1,619 research outputs found

    Evaluating the productivity of four main tree species in Germany under climate change with static reduced models

    Get PDF
    International audienceAbstract Key messageWe present simple models of forest net primary production (NPP) in Germany that show increasing productivity, especially in mountainous areas, under warming unless water becomes a limiting factor. They can be used for spatially explicit, rapid climate impact assessment. ContextClimate impact studies largely rely on process-based forest models generally requiring detailed input data which are not everywhere available. AimsThis study aims to derive simple models with low data requirements which allow calculation of NPP and analysis of climate impacts using many climate scenarios at a large amount of sites. MethodsWe fitted regression functions to the output of simulation experiments conducted with the process-based forest model 4C at 2342 climate stations in Germany for four main tree species on four different soil types and two time periods, 1951–2006 and 2031–2060. ResultsThe regression functions showed a reasonable fit to measured NPP datasets. Temperature increase of up to 3 K leads to positive effects on NPP. In water-limited regions, this positive effect is dependent on the length of drought periods. The highest NPP increase occurs in mountainous regions. ConclusionRapid analyses, using reduced models as presented here, can complement more detailed analyses with process-based models. Especially for dry sites, we recommend further study of climate impacts with process-based models or detailed measurements

    Integrating parameter uncertainty of a process-based model in assessments of climate change effects on forest productivity

    Get PDF
    The parameter uncertainty of process-based models has received little attention in climate change impact studies. This paper aims to integrate parameter uncertainty into simulations of climate change impacts on forest net primary productivity (NPP). We used either prior (uncalibrated) or posterior (calibrated using Bayesian calibration) parameter variations to express parameter uncertainty, and we assessed the effect of parameter uncertainty on projections of the process-based model 4C in Scots pine (Pinus sylvestris) stands under climate change. We compared the uncertainty induced by differences between climate models with the uncertainty induced by parameter variability and climate models together. The results show that the uncertainty of simulated changes in NPP induced by climate model and parameter uncertainty is substantially higher than the uncertainty of NPP changes induced by climate model uncertainty alone. That said, the direction of NPP change is mostly consistent between the simulations using the standard parameter setting of 4C and the majority of the simulations including parameter uncertainty. Climate change impact studies that do not consider parameter uncertainty may therefore be appropriate for projecting the direction of change, but not for quantifying the exact degree of change, especially if parameter combinations are selected that are particularly climate sensitive. We conclude that if a key objective in climate change impact research is to quantify uncertainty, parameter uncertainty as a major factor driving the degree of uncertainty of projections should be included

    Quantifying the impact of key factors on the carbon mitigation potential of managed temperate forests

    Get PDF
    Background: Forests mitigate climate change by reducing atmospheric CO2-concentrations through the carbon sink in the forest and in wood products, and substitution effects when wood products replace carbon-intensive materials and fuels. Quantifying the carbon mitigation potential of forests is highly challenging due to the influence of multiple important factors such as forest age and type, climate change and associated natural disturbances, harvest intensities, wood usage patterns, salvage logging practices, and the carbon-intensity of substituted products. Here, we developed a framework to quantify the impact of these factors through factorial simulation experiments with an ecosystem model at the example of central European (Bavarian) forests. Results: Our simulations showed higher mitigation potentials of young forests compared to mature forests, and similar ones in broad-leaved and needle-leaved forests. Long-lived wood products significantly contributed to mitigation, particularly in needle-leaved forests due to their wood product portfolio, and increased material usage of wood showed considerable climate benefits. Consequently, the ongoing conversion of needle-leaved to more broad-leaved forests should be accompanied by the promotion of long-lived products from broad-leaved species to maintain the product sink. Climate change (especially increasing disturbances) and decarbonization were among the most critical factors influencing mitigation potentials and introduced substantial uncertainty. Nevertheless, until 2050 this uncertainty was narrow enough to derive robust findings. For instance, reducing harvest intensities enhanced the carbon sink in our simulations, but diminished substitution effects, leading to a decreased total mitigation potential until 2050. However, when considering longer time horizons (i.e. until 2100), substitution effects became low enough in our simulations due to expected decarbonization such that decreasing harvests often seemed the more favorable solution. Conclusion: Our results underscore the need to tailor mitigation strategies to the specific conditions of different forest sites. Furthermore, considering substitution effects, and thoroughly assessing the amount of avoided emissions by using wood products, is critical to determine mitigation potentials. While short-term recommendations are possible, we suggest risk diversification and methodologies like robust optimization to address increasing uncertainties from climate change and decarbonization paces past 2050. Finally, curbing emissions reduces the threat of climate change on forests, safeguarding their carbon sink and ecosystem services

    CHELSA-W5E5: daily 1 km meteorological forcing data for climate impact studies

    Get PDF
    Current changes in the world's climate increasingly impact a wide variety of sectors globally, from agriculture and ecosystems to water and energy supply or human health. Many impacts of climate on these sectors happen at high spatio-temporal resolutions that are not covered by current global climate datasets. Here we present CHELSA-W5E5 (https://doi.org/10.48364/ISIMIP.836809.3, Karger et al., 2022): a climate forcing dataset at daily temporal resolution and 30 arcsec spatial resolution for air temperatures, precipitation rates, and downwelling shortwave solar radiation. This dataset is a spatially downscaled version of the 0.5∘ W5E5 dataset using the CHELSA V2 topographic downscaling algorithm. We show that the downscaling generally increases the accuracy of climate data by decreasing the bias and increasing the correlation with measurements from meteorological stations. Bias reductions are largest in topographically complex terrain. Limitations arise for minimum near-surface air temperatures in regions that are prone to cold-air pooling or at the upper extreme end of surface downwelling shortwave radiation. We further show that our topographically downscaled climate data compare well with the results of dynamical downscaling using the Weather Research and Forecasting (WRF) regional climate model, as time series from both sources are similarly well correlated to station observations. This is remarkable given the lower computational cost of the CHELSA V2 algorithm compared to WRF and similar models. Overall, we conclude that the downscaling can provide higher-resolution climate data with increased accuracy. Hence, the dataset will be of value for a wide range of climate change impact studies both at global level and for applications that cover more than one region and benefit from using a consistent dataset across these regions

    Land use change and carbon emissions of a transformation to timber cities

    Get PDF
    Using engineered wood for construction has been discussed for climate change mitigation. It remains unclear where and in which way the additional demand for wooden construction material shall be fulfilled. Here we assess the global and regional impacts of increased demand for engineered wood on land use and associated CO2emissions until 2100 using an open-source land system model. We show that if 90% of the new urban population would be housed in newly built urban mid-rise buildings with wooden constructions, 106 Gt of additional CO2could be saved by 2100. Forest plantations would need to expand by up to 149 Mha by 2100 and harvests from unprotected natural forests would increase. Our results indicate that expansion of timber plantations for wooden buildings is possible without major repercussions on agricultural production. Strong governance and careful planning are required to ensure a sustainable transition to timber cities even if frontier forests and biodiversity hotspots are protected.Peer Reviewe

    Higher site productivity and stand age enhance forest susceptibility to drought-induced mortality

    Get PDF
    Warmer and drier conditions increase forest mortality worldwide. At the same time, nitrogen deposition, longer growing seasons and higher atmospheric CO2CO_{2} concentrations may increase site productivity accelerating forest growth. However, tree physiological studies suggest that increased site productivity can also have adverse effects, reducing adaptation to drought. Understanding such intricate interactions that might foster tree mortality is essential for designing activities and policies aimed at preserving forests and the ecosystem services they provide. This study shows how site factors and stand features affect the susceptibility of Scots pine to drought-induced stand-level mortality. We use extensive forest data covering 750,000 ha, including 47,450 managed Scots pine stands, of which 2,547 were affected by mortality during the drought in 2015-2019. We found that the oldest and most dense stands growing on the most productive sites showed the highest susceptibility to enhanced mortality during drought. Our findings suggest that increasing site productivity may accelerate the intensity and prevalence of drought-induced forest mortality. Therefore, climate change may increase mortality, particularly in old and high-productive forests. Such exacerbated susceptibility to mortality should be considered in forest carbon sink projections, forest management, and policies designed to increase resilience and protect forest ecosystems
    • 

    corecore