262-265.

Buchanan, B.; and Shortliffe, E.: Rule-Based Expert Systems. Addison-
Wesley Publishing Company, 1985.

/

ATTITUDE-CWS ENGAGED
OR VELOCITY-CWS ENGAGED
GHT PHASE CLIMB :
FLIGHT PHASE LAND

GHT PHASE CRUISE
GHT PHASE DESCEN

— gy

NAVIGATION
PATH
VALID

SWITCH4 ON

SWITCH1 ON SWITCH2 ON

WAYPOINT
STAR

HORIZONTAL
DEVIATION

Figure 1.- Portion of Decision Tree.

IF ATTITUDE-CWS = ENGAGED OR VELOCITY-CWS = ENGAGED THEN
IF FLIGHT-PHASE = CLIMB OR FLIGHT-PHASE = CRUISE OR FLIGHT-PHASE = DESCENT
IF ALTITUDE-ENGAGE > PRESELECT THEN

IF SWITCH = ON THEN

REFERENCE-ALTITUDE-DIGITS = ON

ELSE, IF ALTITUDE-ENGAGE < PRESELECT THEN

IF SWITCH2 = ON THEN

REFERENCE-ALTITUDE-POINTER = ON

IF NAVIGATION-PATH = VALID THEN

IF SWITCH3 = ON THEN

WAYPOINT-STAR = ON
IF SWITCH4 = ON THEN

HORIZONTAL-DEVIATION = ON

ELSE, IF FLIGHT-PHASE = LAND THEN

ELSE, {F AUTO-PILOT = ENGAGED THEN

Figure 2.- Excerpt from Traditional Representation.

11

TREE FUNCTION MUTUALLY
FETCHES MANIPULATION CALLS EXCLUSIVENESS
TRADITIONAL NONE NONE NONE DOES
FOR
TESTS FOR
_ CONDITIONS TRAVERSE DOES NOT
RULE-BASED AND TERMINAL RULE BASE
FUNCTION CALLS NODES
Table 1.- Summary of the Efficiency Results.
MAINTAINING RECOGNIZING
CHANGES EFFICIENCY SIDE EFFECTS
EXTERNAL PROGRAMMER
TRADITIONAL PROGRAMMER
EDITOR MAINTAINS
UTILITY SOFTWARE
RULE-BASED RUN-TIME FUNCTION 1108
MAINTAINS
\l

12

Table 2.- Summary of the Modification Results.

RULES CONTROL UTILITIES
STRUCTURE
WITH YITH USER
STATEMENTS RULE-BASE
RULE-BASED VHILE SEPARATE CODE
ACQUIRING MANIPULATION

Table 3.- Summary of the Verification Results.

IMPLEMENTATION

REQUIRES DUPLICATION

CODE MANAGMENT

INCREASES THE

RULES

ADI
TR TIONAL OF RULES DIFFICULTY
ABLE TO USE THE
RULE-BASED ORIGINAL SET OF MINIMUM IMPACT

Table 4.- Summary of the Explanation Results.

13

Report Documentation Page

National Aeronautcs and
Space Administration

1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No.
NASA TM-89161
4. Title and Subtitle . . 5. Report Date
Traditional Versus Rule-Based Programming Techniques:
Application to the Control of Optional Flight July 1987
Information ' 6. Performing Organization Code
7. Author(s) 8. Performing Organization Report No.

Wendell R. Ricks
Kathy H. Abbott

10. Work Unit No.

505-67-41-01
9. Performing Organization Name and Address

NASA Langley Research Center 1. Contract or Grant No.
Hampton, VA 23665-5225

13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address
National Aeronautics and Space Administration Technical Memorandum

Washi ngton, DC 20546 14. Sponsoring Agency Code

15. Supplementary Notes

16. Abstract

To the software design community, the concern over the costs associated with a
program's execution time and impiementation is great. It is aiways desirable,
and sometimes imperative, that the proper programming technique is chosen which
minimizes all costs for a given application or type of application. This paper
describes a study that compared the cost-related factors associated with
traditional programming techniques to rule-based programming techniques for a
specific application. The results of this study favored the traditional approach
regarding execution efficiency, but favored the rule-based approach regarding
programmer productivity (implementation ease)}. Although this study examined a
specific application, the results should be widely applicable.

17. Key Words (Suggested by Author(s)) 18. Distribution Statement
Al Unclassified - Unlimited
Rule-Based Systems
Evaluation)
Subject Category 59
19. Security Classif. {(of this report) 20. Security Classif. (of this page) 21. No. of pages 22. Price
Unclassified Unclassified 14 A02

NASA FORM 1626 OCT 86

