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SUMMARY

Hippo signaling limits organ growth by inhibiting the
transcriptional coactivator Yorkie. Despite the key
role of Yorkie in both normal and oncogenic growth,
the mechanism by which it activates transcription
has not been defined. We report that Yorkie binding
to chromatin correlates with histone H3K4 methyl-
ation and is sufficient to locally increase it. We
show that Yorkie can recruit a histone methyl-
transferase complex through binding between WW
domains of Yorkie and PPxY sequence motifs of
NcoA6, a subunit of the Trithorax-related (Trr)
methyltransferase complex. Cell culture and in vivo
assays establish that this recruitment of NcoA6 con-
tributes to Yorkie’s ability to activate transcription.
Mammalian NcoA6, a subunit of Trr-homologous
methyltransferase complexes, can similarly interact
with Yorkie’s mammalian homolog YAP. Our results
implicate direct recruitment of a histonemethyltrans-
ferase complex as central to transcriptional activa-
tion by Yorkie, linking the control of cell proliferation
by Hippo signaling to chromatin modification.

INTRODUCTION

The key output of most signal-transduction pathways is an alter-

ation of the cellular transcription program through activation or

inhibition of transcriptional activators and repressors. The Hippo

signaling pathway plays a crucial role in limiting organ growth,

which it accomplishes by downregulating the transcriptional co-

activator protein Yorkie (Yki) (Oh and Irvine, 2010; Yu and Guan,

2013). Components of the Hippo pathway were first identified

by the tumorous overgrowths caused bymutations inDrosophila

Hippo pathway genes (Reddy and Irvine, 2008). Subsequent

studies have identified many additional pathway components,

described additional biological functions, and established that

Hippo signaling and its role in controlling organ growth are highly

conserved among metazoa (Harvey et al., 2013; Yu and Guan,
2013). However, the molecular mechanism by which Yorkie, or

its mammalian homologs YAP and TAZ, actually activate tran-

scription has remained elusive.

The core of the Hippo pathway comprises two kinases, Hippo

and Warts, which are regulated through several upstream regu-

latory branches that collectively cause Hippo signaling to be

affected by diverse inputs, including cell junctional complexes

linked to cell polarity and cell contact, the actomyosin cytoskel-

eton, and growth factor andG protein signaling pathways (Staley

and Irvine, 2012; Yu and Guan, 2013). Hippo and Warts act in

sequence to inhibit Yki by phosphorylating it and promoting

its cytoplasmic localization. As a transcriptional coactivator,

Yki needs to interact both with DNA-binding proteins and with

proteins that affect transcriptional activation, and while several

partners of Yorkie have been identified (Hong and Guan, 2012;

Oh and Irvine, 2010; Oh et al., 2013), our understanding

of transcriptional activation by Yki remains incomplete. For

example, structure-function studies of Yki have identified a pair

of conserved protein-protein interaction motifs, the two WW do-

mains of Yki, as playing an absolutely essential but ill-defined

role in transcriptional activation (Oh and Irvine, 2009; Zhang

et al., 2009, 2011; Zhao et al., 2009). A protein that can interact

with these WW domains, Wbp2, was identified, but its contribu-

tion to the requirement for the WW domains in transcription re-

mains unclear, and its downregulation only modestly impaired

Yki activity in vivo (Zhang et al., 2011).

The transcription of eukaryotic genes correlates with changes

in chromatin structure (Kharchenko et al., 2011; Li et al., 2007).

Chromatin of silenced genes is typically associated with methyl-

ation of histone H3 lysine 27 (H3K27), whereas chromatin of

active genes is associated with methylation of H3K4. Different

regions of a gene tend to have distinct methylation profiles,

for example, H3K4 monomethylation (H3K4me1) around en-

hancers, H3K4me2 over the gene body, and H3K4me3 around

promoters. H3K4 methylation is accomplished by conserved,

multisubunit complexes. Biochemical and genetic studies have

defined three Drosophila H3K4 histone methyltransferase

(HMT) complexes and revealed that they each have distinct

essential functions (Eissenberg and Shilatifard, 2010; Shilatifard,

2012). Set1 acts as a global H3K4 HMT, as reduction of Set1 re-

sults in a general decrease in H3K4me3 levels (Ardehali et al.,
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Figure 1. Induction of H3K4me3 by Yki

(A–C) Venn diagrams showing overlap between Yki binding and H3K4 trimethylation (H3K4Me3) as revealed by genome-wide ChIP-seq analyses in embryos (A),

wing discs (B), and S2 cells (C). Numbers of peaks are indicated; numbers in the overlap differ because a peak for one protein can overlap two peaks of the other.

(D–F) Transcriptional activation and induction of H3K4Me3 by Yki. Gal4DB:Yki:FLAG and Gal4DB:Yki�WW:FLAG were expressed from QUAS transgenes using a

ET40-QF driver, which is expressed in the imaginal discs and brain, and genotypes are indicated by the key. (D and E) Expression of UAS-GFP in the third-instar

larval discs and brain as shown by GFP fluorescence (D) and RT-PCR (E).

(F) Yki and NcoA6 binding, and H3K4Me3 status around the UAS and transcription start sites, histograms show the results of ChIP-qPCR (average ChIP/input

ratio from triplicate qPCR; error bars indicate SD).

(G)Western blots showing coimmunoprecipitation of Yki:V5 or Yki-WW:V5with FLAG:NcoA6or FLAG:NcoA6-3PPxA fromS2 cell extracts (GFP is a negative control).

The two upper panels (input) showblots on lysates, and the two lower panels (V5-IP) showblots (anti-V5 and anti-FLAG) onmaterial precipitated by anti-V5 beads.

(legend continued on next page)
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2011; Hallson et al., 2012; Mohan et al., 2011). In contrast, Tri-

thorax (Trx) and Trithorax related (Trr) have more specialized

functions. Trx has been implicated in homeotic gene regulation,

whereas Trr has been linked steroid hormone signaling (Sedkov

et al., 2003; Shilatifard, 2012). More recent studies have also

identified a broad requirement for Trr in H3K4 monomethylation

(me1) (Herz et al., 2012; Kanda et al., 2013).

Although H3K4 methylation is correlated with transcriptional

activation, the molecular mechanism by which this methylation

is established and its causal relationship to transcription are

complex (Ruthenburg et al., 2007; Shilatifard, 2012; Smith and

Shilatifard, 2010). In yeast, and to some degree in metazoa,

H3K4 methylation occurs as a consequence of transcription

rather than a cause of transcription, and the major H3K4me3,

Set1/COMPASS, can be recruited to actively transcribed genes

through RNA polymerase-associated factor. However, in ani-

mals, there is evidence that H3K4 methylation also contributes

to transcriptional activation. Components of the Trr and Trx

HMTs, or their mammalian homologs MLL1-4, are required for

the normal expression of some eukaryotic genes, presumably

because H3K4 methylation, which is recognized by a structural

motif (PHD) found in several proteins associated with histone

modification and transcription, recruits proteins that promote

transcriptional activation. Moreover, recent biochemical studies

established that H3K4 methylation could promote transcription

in in vitro assays (Jiang et al., 2013).

Here, we establish a direct link between Yki’s ability to activate

transcription and its ability to recruit the Trr HMT complex. We

show that Yki promotes H3K4 methylation and that this occurs

via direct physical association between Yki andNcoA6, a subunit

of the Trr HMT complex. Moreover, our results indicate that

recruitment of NcoA6 contributes to transcriptional activation

by Yki. Our results thus identify a key molecular mechanism by

which Yki activates transcription and provide an illustration

of the mechanism and central importance of H3K4 methylation

to transcriptional activation by a major signal-transduction

pathway.

RESULTS

Yki Induces H3K4 Methylation
To investigate the transcriptional program initiated by Yki, we

performed chromatin immunoprecipitation (ChIP). These exper-

iments identified thousands of sites of Yki association with

chromatin in Drosophila embryos (Oh et al., 2013), wing imag-

inal discs (Oh et al., 2013), and cultured S2 cells (this study).

Analysis of the Yki-binding profile revealed substantial overlap

between peaks of Yki association and peaks of H3K4me3

modification, as in each of these samples, approximately

45%–50% of Yki peaks overlap H3K4me3 peaks (Figures 1A–

1C). Although it could be that Yki is preferentially targeted to

H3K4me3-modified chromatin or that Yki binding and

H3K4me3 modification are regulated independently, this corre-
(H) Western blot showing results of coimmunoprecipitation using bacterially expre

beads, and incubated with S2 cell nuclear extracts from cells expressing FLAG:Nc

controls. Upper panels show input material, and lower panels show blots on ma

See also Figure S1 and Table S1.
lation raised the possibility that H3K4me3 modification is

induced by Yki.

To examine whether localization of Yki could be sufficient

to promote H3K4me3, we combined the upstream activating

sequence (UAS)-Gal4 and Q systems (Potter et al., 2010) to

create a novel site of Yki localization on chromosomes. A fusion

protein combining full-length Yki with the DNA binding domain

of Gal4 (Gal4DB:Yki) was constructed and then expressed

in Drosophila imaginal tissues from a QUAS transgene under

ET40-QF control. Gal4DB:Yki could activate transcription from

a UAS-GFP transgene in vivo (Figures 1D and 1E). Measurement

of H3K4me3 levels by chromatin immunoprecipitation (ChIP)-

PCR revealed a significant increase surrounding the UAS and

promoter regions of UAS-GFP when Gal4DB:Yki was expressed

(Figure 1F). Thus, targeting Yki to a novel chromosomal locus is

sufficient to locally increase H3K4me3.

Structure-function studies of Yki have implicated a pair of

conserved protein-protein interaction motifs, the two WW

domains of Yki, as playing an essential role in transcriptional acti-

vation (Oh and Irvine, 2009; Zhang et al., 2009, 2011; Zhao et al.,

2009). To investigate the mechanism by which Yki induces

H3K4me3, we created and characterized a mutant isoform,

Gal4DB:Yki�WW, which contains point mutations in these WW

domains. As expected, Gal4DB:Yki�WW failed to activate tran-

scription of UAS-GFP (Figures 1D and 1E). Moreover, quantita-

tive ChIP-PCR confirmed that Gal4DB:Yki and Gal4DB:Yki�WW

bound similarly to UAS-GFP, but Gal4DB:Yki�WW failed to

enhance H3K4me3 modification (Figure 1F). Thus, the WW do-

mains of Yki are required for its ability to induce H3K4me3.

Yki Binds NcoA6 throughWWDomain-PPxY Interactions
In principle, the requirement for WW domains in promoting

H3K4me3 could be either a cause or a consequence of the

requirement for the WW domains in Yki-promoted transcription.

WW domains interact with a short sequence motif, PPxY; hence,

the requirement for WW domains implies that Yki must partner

with a protein containing PPxY motifs to activate transcription.

To investigate the possibility that Yki recruits histone-methyl-

ating complexes through its WW domains, we searched for

PPxY sequence motifs within all of the subunits of the three

Drosophila H3K4 HMT complexes (Mohan et al., 2011; Shilati-

fard, 2012). Only one protein, NcoA6, a component of the Trr

HMT complex, contains multiple PPxY motifs (Figure S1), which

in our experience is usually required for strong binding to pro-

teins with WW domains.

To assay for potential binding between Yki and NcoA6,

epitope-tagged isoforms were coexpressed in S2 cells. FLAG:

NcoA6 was specifically precipitated by Yki:V5 and not a control

protein, GFP:V5 (Figure 1G). Direct physical interaction between

Yki and NcoA6 was confirmed by coprecipitation using bacteri-

ally expressed Yki, and this binding activity mapped to the C-ter-

minal half of Yki, which contains the WW domains (Figure 1H).

Moreover, mutation of either the WW domains of Yki or the
ssed Yki:V5 and its mutated or fragmented forms, immobilized on V5-agarose

oA6 or FLAG:NcoA6�3PPxA. GFP:V5 and glutathione S-transferase are negative

terial precipitated by anti-V5 beads.
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Figure 2. NcoA6 and Trr Are Required for

Transcriptional Activation by Yki

(A–D) Histograms showing results of luciferase

assays (depicted as average firefly/Renilla ratio

from triplicate experiments, where error bars indi-

cate SD) using UAS-luciferase (A), 3XSd-luciferase

(B and D), or DRE-luciferase (C) reporters in

S2 cells transfected to express Gal4DB:Yki, Yki,

TkvQ235D (T), Mad (M), or Medea (Me) as indicated.

Double-stranded RNAs for RNAi against the spe-

cific genes were also added as indicated; the ab-

breviations after the gene symbol identify distinct

the double-stranded RNAs used for each gene.

p values for statistical significance obtained from

pairwise t tests for sample comparisons are indi-

cated in green.

(E) Physical interaction between HMT com-

plexes and Yki. Yki:V5, Yki�WW:V5, or, as a control,

GFP:V5 were purified from bacterial lysates on

anti-V5 beads and mixed with nuclear extracts

from S2 cells. Interaction of endogenous NcoA6

and Trr with Yki was detected, but no interaction

with Set1 or Trx was observed.

See also Figure S2.
PPxY motifs of NcoA6 abolished detectable binding between

them, both in S2 cells and using bacterial lysates, confirming

that Yki and NcoA6 proteins interact through their WW and

PPxY motifs (Figures 1G an 1H). Moreover, ChIP revealed that

wild-type, but not WW mutant, Gal4DB:Yki could recruit

NcoA6 to UAS-GFP chromatin in vivo (Figure 1F).

NcoA6 and Trr Contribute to Transcriptional Activation
by Yki
To evaluate the potential functional requirement for NcoA6

in Yki-mediated transcription, we employed transcriptional re-

porter assays in S2 cells. Expression of Gal4DB:Yki increases

transcription of a UAS-luciferase reporter (Figure 2A) (Huang

et al., 2005; Oh and Irvine, 2009). RNAi-mediated downregula-

tion of NcoA6, using either of two distinct double-stranded

RNAs, decreased this UAS-luciferase expression (Figure 2A;

effectiveness of RNAi in Figure S2). Moreover, activation of a

distinct reporter to which Yki is recruited by its DNA-binding

partner Scalloped (Sd), 3xSd-luciferase (Zhang et al., 2008),

is also reduced by NcoA6 RNAi (Figure 2B). Conversely,

a Yki-independent reporter, the Ubx-DRE (Oh and Irvine,

2011), was not affected by NcoA6 RNAi (Figure 2C). To rule out
452 Cell Reports 8, 449–459, July 24, 2014 ª2014 The Authors
the possibility that NcoA6 influences Yki

through an effect on Hippo signaling, we

repeated assays with the 3xSd luciferase

reporter using an activated form of Yki

(Yki3SA), which contains mutations in all

three Warts phosphorylations sites (Oh

and Irvine, 2009). Yki3SA-induced tran-

scription was similarly reduced by knock-

down of NcoA6 (Figure 2D), implying that

NcoA6 acts downstream of Hippo

pathway regulation. This is consistent

with previous studies of the requirement
for WW domains, as mutation of the WW domains eliminates

the transcriptional activity of both wild-type and activated forms

of Yki, without preventing its nuclear localization (Oh and Irvine,

2009).

NcoA6 is specifically associated with Trr HMT complexes

(Mohan et al., 2011). In S2 cells, knockdown of Trr reduced

the transcription of Yki-activated reporters similarly to NcoA6

knockdown (Figures 2A–2D), consistent with the expectation

that the requirement for NcoA6 reflects its participation within

Trr HMT complexes. For comparison, we also examined the

consequences of reduction of Trx and Set1. Trx RNAi had

no effect on Yki-dependent reporters (Figures 2A–2D). Knock-

down of Set1 lowered the transcription of Yki-dependent re-

porters but also reduced a Yki-independent reporter (Figures

2A–2D), which could reflect its global effects on H3K4me3.

These functional studies were complemented by binding ex-

periments, which assayed the ability of bacterially expressed

Yki to coprecipitate components of each of the H3K4 HMT

complexes from S2 cell nuclear extracts. Both NcoA6 and

Trr, but not SET1 or Trx, could be specifically coprecipitated

by Yki, and this coprecipitation required Yki’s WW domains

(Figure 2E).



Figure 3. Recruitment of NcoA6 Is Sufficient

for Transcriptional Activation by Yki

(A–D) Histograms showing results of luciferase

assays (depicted as average firefly/Renilla ratio

from triplicate experiments, where error bars

indicate SD) using UAS-luciferase (A and D) or

3XSd-luciferase (B and C) reporters in S2 cells

transfected to express the indicated proteins. See

also Figure S3.
Recruitment of NcoA6 Is Sufficient to Account for
Transcriptional Activation by Yki
A role for NcoA6 in transcriptional activation by Yki was further

supported by the observation that overexpression of NcoA6

could stimulate transcription of Yki reporters in S2 cells,

including a several-fold increase in expression of UAS-luciferase

byGal4DB:Yki and a similar increase in expression of 3xSd-lucif-

erase by Yki (Figures 3A and 3B). This cooperative increase

in transcription associated with Yki and NcoA6 cotransfection

was dependent upon both the WW domains of Yki and the

PPxY motifs of NcoA6 (Figures 3A and 3B), implying that it

depends upon direct physical interaction between them.

The central role of NcoA6 recruitment in Yki’s ability to activate

transcription was confirmed by characterization of a series of

Yki:NcoA6 fusion proteins. Expression of a Yki:NcoA6 fusion

protein strongly activated expression of 3xSd-luciferase, com-

parable to the expression induced by coexpression of Yki and

NcoA6 (Figure 3B). Strikingly, transcriptional activation induced

by Yki:NcoA6 fusion proteins no longer depends upon either

the WW domains of Yki, or the PPxY motifs of NcoA6, as these

motifs could be mutated within the fusion protein without impair-

ing transcriptional activation (Figure 3B). Thus, direct interaction

with NcoA6 is both necessary and sufficient to account for the
Cell Reports 8, 449–
absolute requirement for the WW do-

mains of Yki in transcriptional activation.

The observations described above

imply that recruitment of NcoA6 is essen-

tial to transcriptional activation by Yki. We

next investigated the sufficiency of NcoA6

recruitment to Yki’s transcriptional activa-

tion function. If Yki’s key role in transcrip-

tion is to act as an adaptor protein, linking

the Trr HMT complex to DNA binding

proteins, then direct fusion of NcoA6

to a DNA binding partner might bypass

the requirement for Yki. This was tested

by creating a Sd:NcoA6 fusion protein.

Indeed, even though overexpression

of Sd alone normally represses tran-

scription, presumably due to interaction

with corepressors (Koontz et al., 2013),

Sd:NcoA6 robustly activated transcription

from the 3xSd-luciferase reporter even

without addition of Yki (Figure 3C). Thus,

as long as NcoA6 is recruited, Yki was

not required for transcription from this

Yki-dependent reporter gene.
The PPxYmotifs of NcoA6 are required for transcriptional acti-

vation on Yki-dependent reporters (Figures 3A and 3B). How-

ever, they were no longer required when NcoA6 was directly

fused to Yki (Figure 3B). To confirm that these PPxY motifs are

only required for recruitment of NcoA6 to DNA via Yki, and not

for its ability to activate transcription, we created Gal4DB:NcoA6

fusion proteins. Indeed, both wild-type and PPxA mutant iso-

forms of Gal4DB:NcoA6 were potent activators of transcription

of a UAS-luciferase reporter (Figure 3D).

Colocalization of Yki and Trr on Chromosomes
As NcoA6 is a conserved component of the Trr HMT complex,

Yki-NcoA6 interaction should recruit Trr in vivo. To investigate

this, we compared available ChIP sequencing (ChIP-seq) data

describing the chromosomal localization of Trr in S2 cells (Herz

et al., 2012) to ChIP-seq data we generated describing the chro-

mosomal localization of Yki in S2 cells. A substantial overlap be-

tween these binding peaks was observed, as roughly 40% of all

peaks across the genome overlap (Figure 4A). Moreover, overlap

between Yki and Trr peaks at specific known Yki target genes,

including bantam, expanded, and Diap1 (thread), was identified,

and these Yki/Trr peaks also overlap both functionally character-

ized Yki-regulated enhancers and H3K4me3 peaks (Figure 4B).
459, July 24, 2014 ª2014 The Authors 453



Figure 4. Colocalization of Yki and Trr on Chromatin

(A) Overlap between Yki and Trr binding sites, where numbers indicate the

numbers of peaks. Numbers in the overlap differ because one peak for one

protein can overlap two peaks of the other.

(B) Plot of ChIP peaks at three loci (bantam, expanded, and diap1/thread)

regulated by Yki. Yki-responsive enhancers that have been identified at these

loci (Oh and Irvine, 2011; Oh et al., 2013; Zhang et al., 2008) are indicated in

orange at the bottom, and a previously identified Hth and Yki binding region

(Peng et al., 2009) is indicated in light blue.

See also Figure S4.
Thus, analysis of the chromosomal localization of Yki and Trr

provides further support for a functional connection between

them. As Trr has previously been found to interact functionally
454 Cell Reports 8, 449–459, July 24, 2014 ª2014 The Authors
and physically with the Drosophila ecdysone receptor (Johnston

et al., 2011; Sedkov et al., 2003) and mammalian homologs of

Trr interact with multiple mammalian steroid hormone receptors

(Goo et al., 2003; Lee et al., 2006; Vicent et al., 2011), Trr binding

that does not overlap Yki likely reflects association of Trr with

other transcription factors.

In Vivo Requirement for NcoA6 in Yki-DependentGrowth
and Transcription
If NcoA6 is required for Yki’s transcriptional activity in vivo, then

like Yki it should be required for cell proliferation and cell survival.

Indeed, RNAi-mediated downregulation of NcoA6 in developing

wings or eyes reduced wing or eye size and induced apoptosis,

similar to loss of yki (Figures 5A, 5B, S3, and S4). Moreover, eye

overgrowth induced by activation of Yki was suppressed by

reduction of NcoA6 (Figure S3D). Thus, NcoA6 is required for

Yki-promoted growth.

As we were not able to obtain null alleles of NcoA6, we com-

bined Bac clones with a chromosomal deficiency to confirm

the genetic requirement for NcoA6 and its ability to interact

with Yki. Df(2L)BSC653 removes NcoA6 and two neighboring

genes (Figure 5C). The bacterial artificial chromosome (BAC)

clones CH322-05H20 and CH321-83D07 together encompass

all of the DNA deleted by Df(2L)BSC653, with CH322-05H20

including NcoA6 and CH321-83D07 including neighboring

genes (Figure 5C). Using recombineering (Venken et al., 2009),

hemagglutinin (HA)-tagged wild-type and PPxA mutant versions

of NcoA6 were created within CH322-05H20 and transformed

into Drosophila. Df(2L)BSC653 is embryonic lethal, and this

lethality was fully rescued by the combination of CH322-05H20

and CH321-83D07. However, the absence of CH322-05H20,

which corresponds genetically to specific deletion of NcoA6,

was embryonic lethal, confirming that NcoA6 is an essential

gene. The CH322-05H20 clone expressing the PPxA mutant

version ofNcoA6 also failed to rescueNcoA6 deletion, and these

animals died at or before the first larval instar. Since the activity

of NcoA6 on transcriptional reporters only required PPxY motifs

for interaction with Yki (Figure 4), this observation implies that

NcoA6 interaction with Yki is essential in vivo. The PPxA mutant

also exhibited a dominant-negative effect, as wild-type flies

homozygous for CH322-05H20 encoding PPxA mutant NcoA6,

but not wild-type CH322-05H20, have increased apoptosis

in the wing disc, which is consistent with impaired Yki activity

(Figures S4I and S4J).

To further assess requirements for NcoA6 and Trr in Yki activity

in vivo, we used en-Gal4 (drives expression in posterior cells) or

AyGal4 (drives expression in clones) to downregulate NcoA6 or

Trr by expression of UAS-RNAi constructs. Three different Yki

target genes were examined: bantam (a micro-RNA gene whose

expression is revealed by an inverse sensor, bs-GFP), thread

(revealed by antibody staining for its protein product, Diap1),

and expanded (revealed by an ex-lacZ reporter). Expression of

each of these Yki targets was reduced by RNAi of NcoA6 or Trr,

using either of two independent UAS-RNAi transgenes (Figures

5 and S3). Reduction of NcoA6 or Trr could also suppress the

effects of Yki activation on these transgenes (Figure S5).

Conversely, the other two Drosophila HMT complexes were

not detectably required for Yki activity in vivo, as neither Trx



Figure 5. In Vivo Requirement for NcoA6

(A and B) Adult female wings from en-Gal4 (wild-type control) (A) and en-Gal4;

UAS-RNAi-NcoA6 [TRiP.HMS00664] (B).

(C) Map of the genomic region surrounding NcoA6 (magenta), indicating

DNA deleted by Df(2L)BSC653 and included within BAC clones CH322-05H20
nor Set1 RNAi suppressed activated-Yki phenotypes (Figure S5).

Antibody staining confirmed that these RNAi lines were effective,

as Set1 RNAi reduced total nuclear levels of H3K4me3 (Fig-

ure S3) (Mohan et al., 2011), and Trx RNAi reduced anti-Trx stain-

ing (Figures S4A and S4B). Thus, we infer that Yki-promoted

transcription is specifically dependent upon the Trr HMT com-

plex. It has recently been reported that mutation or knock-

down of Trr could increase growth in some circumstances, while

decreasing growth or inducing apoptosis in others (Kanda et al.,

2013). We observed decreases in growth and induction of

apoptosis when Yki, NcoA6, or Trr were knocked down by

RNAi in wing discs (Figure S4), but our results do not exclude

the possibility that in some contexts Trr could be recruited by

other transcription factors that inhibit growth.

We could also detect the reported general requirement for Trr

in H3K4me1 in wing discs (Herz et al., 2012; Kanda et al., 2013),

but we could not detect an effect of NcoA6 or Yki knockdown on

total H3K4me1 levels, even though their levels were reduced by

RNAi (Figure S4 and data not shown). A substantial fraction of

Yki-bound loci are also associated with elevated H3K4me1,

especially at loci lacking elevated H3K4me3 (Table S1). Trr has

been implicated in induction of both H3K4me1 and H3K4me3,

and we infer that Yki-mediated recruitment of NcoA6 has the

potential ability to locally increase H3K4 methylation through

recruitment of a Trr complex, which depending on the context

may result preferentially in H3K4me1 or H3K4me3.

Interaction of YAP with NCOA6 in Human Cells
To investigate whether Yki’s mammalian homolog YAP could

interact with human NCOA6, we expressed epitope-tagged pro-

teins in human embryonic kidney 293T (HEK293T) cells. Physical

association of NCOA6 with YAP-was confirmed by their copreci-

pitation. Moreover, this association depends upon both the WW

domains of YAPand thePPxYmotifs ofNCOA6 (Figure 6A). Thus,

Yki/YAP transcriptional coactivators have an evolutionarily

conserved ability to interact directly with NcoA6, a subunit of

a conserved H3K4 HMT complex (Drosophila Trr, mammalian

MLL2/3). YAP and TAZ also have WW domains that can

contribute to transcriptional activation, although prior studies

have yieldedmixed results in their assessment of the requirement

for these WW domains (Chan et al., 2011; Zhang et al., 2009,

2012; Zhao et al., 2009). We found that in HEK293T cells under
and CH321-83D07 (the left end of this clone extends beyond the region

shown).

(D–G) Influence of Trr HMT complex on Yki target genes in wing discs. Pro-

jections through five confocal sections of wing discs; panels marked by prime

symbols show separated channels. Yellow asterisks identify regions with

normal gene expression, and white asterisks identify regions with expression

of RNAi lines and altered target gene expression. Scale bar (top left, yellow),

32 mm. (D and G) en-Gal4 UAS-GFP ex-lacZ UAS-Dcr2, with (D) UAS-RNAi-

NcoA6 [vdrc36480] (G) UAS-RNAi-trr[TRiP.JF03242] showing expression of

ex-lacZ (magenta) and with posterior cells marked by GFP (green). (E and F)

en-Gal4 bs-GFP; UAS-Dcr2 and with UAS-RNAi-NcoA6 [TRiP.HMS00664]

incubated at 25�C (E) and 29�C (F), showing expression of Diap1 (red) and

bs-GFP (green), and with posterior cells marked by Dcr2 (blue, in E) or lack of

NcoA6 (red, in F). Panels marked by prime symbols show a single channel of

the stain to the left.

See also Figure S5.
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Figure 6. Mammalian NcoA6 Interacts

with YAP

(A) Western blots showing coimmunoprecipitation

of FLAG:YAP or FLAG:YAP-WW with hNcoA6:V5

or hNcoA6-3PPxA:V5 fromHEK293T total extracts

(GFP:V5 is a negative control). The two upper

panels (input) show blots on total lysates (anti-

FLAG and anti-V5), and the two lower panels

(V5-IP) show blots (anti-hNcoA6 and anti-V5) on

material precipitated by anti-V5 beads.

(B) Histogram showing results of luciferase assays

(depicted as average firefly/Renilla ratio from trip-

licate experiments, where error bars indicate SD)

using TEAD/YAP-luciferase reporter (8XGTIIC-luc)

in HEK293T cells transfected to express FLAG:

YAP or FLAG:YAP-WW, as indicated. shRNA

constructs for RNAi against the specific genes

were also added as indicated. p values for statis-

tical significance obtained from pairwise t tests for

sample comparisons are indicated in green.

(C) Histogram showing results of quantitative

RT-PCR analysis of a YAP target gene, BIRC3

(depicted as average BIRC3/GAPDH ratio from

triplicate experiments, normalized to the ratio in

control samples, where error bars indicate SD), in

HEK293T cells transfected to express FLAG:YAP

and shRNA constructs for RNAi against the indi-

cated genes. Western blots in the lower panels

show effectiveness of shRNAs in reducing protein

levels.
nonconfluent conditions, wild-type YAP stimulates transcription

more than a YAP-WW mutant does (Figure 6B). The lack of an ab-

solute requirement for the WW domains in YAP might reflect the

presence of an additional activation domain in YAP that is not

conserved in Drosophila Yki and that appears to be partially

redundant with the WW domains (Zhang et al., 2012). Nonethe-

less, reduction of NCOA6 by cotransfection of small hairpin

RNAs (shRNAs) decreased transcriptional activation by YAP,

both as assayed using a luciferase reporter construct (Figure 6B)

and by examination of mRNA levels of a known YAP target (Fig-

ure 6C). We also note that a recent ChIP-seq study (Lee et al.,

2013) identified binding sites for TEAD4 (a mammalian homolog

of Sd and major binding partner for YAP) as enriched at genomic

loci bound by the Trr homolog MLL2 (also known as MLL4).

Together, these observations suggest that direct interaction

with MLL HMT complexes contributes to transcriptional activa-

tion by YAP in mammals.

DISCUSSION

Transcriptional activators increase transcription through recruit-

ment of transcriptional proteins or through chromatin modifica-
456 Cell Reports 8, 449–459, July 24, 2014 ª2014 The Authors
tion. Each of these encompasses a wide

range of specific mechanisms, including

interaction with core subunits of RNA

polymerase, interaction with Mediator

proteins, interaction with chromatin re-

modeling complexes, or interaction with

complexes that influence posttransla-
tional modifications of histones, such as acetylation or methyl-

ation. We and others have previously observed that Yki and

YAPcould interactwithMediator subunits, ATP-dependent chro-

matin remodeling complexes, and other transcription factors

such asGAGA (Bayarmagnai et al., 2012; Oh et al., 2013; Varelas

et al., 2008). Nonetheless, based on the results described here,

we argue that a keymechanism by which Yki activates transcrip-

tion is increasingH3K4methylation through recruitment of the Trr

HMTcomplex (Figure 7).Most notably, pointmutations in Yki that

specifically impair its ability to interact with NcoA6 abolish its

transcriptional activity, and this transcriptional activity is restored

by fusion with NcoA6. Moreover, the essential role of Yki as a

transcriptional coactivator for its DNA binding partner Sd can

be bypassed by fusing NcoA6 directly with Sd.

Our observations tie Yki’s transcriptional activity most directly

to NcoA6, and the argument that this reflects a necessary and

sufficient role for H3K4 methylation in transcriptional activation

by Yki rests in part on the identity of NcoA6 as a component of

the Trr HMT complex (Mahajan and Samuels, 2008; Shilatifard,

2012). This argument receives further support from several

additional observations: the strong, genome-widecorrelationbe-

tween Yki’s association with chromatin and H3K4 methylation;



Figure 7. Schematic of the Yki Transcriptional Activation Complex
A diagram depicting recruitment of Trr HMT complexes to the promoter region

of Yki target genes, which is mediated by direct physical interaction between

Yki and NcoA6. As discussed in the text, this results in increased H3K4

methylation and consequently increased transcription.
the increased H3K4 methylation when Yki competent to interact

with NcoA6 is targeted to a novel chromosomal location; the

similar decreases in expression of Yki target genes when either

NcoA6 or Trr are reduced by RNAi in cultured cells or in vivo;

and the recentbiochemical demonstration thatH3K4methylation

of chromatin by MLL2, a Trr-homologous complex in mammals,

could increase transcription in in vitro assays (Jiang et al., 2013).

NcoA6 and Trr have previously been linked to transcriptional

activation by nuclear hormone receptors (Mahajan and Samuels,

2008; Sedkov et al., 2003; Shilatifard, 2012). NcoA6 is believed to

play an analogous role in transcriptional activation by nuclear

receptors, i.e., its direct binding to these transcription factors

recruits the Trr HMT complex or its mammalian homologs. How-

ever, a distinct structural motif (LxxLL; Figure S1) within NcoA6

mediates interactions with nuclear receptors (Mahajan and Sam-

uels, 2008). Thus, NcoA6 appears to act as a multifunctional

adaptor protein that can link different classes of transcriptional

activators to Trr/MLL2/3 HMT complexes, which as we establish

here are involved not only in transcriptional activation induced by

nuclear receptors but also by Yki and its mammalian homologs

(Figure S1). Crosstalk between Hippo signaling and other path-

ways has been observed at the level of transcription factors

(Attisano andWrana, 2013; Irvine, 2012), including physical inter-

actions between Yki, YAP and TAZ, and b-catenin and SMADs,

which are transcriptional effectors of Wnt and BMP signaling,

respectively. Thus, our observations raise the possibility that

Trr-dependent H3K4 methylation could also contribute to tran-

scriptional activation by these pathways.

In humans, NCOA6 has been identified as a gene commonly

amplified and overexpressed in breast, colon, and lung cancers

(it is also known as Amplified in breast cancer 3) (Guan et al.,

1996; Lee et al., 1999; Mahajan and Samuels, 2008). In mice,

gene-targeted mutations have implicated NcoA6 in promoting

growth during development and wound healing (Antonson

et al., 2003; Kuang et al., 2002; Mahajan et al., 2004; Zhu

et al., 2003). These roles in promoting growth are reminiscent

of YAP, which is similarly required for growth during embryonic

development and wound repair and linked to these cancers

when amplified or activated (Harvey et al., 2013; Hong and

Guan, 2012). Thus, while functional studies linking mammalian

NCOA6 to cell survival, growth, and cancer have previously

been interpreted as a reflection of its role as a coactivator of tran-

scription mediated by nuclear hormone receptors, our results,
together with analysis of MLL2 binding by ChIP-seq (Lee et al.,

2013), argue that at least part of its effects reflect its role as a

cofactor of YAP.

A notable feature of Hippo signaling is the recurrence of WW

domains or PPxY motifs in multiple pathway components (Oh

and Irvine, 2010; Salah and Aqeilan, 2011). Within Yki, YAP,

and TAZ, the WW domains serve a dual role. They facilitate

inhibition, as major negative regulators, including Warts/Lats,

Expanded (in Drosophila), and Angiomotin (in mammals), utilize

PPxY motifs to bind Yki, YAP, and TAZ and promote their cyto-

plasmic localization. Conversely, they also facilitate activation,

through binding to Wbp2 (Chan et al., 2011; Zhang et al., 2011)

and, as we show here, NcoA6. It seems unlikely to be coinci-

dental that key positive and negative partners of Yki/YAP/TAZ

bind the same structural motifs. Rather, this shared recognition

of the same motifs may have evolved to ensure tight on/off

regulation of Yki/YAP/TAZ-dependent transcription.

EXPERIMENTAL PROCEDURES

Fly Stocks and Crosses

Previously described mutations and transgenes used include tub-EGFP:

2Xanti-bantam (bs-GFP) (Brennecke et al., 2003), ex-lacZ (Blaumueller and

Mlodzik, 2000), UAS-YkiS168A:GFP (Oh and Irvine, 2008), UAS-YkiS250A:V5

(Oh and Irvine, 2009), GMR-Gal4 (Bloomington 1104), en-Gal4 (Bloomington),

UAS-Dcr2 (VDRC 60008 and 60009), ET40-QF (Potter et al., 2010), UAS-wts-

RNAi (VDRC 9928),UAS-RNAi-NcoA6 (Bloomington 34964 and VDRC 36480),

UAS-RNAi-trr (Bloomington 29563 and 36916), UAS-trx-RNAi (Bloomington

33703 and 31092) and UAS-RNAi-Set1 (Bloomington 33704), Df(2L)BSC653

(Bloomington 25743), and CH321-83D07 (Bloomington 38673). QUAST-

Gal4DB:Yki:3XFL and QUAST-Gal4DB:Yki-WW:3XFL flies were generated

by phiC31-mediated site-specific transformation using the attpP2 site at 68A

(Groth et al., 2004) (Genetic Services). 3XHA:gNcoA6 and 3XHA:gNcoA63PPXA

flies were created by inserting three tandem HA tags and 3PPXA mutations

into the CH322-05H20 (BPRC) by recombineering (Venken et al., 2009), and

then flies were transformed with these BAC clones at the attpP2 site at 68A

(Groth et al., 2004) using phiC31-mediated site-specific transformation

(Genetic Services). HA antibody staining (Figure S4) confirmed that both

wild-type and PPxA mutant forms of NcoA6 were expressed similarly. Flies

were cultured at 25�C or, when stronger expression of UAS transgenes was

desired, at 29�C. Ectopic expression was also induced in eyes using GMR-

Gal4 and posterior cells using en-Gal4 UAS-GFP, en-Gal4 UAS-GFP ex-

LacZ, or en-Gal4 bs-GFP with or without UAS-dcr2. For flip-out ectopic

expression clones, UAS-transgenes with y w hs-FLP[122] were crossed

to w; Act > y+ > Gal4 bs-GFP (AyGal4-bs-GFP) or AyGal4,UAS-GFP.

ChIP-PCR

Late third-instar larvae overexpressing Gal4DB:Yki:3XFLAG and Gal4DB:

YkiWW:3XFLAG with UAS-GFP under the control of M2ET40-QF (Potter et al.,

2010)were dissected and anterior partswere collected inPBSon ice.Chromatin

preparation and immunoprecipitation were performed as described in the

protocol of EZ ChIP Chromatin Immunoprecipitation Kit (Millipore). About ten

larval anterior parts were used for an immunoprecipitation reaction. Mouse

anti-FLAG M2 (1 mg, Sigma), rabbit anti-H3K4Me3 (1 mg, Abcam), guinea pig

anti-NcoA6 (1mgaffinity-purified immunoglobulinG), or bulk guineapig immuno-

globulinG (1mg, negative control)wasused for immunoprecipitation. Nospecific

signal was detected in the ChIP-PCR negative control. After the immunopre-

cipitation, the recovered DNA was analyzed by quantitative PCR (qPCR) with

the QuantiTect SYBR Green PCR Kit (QIAGEN) using SmartCyclerII (Cepheid).

The following primers were used in qPCRs: pka (50-AGCCGCACTCGCGCT

TCTAC-30/50-CAATCAGCAGATTCTCCGGCT-30 ), UAS-primer (50-GCATGCC

TGCAGGTCGGAG-30/50-CGCTTAGCGACGTGTTCACT-30), and promoter-

primer (50-CAAGCGCAGCTGAACAAGCTA-30/50-GAAAAGTTCTTCTCCTTTAC

TCAT-30 ).
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Histology and Imaging

Imaginal discs were fixed and stained as described previously (Cho et al.,

2006) using as primary antibodies rabbit anti-Yki (1:400) (Oh and Irvine,

2008), guinea pig anti-NcoA6 (1:1,000), rabbit anti-H3K4Me3 (1:10,000

Abcam), rabbit anti-Trr (1: 400, a gift of Ali Shilatifard), rabbit Trx (1:400,

a gift of Ali Shilatifard), rabbit anti-Dcr2 (1:1600, Abcam), goat anti-b-gal

(1:400, Biogenesis), active caspase-3 (1:400, Cell Signaling), and mouse

anti-Diap1 (1:400, a gift of Bruce Hay). Fluorescent stains were captured on

a Leica TCS SP5 confocal microscope.

Tissue Culture Assays and Protein Interactions

S2cellswereculturedwithSchneider’sDrosophilamedium(Invitrogen)and10%

fetal bovine serum (FBS) (Sigma). RNAi and luciferase reporter assayswere per-

formed using the Dual-Glo Luciferase Assay System (Promega) as described

previously (Oh and Irvine, 2011) using pAc-hRluc (Potter et al., 2010) or Copia-

RLuc (Oh and Irvine, 2009) as a transfection control. The HEK293T cell line

was maintained in Dulbecco’s modified Eagle’s medium with 10% FBS. For

RNAi of mammalian genes, shRNA constructs (200 ng) were transiently trans-

fected in the reporter assays along with 8XGTIIC-luc (100 ng), pCMV2-

RLuc (0.25 ng), and p2xFLAG CMV2-YAP2 (50 ng), CMV2-YAP2-WW (50 ng),

and the shRNA constructs used are pGIPZ-RHS4346 (nonsilencing con-

trol), V3LHS-306099 (shYAP-7), V3LHS_306101 (shYAP-8), V2LHS_248718

(shNCoA6-4), and V3LHS-322282 (shNcoA6-12) (Thermo Scientific). For coim-

munoprecipitations, transient transfectionswere performedwith equal amounts

of DNA using Cellfectin (Invitrogen) for S2 cells or Lipofectamine 2000 (Invitro-

gen) for mammalian cells in six-well plates according to themanufacturer’s pro-

tocol. Coimmunoprecipitation assays were performed as described previously

(Oh and Irvine, 2009). For western blotting, mouse anti-V5 (1:5,000, Invitrogen),

mouse anti-FLAG (1:10,000, Sigma), rabbit anti-glutathione S-transferase

(1:5,000, Millipore), rabbit anti-Trr (1: 1,000, a gift from Ali Shilatifard), rabbit

anti-Trx (1: 1,000, a gift from Ali Shilatifard), rabbit anti-dSET1 (1: 1000, a gift

fromAli Shilatifard), rabbitanti-hNCOA6 (1:2,000,NovusBiologicals), andguinea

pig anti-dNcoA6 (1:2,000). IR dye 680 or 800 conjugated secondary anti-mouse

and anti-rabbit (1:10,000, Odyssey) were used. Blots were scanned and

analyzed using the Odyssey Infrared Imaging system (Li-Cor biosciences). For

the V5-pull down experiments, GFP:V5, Yki:V5, YkiWW:V5, YkiN:V5, gluta-

thione S-transferase-YkiC:V5, and glutathione S-transferase were expressed

in BL21(DE3)pLysS (Invitrogen), induced with 0.5 mM IPTG and then pull down

assays were performed as described previously (Oh et al., 2013).

Additional details are provided in Supplemental Experimental Procedures.
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