1,370 research outputs found
Escape path complexity and its context dependency in Pacific blue-eyes (Pseudomugil signifer)
The escape trajectories animals take following a predatory attack appear to
show high degrees of apparent 'randomness' - a property that has been described
as 'protean behaviour'. Here we present a method of quantifying the escape
trajectories of individual animals using a path complexity approach. When fish
(Pseudomugil signifer) were attacked either on their own or in groups, we find
that an individual's path rapidly increases in entropy (our measure of
complexity) following the attack. For individuals on their own, this entropy
remains elevated (indicating a more random path) for a sustained period (10
seconds) after the attack, whilst it falls more quickly for individuals in
groups. The entropy of the path is context dependent. When attacks towards
single fish come from greater distances, a fish's path shows less complexity
compared to attacks that come from short range. This context dependency effect
did not exist, however, when individuals were in groups. Nor did the path
complexity of individuals in groups depend on a fish's local density of
neighbours. We separate out the components of speed and direction changes to
determine which of these components contributes to the overall increase in path
complexity following an attack. We found that both speed and direction measures
contribute similarly to an individual's path's complexity in absolute terms.
Our work highlights the adaptive behavioural tactics that animals use to avoid
predators and also provides a novel method for quantifying the escape
trajectories of animals.Comment: 9 page
Collective decision making by rational individuals
The patterns and mechanisms of collective decision making in humans and animals have attracted both empirical and theoretical attention. Of particular interest has been the variety of social feedback rules and the extent to which these behavioral rules can be explained and predicted from theories of rational estimation and decision making. However, models that aim to model the full range of social information use have incorporated ad hoc departures from rational decision-making theory to explain the apparent stochasticity and variability of behavior. In this paper I develop a model of social information use and collective decision making by fully rational agents that reveals how a wide range of apparently stochastic social decision rules emerge from fundamental information asymmetries both between individuals and between the decision makers and the observer of those decisions. As well as showing that rational decision making is consistent with empirical observations of collective behavior, this model makes several testable predictions about how individuals make decisions in groups and offers a valuable perspective on how we view sources of variability in animal, and human, behavior
The dynamics of audience applause
The study of social identity and crowd psychology looks at how and why individual people change their behaviour in response to others. Within a group, a new behaviour can emerge first in a few individuals before it spreads rapidly to all other members. A number of mathematical models have been hypothesized to describe these social contagion phenomena, but these models remain largely untested against empirical data. We used Bayesian model selection to test between various hypotheses about the spread of a simple social behaviour, applause after an academic presentation. Individuals' probability of starting clapping increased in proportion to the number of other audience members already âinfectedâ by this social contagion, regardless of their spatial proximity. The cessation of applause is similarly socially mediated, but is to a lesser degree controlled by the reluctance of individuals to clap too many times. We also found consistent differences between individuals in their willingness to start and stop clapping. The social contagion model arising from our analysis predicts that the time the audience spends clapping can vary considerably, even in the absence of any differences in the quality of the presentations they have heard
Divergent Transcriptional Regulatory Logic at the Intersection of Tissue Growth and Developmental Patterning
The Yorkie/Yap transcriptional coactivator is a well-known regulator of cellular proliferation in both invertebrates and mammals. As a coactivator, Yorkie (Yki) lacks a DNA binding domain and must partner with sequence-specific DNA binding proteins in the nucleus to regulate gene expression; in Drosophila, the developmental regulators Scalloped (Sd) and Homothorax (Hth) are two such partners. To determine the range of target genes regulated by these three transcription factors, we performed genome-wide chromatin immunoprecipitation experiments for each factor in both the wing and eye-antenna imaginal discs. Strong, tissue-specific binding patterns are observed for Sd and Hth, while Yki binding is remarkably similar across both tissues. Binding events common to the eye and wing are also present for Sd and Hth; these are associated with genes regulating cell proliferation and âhousekeepingâ functions, and account for the majority of Yki binding. In contrast, tissue-specific binding events for Sd and Hth significantly overlap enhancers that are active in the given tissue, are enriched in Sd and Hth DNA binding sites, respectively, and are associated with genes that are consistent with each factor's previously established tissue-specific functions. Tissue-specific binding events are also significantly associated with Polycomb targeted chromatin domains. To provide mechanistic insights into tissue-specific regulation, we identify and characterize eye and wing enhancers of the Yki-targeted bantam microRNA gene and demonstrate that they are dependent on direct binding by Hth and Sd, respectively. Overall these results suggest that both Sd and Hth use distinct strategies â one shared between tissues and associated with Yki, the other tissue-specific, generally Yki-independent and associated with developmental patterning â to regulate distinct gene sets during development
The entropic basis of collective behaviour
We identify a unique viewpoint on the collective behaviour of intelligent agents. We first develop a highly general abstract model for the possible future lives these agents may encounter as a result of their decisions. In the context of these possibilities, we show that the causal entropic principle, whereby agents follow behavioural rules that maximize their entropy over all paths through the future, predicts many of the observed features of social interactions among both human and animal groups. Our results indicate that agents are often able to maximize their future path entropy by remaining cohesive as a group and that this cohesion leads to collectively intelligent outcomes that depend strongly on the distribution of the number of possible future paths. We derive social interaction rules that are consistent with maximum entropy group behaviour for both discrete and continuous decision spaces. Our analysis further predicts that social interactions are likely to be fundamentally based on Weber's law of response to proportional stimuli, supporting many studies that find a neurological basis for this stimulus-response mechanism and providing a novel basis for the common assumption of linearly additive 'social forces' in simulation studies of collective behaviour
Accuracy, rationality and specialisation in a generalised model of collective navigation
Animal navigation is a key behavioural process, from localised foraging to global migration. Within groups individuals may improve their navigational accuracy by following those with more experience or knowledge, by pooling information from many directional estimates ("many wrongs"), or some combination of these strategies. Previous agent-based simulations have highlighted that homogeneous leaderless groups can improve their collective navigation accuracy when individuals preferentially copy the movement directions of their neighbours while giving a low weighting to their own navigational knowledge. Meanwhile, other studies have demonstrated how specialised leaders may emerge, and that a small number of such individuals can improve group-level navigation performance. However, in general, these earlier results either lack a full mathematical grounding or do not fully consider the effect of individual self-interest. Here we derive and analyse a mathematically tractable model of collective navigation. We demonstrate that collective navigation is compromised when individuals seek to optimise their own accuracy in both homogeneous groups and those with differing navigational abilities. We further demonstrate how heterogeneous navigational strategies (specialised leaders and followers) may evolve within the model. Our results thus unify different lines of research in collective navigation and highlight the importance of individual selection in determining group composition and performance
Yorkie Promotes Transcription by Recruiting a Histone Methyltransferase Complex
SummaryHippo signaling limits organ growth by inhibiting the transcriptional coactivator Yorkie. Despite the key role of Yorkie in both normal and oncogenic growth, the mechanism by which it activates transcription has not been defined. We report that Yorkie binding to chromatin correlates with histone H3K4 methylation and is sufficient to locally increase it. We show that Yorkie can recruit a histone methyltransferase complex through binding between WW domains of Yorkie and PPxY sequence motifs of NcoA6, a subunit of the Trithorax-related (Trr) methyltransferase complex. Cell culture and in vivo assays establish that this recruitment of NcoA6 contributes to Yorkieâs ability to activate transcription. Mammalian NcoA6, a subunit of Trr-homologous methyltransferase complexes, can similarly interact with Yorkieâs mammalian homolog YAP. Our results implicate direct recruitment of a histone methyltransferase complex as central to transcriptional activation by Yorkie, linking the control of cell proliferation by Hippo signaling to chromatin modification
Stepping Up The Pressure: Arousal Can Be Associated With A Reduction In Male Aggression
The attentional myopia model of behavioral control [Mann and Ward, 2007] was tested in an experiment investigating the relationship between physiological arousal and aggression. Drawing on previous work linking arousal and narrowed attentional focus, the model predicts that arousal will lead to behavior that is relatively disinhibited in situations in which promoting pressures to aggress are highly salient. In situations in which inhibitory pressures are more salient, the model predicts behavior that is relatively restrained. In the experiment, 81 male undergraduates delivered noise-blasts against a provoking confederate while experiencing either high or low levels of physiological arousal and, at the same time, being exposed to cues that served either to promote or inhibit aggression. In addition to supporting the predictions of the model, this experiment provided some of the first evidence for enhanced control of aggression under conditions of heightened physiological arousal. Implications for interventions designed to reduce aggression are discussed. Aggr. Behav. 34:584â592, 2008. © 2008 Wiley-Liss, Inc
- âŠ