3,375 research outputs found

    Heat Current Characteristics in Nanojunctions with Superconducting Leads

    Full text link
    As a fundamental requisite for thermotronics, controlling heat flow has been a longstanding quest in solid state physics. Recently, there has been a lot of interest in nanoscale hybrid systems as possible candidates for thermal devices. In this context, we study the heat current in the simplest hybrid device of a two level system weakly coupled to two heat baths. We use the reduced density matrix approach together with a simple Born-Markov approximation to calculate the heat current in the steady state. We consider different kinds of reservoirs and show that the nature of the reservoir plays a very important role in determining the thermal characteristics of the device. In particular, we investigate the effectiveness of a conventional superconductor as a reservoir with regard to manipulating the heat current. In the emergent temperature characteristics, we find that superconductivity in the reservoirs leads to enhanced thermal currents and that the superconducting phase transition is clearly visible in the heat current. We observe negative differential thermal conductance and a pronounced rectification of the heat current, making this a good building block for a quantum thermal diode.Comment: 10 pages, 6 figures, submitted to Physical Review

    Collider signals of gravitino dark matter in bilinearly broken R-parity

    Get PDF
    In models with gauge mediated supersymmetry breaking the gravitino is the lightest supersymmetric particle. If R-parity is violated the gravitino decays, but with a half-live far exceeding the age of the universe and thus is, in principle, a candidate for the dark matter. We consider the decays of the next-to-lightest supersymmetric particle, assumed to be the neutralino. We show that in models where the breaking of R-parity is bilinear, the condition that R-parity violation explains correctly the measured neutrino masses fixes the branching ratio of the decay χ~10G~γ{\tilde \chi}^0_1 \to {\tilde G}\gamma in the range 10310210^{-3}-10^{-2}, if the gravitino mass is in the range required to solve the dark matter problem, i.e. of the order (few) 100 eV. This scenario is therefore directly testable at the next generation of colliders.Comment: 13 pages, 3 figure

    Negative-energy perturbations in cylindrical equilibria with a radial electric field

    Get PDF
    The impact of an equilibrium radial electric field EE on negative-energy perturbations (NEPs) (which are potentially dangerous because they can lead to either linear or nonlinear explosive instabilities) in cylindrical equilibria of magnetically confined plasmas is investigated within the framework of Maxwell-drift kinetic theory. It turns out that for wave vectors with a non-vanishing component parallel to the magnetic field the conditions for the existence of NEPs in equilibria with E=0 [G. N. Throumoulopoulos and D. Pfirsch, Phys. Rev. E 53, 2767 (1996)] remain valid, while the condition for the existence of perpendicular NEPs, which are found to be the most important perturbations, is modified. For eiϕTi|e_i\phi|\approx T_i (ϕ\phi is the electrostatic potential) and Ti/Te>βcP/(B2/8π)T_i/T_e > \beta_c\approx P/(B^2/8\pi) (PP is the total plasma pressure), a case which is of operational interest in magnetic confinement systems, the existence of perpendicular NEPs depends on eνEe_\nu E, where eνe_\nu is the charge of the particle species ν\nu. In this case the electric field can reduce the NEPs activity in the edge region of tokamaklike and stellaratorlike equilibria with identical parabolic pressure profiles, the reduction of electron NEPs being more pronounced than that of ion NEPs.Comment: 30 pages, late

    Negative-Energy Perturbations in Circularly Cylindrical Equilibria within the Framework of Maxwell-Drift Kinetic Theory

    Full text link
    The conditions for the existence of negative-energy perturbations (which could be nonlinearly unstable and cause anomalous transport) are investigated in the framework of linearized collisionless Maxwell-drift kinetic theory for the case of equilibria of magnetically confined, circularly cylindrical plasmas and vanishing initial field perturbations. For wave vectors with a non-vanishing component parallel to the magnetic field, the plane equilibrium conditions (derived by Throumoulopoulos and Pfirsch [Phys Rev. E {\bf 49}, 3290 (1994)]) are shown to remain valid, while the condition for perpendicular perturbations (which are found to be the most important modes) is modified. Consequently, besides the tokamak equilibrium regime in which the existence of negative-energy perturbations is related to the threshold value of 2/3 of the quantity ην=lnTνlnNν\eta_\nu = \frac {\partial \ln T_\nu} {\partial \ln N_\nu}, a new regime appears, not present in plane equilibria, in which negative-energy perturbations exist for {\em any} value of ην\eta_\nu. For various analytic cold-ion tokamak equilibria a substantial fraction of thermal electrons are associated with negative-energy perturbations (active particles). In particular, for linearly stable equilibria of a paramagnetic plasma with flat electron temperature profile (ηe=0\eta_e=0), the entire velocity space is occupied by active electrons. The part of the velocity space occupied by active particles increases from the center to the plasma edge and is larger in a paramagnetic plasma than in a diamagnetic plasma with the same pressure profile. It is also shown that, unlike in plane equilibria, negative-energy perturbations exist in force-free reversed-field pinch equilibria with a substantial fraction of active particles.Comment: 31 pages, late

    Impacts of Colombia's current irrigation management transfer program

    Get PDF
    Privatization / Irrigation management / Irrigated farming / Policy / Costs / Economic aspects / Operations / Maintenance / Agricultural production

    Novel Higgs decay signals in R-parity violating models

    Full text link
    In supersymmetric models the lightest Higgs boson may decay with a sizable branching ratio into a pair of light neutralinos. We analyze such decays within the context of the minimal supersymmetric standard model with R-parity violation, where the neutralino itself is unstable and decays into Standard Model fermions. We show that the R-parity violating couplings induce novel Higgs decay signals that might facilitate the discovery of the Higgs boson at colliders. At the LHC, the Higgs may be observed, for instance, through its decay -via two neutralinos- into final states containing missing energy and isolated charged leptons such as l±l,l±l±,3ll^\pm l^\mp, l^\pm l^\pm, 3l, and 4l4l. Another promising possibility is the search for the displaced vertices associated with the neutralino decay. We also point out that Higgs searches at the LHC might additionally provide the first evidence of R-parity violation.Comment: 15 pages, 7 figures. Corrected affiliation
    corecore